Algebra Qualifying Exam January 2015

The exam consists of ten problems; each problem is worth 10 points.

1. Decide if the statement below is true or false. Prove or give a counterexample.
"If H_{1}, H_{2} are groups and $G=H_{1} \times H_{2}$, then every subgroup of G is of the form $K_{1} \times K_{2}$, with K_{i} a subgroup of H_{i} for $i=1,2$."
2. Let G be a group and let H be a subgroup of G. Prove that the following two statements are equivalent:
(i) $x^{-1} y^{-1} x y \in H$ for all $x, y \in G$
(ii) H is normal in G and G / H is abelian.
3. Let $p_{1}<p_{2}<p_{3}$ be distinct prime numbers, and let G be a group of order $p_{1} p_{2} p_{3}$. Prove that G is not a simple group.
4. Let R be a ring and let M, N, K be R-modules. Let $f: M \rightarrow N$ be an R-module homomorphism.
(a) Prove that $f_{*}: \operatorname{Hom}_{R}(K, M) \rightarrow \operatorname{Hom}_{R}(K, N)$ is an R-module homomorphism, where $f_{*}(\alpha)=f \circ \alpha$ for all $\alpha \in \operatorname{Hom}_{R}(K, M)$ (recall that the operations on $\operatorname{Hom}_{R}(K, M)$ are defined by $(\alpha+\beta)(x)=\alpha(x)+$ $\beta(x),(r \cdot \alpha)(x)=r \alpha(x)$ for $\left.\alpha, \beta \in \operatorname{Hom}_{R}(K, M), x \in K, r \in R\right)$
(b) Prove that if f is 1-1 then f_{*} is also 1-1.
(c) Assume that R is a domain, I is a proper non-zero ideal of R, $M=R, N=K=R / I$, and $f: R \rightarrow R / I$ is the canonical projection that takes each element to its congruence class. Prove that f_{*} is not onto (even though f is onto).
5. Let $u=\sqrt[4]{2}$, and let D_{4} be the dihedral group of rigid motions of a square. Recall that D_{4} can be described by generators and relations as follows: $D_{4}=<x, y \mid x^{4}=e, y^{2}=e, y x=x^{3} y>$ where x, y denote the generators of the group, and e denotes the identity element of the group.
a. Prove that $\operatorname{Gal}(\mathbf{Q}(u, i) / \mathbf{Q})$ is isomorphic to D_{4}.
b. Using the isomorphism from (a), what is the subgroup of D_{4} corresponding to $Q(u)$ under Galois correspondence?

Continued on the other side

6. Let F be a field of characteristic p, where p is a prime number, and let $c \in F, f(X)=X^{p}-X-c \in F[X]$. Show that $f(X)$ factors completely into linear factors in $F[X]$, or else $f(X)$ is irreducible in $F[X]$ (hint: show that if a is a root of $f(X)$ in a splitting field, then $a+1$ is also a root of $f(X)$)
7.

(a) Let R be a PID (Principal Ideal Domain). Prove that every non-zero prime ideal of R is maximal.
(b) Give an example of a commutative ring R and a non-zero prime ideal I that is not maximal.
(c) Let K a field which is NOT algebraically closed. Give an example of a maximal ideal of the ring $R=K[X, Y]$ which is NOT of the form ($X-a, Y-b$) with $a, b \in K$ (recall that a field L is algebraically closed if every non-constant polynomial $f(X) \in L[X]$ has at least a root in L; this problem is asking you to prove the converse of the Hilbert Nullstellesatz Theorem, which is easier than the actual theorem).
8. Prove that every finite group is isomorphic to a subgroup of some symmetric group S_{n} (for some positive integer n).
9. Let R be a commutative ring. Recall that an R-module M is called a free R-module if and only if it is isomorphic to R^{n} for some positive integer n. Let I be a non-zero proper ideal of R. Recall that we can view I as an R-module using the multiplication in R as scalar multiplication.

Prove that I is a free R-module if and only if I is a principal ideal and $\operatorname{Ann}_{R}(I)=(0)\left(\operatorname{Ann}_{R}(I)\right.$ means the set $\left.\{x \in R \mid x a=0 \forall a \in I\}\right)$.
10. (a) Find the minimal polynomial of $\sqrt{4+\sqrt{7}}$ over \mathbb{Q}.
(b) Find the Galois group of that polynomial's splitting field over \mathbb{Q} (hint: show that $\sqrt{4+\sqrt{7}}=(\sqrt{2}+\sqrt{14}) / 2)$.

