No collaboration or aids are allowed. Prove every statement. Feel free to cite standard facts without proof, but clearly state the results you are using. If you write a partial solution, clearly indicate where the gaps are.

Problem 1 Let $M_{2}(\mathbb{Q})$ be the ring of 2×2 matrices with rational entries. Let R be the set of matrices in $M_{2}(\mathbb{Q})$ that commute with $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(1) Prove that R is a subring of $M_{2}(\mathbb{Q})$.
(2) Prove that R is isomorphic to the ring $\mathbb{Q}[x] /\left(x^{2}\right)$.

Problem 2 Let G be the group \mathbb{Z}^{3}, and let H be the subgroup of G generated by $(4,6,4)$, $(0,6,-2)$, and $(4,6,8)$. Prove that the group G / H is finite and determine its order.

Problem 3 Let p be a prime and d a positive integer. Prove that the p th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ has a subfield F with degree $[F: \mathbb{Q}]=d$ if and only if $p \equiv 1 \bmod d$.

Problem 4 Recall that a square matrix A is nilpotent if $A^{n}=0$ for some positive integer. Determine the number of nilpotent 5×5 complex matrices up to similarity.

Problem 5 For a group G, let $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z})$ be the set of group homomorphisms $G \rightarrow \mathbb{Q} / \mathbb{Z}$. For all $\psi, \phi \in \operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z})$ define the function $\psi * \phi: G \rightarrow \mathbb{Q} / \mathbb{Z}$ via $(\psi * \phi)(g):=\psi(g)+\phi(g)$ for all $g \in G$.
(1) Show that $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z})$ is an abelian group under the multiplication $*$.
(2) Show that if G is finite and cyclic, then $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z}) \cong G$.
(3) Show that for all groups G and H,

$$
\operatorname{Hom}(G \times H, \mathbb{Q} / \mathbb{Z}) \cong \operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z}) \times \operatorname{Hom}(H, \mathbb{Q} / \mathbb{Z})
$$

(4) Suppose G is a finitely-generated group. Show that $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z}) \cong G$ if and only if G is finite and abelian.

Problem 6 Let R be a UFD and let K be its fraction field. Show that R is integrally closed: if $x \in K$ satisfies a monic polynomial equation

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}=0
$$

with coefficients a_{1}, \ldots, a_{n} in R, then $x \in R$.
Problem 7 Prove that a group of order 280 is not simple.
Problem 8 Let $y=x^{3}+x^{-3}$ be an element of the field $\mathbb{C}(x)$. For every intermediate field $\mathbb{C}(x) \supseteq F \supseteq \mathbb{C}(y)$, find an element $\alpha \in \mathbb{C}(x)$ such that $F=\mathbb{C}(y, \alpha)$.

Problem 9 Let \mathbb{F}_{p} be the field of p elements where p is a prime. Let $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ be the group of invertible $n \times n$ matrices. Determine the order of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$.

Problem 10 Suppose F is a finite field, X is a set, and R is the ring of functions from X to F. Show that R is Noetherian if and only if X is finite.

