Qualifying Examination in Analysis
 January 2014

Please use only one side of the paper and start each problem on a new page. The real numbers are \mathbb{R}, the complex numbers are \mathbb{C}, and Lebesgue measure on \mathbb{R} is λ.

Please do each problem on separate sheets of paper and only use one side of the paper (we grade Xerox copies and coping both sides is a pain).

1. Let E be a compact metric space and $\left\langle f_{n}\right\rangle_{n=1}^{\infty}$ a sequence of continuous functions $f_{n}: E \rightarrow \mathbb{R}$ such that for all $x \in E$ the sequence $\left\langle f_{n}(x)\right\rangle_{n=1}^{\infty}$ is monotone decreasing and for each $x \in E$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$. Prove

$$
\lim _{n \rightarrow \infty} f_{n}=0
$$

uniformly.
2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function that satisfies

$$
|f(z)| \leq C e^{\operatorname{Re} z^{2}}
$$

for some positive constant C. Prove

$$
f(z)=a e^{z^{2}}
$$

for some constant $a \in \mathbb{C}$.
3. Compute

$$
\int_{|z-1|=1} \frac{e^{z} d z}{z^{4}-1}
$$

4. Find all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{1} f(x) x^{n} d x=\frac{1}{(n+1)(n+2)} \quad \text { for } \quad n=0,1,2,3, \ldots
$$

Hint: One such function is $f(x)=1-x$.
5. Let E be a measurable subset of $[0,1] \times[0,1]$. For $x \in[0,1]$ let

$$
E_{x}=\{y:(x, y) \in E\}
$$

If

$$
\lambda\left\{x: \lambda\left(E_{x}\right) \geq \frac{1}{2}\right\} \geq \frac{3}{4}
$$

show

$$
\lambda \times \lambda(E) \geq \frac{3}{8}
$$

and give an example to show this lower bound is the best possible.
6. Prove Fatou's Lemma: If $\left\{f_{n}\right\}$ is a sequence of nonnegative measurable functions and $f_{n}(x) \rightarrow f(x)$ almost everywhere on a set E, then

$$
\int_{E} f \leq \liminf \int_{E} f_{n}
$$

7. Let $f \in L^{1}(\mathbb{R})$ and let f_{n} be the function

$$
f_{n}(x)=f(x-1 / n)
$$

Prove

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{1}}=0
$$

8. Let $f \in L^{1}(\mathbb{R})$ such that for all closed bounded intervals I

$$
\int_{I} f d \lambda=0 .
$$

Show $f=0$ almost everywhere.
9. Let f be increasing on $[0,1]$ and

$$
\int_{0}^{1} f^{\prime}=f(1)-f(0)
$$

Prove that f is absolutely continuous on $[0,1]$.
10. Prove or give a counterexample.
(a) If K is a compact subset of the irrational numbers, then K has measure zero.
(b) Let $f_{n} \in L^{1}([0,1])$ with $\left\|f_{n}\right\|_{L^{1}} \leq 1 / n^{2}$. Then $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for almost all $x \in[0,1]$.
(c) There is an entire function $f(z)$ such that $f(n)=0$ for all integers n.
(d) There is a non-constant function $f:[0,1] \rightarrow \mathbb{R}$ with

$$
|f(x)-f(y)| \leq 42|x-y|
$$

for all $x, y \in[0,1]$ and $f^{\prime}(x)=0$ for almost all $x \in[0,1]$.
(e) There is a function, f, analytic on the unit disk $D:=\{z:|z|<1\}$ with $|f(z)| \leq 3$ for all $z \in D, f(0)=0$ and $f^{\prime}(0)=4$.

