Qualifying Examination in Analysis January 2014

Please use only one side of the paper and start each problem on a new page. The real numbers are \mathbb{R} , the complex numbers are \mathbb{C} , and Lebesgue measure on \mathbb{R} is λ .

Please do each problem on separate sheets of paper and *only use one side of the paper* (we grade Xerox copies and coping both sides is a pain).

1. Let *E* be a compact metric space and $\langle f_n \rangle_{n=1}^{\infty}$ a sequence of continuous functions $f_n: E \to \mathbb{R}$ such that for all $x \in E$ the sequence $\langle f_n(x) \rangle_{n=1}^{\infty}$ is monotone decreasing and for each $x \in E$ we have $\lim_{n\to\infty} f_n(x) = 0$. Prove

$$\lim_{n \to \infty} f_n = 0$$

uniformly.

2. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function that satisfies

$$|f(z)| \le C e^{\operatorname{Re} z^2}$$

for some positive constant C. Prove

$$f(z) = ae^{z^2}$$

for some constant $a \in \mathbb{C}$.

3. Compute

$$\int_{|z-1|=1} \frac{e^z \, dz}{z^4 - 1}$$

4. Find all continuous functions $f: [0,1] \to \mathbb{R}$ such that

$$\int_0^1 f(x)x^n \, dx = \frac{1}{(n+1)(n+2)} \quad \text{for} \quad n = 0, 1, 2, 3, \dots$$

Hint: One such function is f(x) = 1 - x. **5.** Let *E* be a measurable subset of $[0, 1] \times [0, 1]$. For $x \in [0, 1]$ let

$$E_x = \{ y : (x, y) \in E \}.$$

If

$$\lambda \left\{ x : \lambda(E_x) \ge \frac{1}{2} \right\} \ge \frac{3}{4}$$

show

$$\lambda \times \lambda(E) \geq \frac{3}{8}$$

and give an example to show this lower bound is the best possible.

6. Prove Fatou's Lemma: If $\{f_n\}$ is a sequence of nonnegative measurable functions and $f_n(x) \to f(x)$ almost everywhere on a set E, then

$$\int_E f \le \liminf \int_E f_n.$$

7. Let $f \in L^1(\mathbb{R})$ and let f_n be the function

$$f_n(x) = f(x - 1/n).$$

Prove

$$\lim_{n \to \infty} \|f - f_n\|_{L^1} = 0.$$

8. Let $f \in L^1(\mathbb{R})$ such that for all closed bounded intervals I

$$\int_{I} f \, d\lambda = 0$$

Show f = 0 almost everywhere. **9.** Let f be increasing on [0, 1] and

$$\int_{0}^{1} f' = f(1) - f(0).$$

Prove that f is absolutely continuous on [0, 1]. 10. Prove or give a counterexample.

(a) If K is a compact subset of the irrational numbers, then K has measure zero.

(b) Let $f_n \in L^1([0,1])$ with $||f_n||_{L^1} \leq 1/n^2$. Then $\lim_{n\to\infty} f_n(x) = 0$ for almost all $x \in [0, 1].$

- (c) There is an entire function f(z) such that f(n) = 0 for all integers n.
- (d) There is a non-constant function $f: [0,1] \to \mathbb{R}$ with

$$|f(x) - f(y)| \le 42|x - y|$$

 $|f(x) - f(y)| \le 42|x - y|$ for all $x, y \in [0, 1]$ and f'(x) = 0 for almost all $x \in [0, 1]$.

(e) There is a function, f, analytic on the unit disk $D := \{z : |z| < 1\}$ with $|f(z)| \le 3$ for all $z \in D$, f(0) = 0 and f'(0) = 4.