Analysis Qualifying Exam

August 2016

Instructions: Write your name legibly on each sheet of paper. Write only on one side of of each sheet of paper. Try to answer all questions. Questions 1-8 are each worth 10 points and question 9 is worth 20 points.
Terminology: Measurability and integrability on \mathbb{R} or a measurable subset of it will always refer to the Lebesgue measure, except if otherwise specified. Lebesgue measure will be denoted by $m, d x$ or $d y$ depending on the context. If A is a subset of \mathbb{R} then $L_{p}(A)$ is considered with respect to the Lebesgue measure. You can quote without proof any of the standard theorems covered in Math 703-704, but do indicate why the relevant hypotheses hold.

1. Let X be a metric space. Assume $K \subset X$ is a compact subset and $U \subset X$ is an open subset such that $K \subset U$. Prove there exists a $r>0$ such that for all $x \in K$ we have $B(x, r) \subset U$. (Here $B(x, r)$ denotes the open ball with center x and radius r.)
2. Let $E \subset \mathbb{R}$ be a bounded measurable set of positive measure. Prove that there exists $m, n \geq 1$ with $n \neq m$ such that

$$
\left(E+\frac{1}{n}\right) \cap\left(E+\frac{1}{m}\right) \neq \emptyset
$$

Conclude from this that there exists $x, y \in E$ with $x \neq y$ such that $x-y \in \mathbb{Q}$.
3. Let $0 \leq f_{n}$ be Lebesgue integrable functions on \mathbb{R}. Assume $f_{n}(x) \rightarrow 0$ a.e. on \mathbb{R} as $n \rightarrow \infty$ and

$$
\int \max \left(f_{1}(x), \cdots, f_{n}(x)\right) d x \leq M
$$

for all $n \geq 1$. Prove that $\int f_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$.
4. Let $E \subset[0,1]$ be Lebesgue measurable and define for $x \in \mathbb{R}$

$$
f_{n}(x)=n \int_{0}^{\frac{1}{n}} \chi_{E}(x+t) d t
$$

Prove that
(a) $0 \leq f_{n}(x) \leq 1$ for all $x \in \mathbb{R}$
(b) f_{n} is a Lipschitz function for each n
(c) $f_{n}(x) \rightarrow \chi_{E}(x)$ a.e.
(d) $\left\|f_{n}-\chi_{E}\right\|_{1} \rightarrow 0$.
5. Let $f \in L_{1}([0,1])$ and define $g(x)=\int_{x}^{1} f(t) / t d t$ for $0<x \leq 1$. Prove that g is absolutely integrable over $[0,1]$ and

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x) d x .
$$

6. Let $f_{n}, f \in L^{p}(\mathbb{R})$ for some $2 \leq p<\infty$. Asssume that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$.
(a) Prove that there exists a constant M such that $\left\|f_{n}\right\|_{p} \leq M$ for all $n \geq 1$.
(b) Prove that $\left\|f_{n}^{2}-f^{2}\right\|_{\frac{p}{2}} \rightarrow 0$ as $n \rightarrow \infty$.
7. Let f be an entire function such that $|f(z)| \geq|z|$ for all $z \neq 0$. Prove that $f(z)=c z$ for some constant c with $|c| \geq 1$.
8. Let f be an entire function with power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for $z \in \mathbb{C}$.
a. Assume that $f(\mathbb{R}) \subset \mathbb{R}$. Prove that $a_{n} \in \mathbb{R}$ for all $n \geq 0$.
b. Assume now that $f(\mathbb{R}) \subset \mathbb{R}$ and $f(i \mathbb{R}) \subset i \mathbb{R}$. Prove that $f(-z)=$ $-f(z)$ for all z.
9. True or False. Prove, or give a counterexample.
a. There exist a measurable subset E of $[0,1]$ such that for all $0 \leq$ $a<b \leq 1$ we have $m(E \cap(a, b))=\frac{b-a}{2}$.
b. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function of bounded variation. Assume $f^{\prime}(x) \geq 1$ a.e. and $f(0) \geq 0$. Then $f(x) \geq x$ for all $x \in[0,1]$.
c. Let $f_{n}:[0,1] \rightarrow[0, \infty]$ be Lebesgue integrable functions such that $\int_{0}^{1} f_{n} d x \rightarrow 0$. Then $f_{n}(x) \rightarrow 0$ a.e.
d. If $z=0$ is an essential singularity of f, then $z=0$ is an essential singularity of f^{3}.
e. There exists a function f analytic on the $\{z \in \mathbb{C}: z \neq 0\}$ such that f^{\prime} has a simple pole at 0 .
