Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. Furthermore, I have not only read but will also follow the instructions on the exam.

Signature : ___

Name (printed) : _____

INSTRUCTIONS:

- (1) Write your solutions on only one side of your paper.
- (2) Start each new problem on a separate page.
- (3) Write your name (or just your initials) and problem number on the top of each page.
- (4) When finished put the problems in order and consecutively number your pages. Hand-in your exam, with this sheet of paper (sign the HONOR CODE STATEMENT) on top.
- (5) You have 3 hours for this exam but you may take 4 hours.
- (6) Questions 1-8 are each worth 10 points. Question 9 is worth 20 points.

Notation. $\mathbb{N}:=\{1,2,3,\ldots\}$ (resp. \mathbb{R},\mathbb{C}) denotes the set of natural (resp. real, complex) numbers.

1. Using the Residue Theorem, compute

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \, dx \; . \tag{1.1}$$

2. Let f and g be analytic and nonzero-valued on the open disk $B_1(0) := \{z \in \mathbb{C} : |z| < 1\}$ and

$$\frac{f'\left(\frac{1}{n}\right)}{f\left(\frac{1}{n}\right)} = \frac{g'\left(\frac{1}{n}\right)}{g\left(\frac{1}{n}\right)} \qquad \text{for each } n \in \mathbb{N} \setminus \{1\} \ . \tag{2.1}$$

Show that f is a constant multiple of g on $B_1(0)$ i.e., show that there exists $k \in \mathbb{C} \setminus \{0\}$ such that, for each $z \in B_1(0)$, f(z) = k g(z).

3. Let A and B be nonempty subsets of a metric space (X, ρ) . Define the *distance* d(A, B) *between* A and B by

$$d(A, B) = \inf \{ \rho(a, b) : a \in A, b \in B \} .$$
(3.1)

Show that if A is compact and B is closed, then d(A, B) = 0 if and only if $A \cap B \neq \emptyset$.

- 4. Let $f: X \to Y$ where (X, d_X) and (Y, d_Y) are nonempty metric spaces. Show that the following are equivalent.
 - (1) For each open subset V in Y, one has $f^{-1}(V)$ is open in X.
 - (2) For each subset A of X, one has $f(\overline{A}) \subset \overline{f(A)}$.

If you use any *characterization of continuity* that is equivalent to the *definition of continuity* (i.e., inverse image of each open set is open), then you must also show that the used *characterization of continuity* is indeed equivalent to the *definition of continuity*. Similarly, there are several equivalent *formulations* of the definition of the <u>closure</u> of a set; be sure to mention which closure formulation you are using when you use it (but you do not need to show the various formulations of closure are equivalent).

- 5. Let A and B be subsets of a separable metric space (D, d).
 - (1) Define what it means for B to be separable.
 - (2) Show that A is separable.

Notation: $L_p((\Omega, \Sigma, \mu); \mathbb{R})$, or just L_p if confusion seems unlikely, denotes the space of equivalence classes of Σ -measurable functions $f: \Omega \to \mathbb{R}$ with finite $\|\cdot\|_p$ -norm where $1 \le p \le \infty$ and (Ω, Σ, μ) is a measure space.

6. Let (Ω, Σ, μ) be a nonnegative finite measure space. Let $f: \Omega \to \mathbb{R}$ be an μ -essentially bounded Σ -measurable function (for such an f, recall $||f||_{\infty} := \inf \{M \ge 0 : \mu([|f| > M]) = 0\}$ where $[|f| > M] := \{\omega \in \Omega : |f(\omega)| > M\}$). Show that

$$\lim_{\substack{p \to \infty \\ p \in [1,\infty)}} \|f\|_p = \|f\|_{\infty} .$$
(6.1)

- 7. Let a Lebesgue measurable function $f: [0, \infty) \to \mathbb{R}$ and $c \in \mathbb{R}$ satisfy
 - (1) f is Lebesgue integrable over each subinterval I of $[0,\infty)$ with $\mu(I) < \infty$
 - (2) $\lim_{t \to \infty} f(t) = c.$

Show that

$$\lim_{a \to \infty} \frac{1}{a} \int_{[0,a]} f \, d\mu = c \,. \tag{7.1}$$

8. Let (Ω, Σ, μ) be a nonnegative finite measure space. Let $f \in L_1((\Omega, \Sigma, \mu); \mathbb{R})$ and the sequence $\{f_n\}_{n \in \mathbb{N}}$ from L_1 satisfy

Let $J \in L_1((\Omega, \Sigma, \mu), \mathbb{R})$ and the sequence $\{J_n\}_{n \in \mathbb{N}}$ from

- (a) $\lim_{n \to \infty} f_n = f \quad \mu$ -almost everywhere
- (b) $\lim_{n \to \infty} ||f_n||_1 = ||f||_1.$

Show that

(1)
$$\lim_{n \to \infty} \int_{E} |f_n| \ d\mu = \int_{E} |f| \ d\mu \text{ for each } E \in \Sigma$$

(2)
$$\lim_{n \to \infty} ||f - f_n||_1 = 0.$$

Remarks: You may use, without proving, Egoroff's Theorem provided you state Egoroff's Theorem as well as define each involved mode of converges.

- 9. State whether the statement is true or false (1pt). Then either prove or give a counterexample (3pt).
- **9.a.** For the f in (and using notation from) this exam's problem 8, for each $\epsilon > 0$ there is a $\delta > 0$ such that if $E \in \Sigma$ and $\mu(E) < \delta$ then $\int_E |f| d\mu < \epsilon$.
- 9.b. The statement obtained by, in this exam's problem 6, omitting the word finite.
- 9.c. The statement obtained by, in this exam's problem 3, replacing <u>A is compact</u> with <u>A is closed</u>.
- **9.d.** Let (Ω, Σ, μ) be a nonnegative measure space and $f, f_n \colon \Omega \to \mathbb{R}$ for each $n \in \mathbb{N}$. If $\{f_n\}_{n \in \mathbb{N}}$ is a sequence of Σ -measurable functions converging μ -almost everywhere to f, then f is Σ -measurable.
- **9.e.** Let G be an open and connected subset of \mathbb{C} . If $f, g: G \to \mathbb{C}$ are analytic on G and f(z) g(z) = 0 for each $z \in G$, then f(z) = 0 for each $z \in G$ or g(z) = 0 for each $z \in G$.