Qualifying Exam in Computational Math, August 2014

Name:

- No books, notes, calculators, cell phones, PDAs, laptops, or any other aids allowed.
- You must show all work as much as possible. Answers without work, even correct, will receive no credit.

Part I: Numerical Analysis 708

1. (10 pts.) Find the Lagrange and Newton forms of the interpolating polynomials for the following set of data. Write both polynomials in the form $a+b x+c x^{2}$ in order to verify that they are identical.

x	-1	0	2
$f(x)$	0	1	-1

2. (10 pts.) (a) Construct the Lagrange interpolating polynomial of degree 1 , denoted by p_{1}, for the function $f(x)=(x-a)^{3}$ using the interpolation points $x_{0}=0$ and $x_{1}=a$.
(b) Show that in the interpolation error $f(x)-p_{1}(x), \xi$ has the unique value $\xi=(x+a) / 3$.
3. (10 pts.) The Newton-Cotes formula with $n=3$ on the interval $[-1,1]$ is

$$
\int_{-1}^{1} f(x) d x \approx w_{0} f(-1)+w_{1} f(-1 / 3)+w_{2} f(1 / 3)+w_{3} f(1)
$$

Using the fact that this formula is to be exact for all polynomials of degree 3 , find the values of the weights w_{0}, w_{1}, w_{2}, and w_{3}.
4. (10 pts.) (a) Using Richardson's extrapolation to derive a numerical differentiation formula of order $O\left(h^{4}\right)$ to

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{6} f^{\prime \prime \prime}(x)-\frac{h^{4}}{120} f^{(5)}(x)-\ldots
$$

In addition to the formula, provide the leading term in the error (i.e., the coefficient of $O\left(h^{4}\right)$).
(b) What is the order of accuracy of the following approximation?

$$
f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[f(x+2 h)-2 f(x+h)+2 f(x-h)-f(x-2 h)]
$$

Using Taylor series expansions to find the error term for this approximation.
5. (10 pts.) To solve ODE $y^{\prime}=f(t, y)$ with initial value $y(0)=y_{0}$ we have several numerical methods. Show the formulas of the following methods and their corresponding properties.
(a) Euler method, derive the local truncation error T_{n} using Taylor expansion. For ODE $y^{\prime}=\lambda y$ with step size h, what is the domain of absolute stability?
(b) Implicit Euler method, derive the local truncation error T_{n} using Taylor expansion. For ODE $y^{\prime}=$ λy with step size h, what is the domain of absolute stability?
(c) Trapezoidal method, derive the local truncation error T_{n} using Taylor expansion.
(d) Improved Euler (Runge-Kutta 2) method, derive the local truncation error T_{n} using Taylor expansion.

Part II: Numerical Linear Algebra 709

6. (10 pts.) For $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 0 & 1\end{array}\right]$
(a) Find $\|A\|_{2},\|A\|_{1},\|A\|_{\infty}$, and $\|A\|_{F}$.
(b) Find SVD factorization of A.
7. (10 pts.) Suppose A is normal, i.e. $A A^{*}=A^{*} A$, show that if A is also triangular, it must be diagonal. Use this to show that an $n \times n$ matrix is normal if and only if it has n orthonormal eigenvectors.
8. (10 pts.) Using the Gram-Schmidt iteration, find the $Q R$ factorization for:

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

9. (10 pts.) (a) Prove that every Hermitian positive definite matrix A has a unique Cholesky factorization (i.e., $A=R^{*} R$ with $r_{j j}>0$).
(b) Find the Cholesky factorization for:
$A=\left[\begin{array}{rrr}25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11\end{array}\right]$
10. (10 pts.) Compute one step of the QR algorithm (for computing eigenvalues) with the matrix
$A=\left[\begin{array}{ll}2 & \epsilon \\ \epsilon & 1\end{array}\right]$
(a) Without shift.
(b) With shift $\mu=1$.
