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§ 1 Calculus of variations

§ 1 Calculus of variations

Real-life problem (denoising, registration, segmentation, ...)

↓ Modeling

Minimization problem J [y∗] = min
y∈M

J [y],M ⊂ X,dimX =∞ −→ Calculus of variations

Variational approaches

• rephrase task as conditions on the solution

• find a function measuring how well the conditions are fulfilled

Examples Denoising Given a noisy image/signal f : Ω→ R, i.e. f = f0 + n, find f0.

J [u] =

ˆ
Ω

(u− f)2 dx︸ ︷︷ ︸
data term

+λ

ˆ
Ω
‖∇u(x)‖ dx︸ ︷︷ ︸
regularizer

(Rudin-Osher-Fatemi)

Deconvolution/Deblurring Given a blurry image/signal f : Ω→ R, i.e. f = Af0, find f0.

J [u] =

ˆ
Ω

(Au− f)2 dx +λ

ˆ
Ω
‖∇u(x)‖dx

Segmentation Decompose an image f : Ω→ R in foreground O (color c1) and background Ω \O
(color c2).

J [O] =

ˆ
O

(f − c1)2 dx +

ˆ
Ω\O

(f − c2)2 dx +λPer(O) (binary Mumford–Shah functional)

Registration Given two images f, g : Ω→ R, find a deformation φ : Ω→ Ω, such that f ≈ g ◦ φ
holds and φ is smooth.

J [φ] =

ˆ
Ω
|f(x)− g(φ(x))|2 dx +λ

ˆ
Ω
‖D(φ(x)− x)‖2 dx

General task

Given: Normed vector space (X, ‖·‖),M ⊂ X, J : M → R,
Find: y∗ ∈M such that J [y∗] ≤ J [y] for all y ∈M.

J is often called objective functional , M is the admissible set . In the following, a vector space
is always a real vector space.

The structure is very similar to classical optimization, but in contrast to optimization we
have dim(X) =∞. Usually X is a function space.
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Central theoretical questions

• Existence of minimizers? Direct method in the calculus of variations

sequentially compactness of Lγ(J) := {y ∈M : J [y] ≤ γ}
+ lower semi-continuity of J (⇐ J convex)

⇒ Existence

dimX =∞! Choice of X and type of convergence are crucial (weak convergence)

Suitable spaces? Ck(Ω), Lp(Ω), Wm,p(Ω), BV (Ω), ...

• Necessary conditions? “First Variation = 0”, Euler–Lagrange equation → PDE

• Sufficient conditions? “Convexity ⇒ Euler–Lagrange equation sufficient”

• Uniqueness of minimizers? ⇐ Strict convexity
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§ 2 Existence of minimizers

§ 2 Existence of minimizers

§ 2.1 Remark. First, J needs to be bounded from below on the admissible set, i.e.

J := inf
x∈X

J [x] > −∞.

This condition is not sufficient (e.g. J [x] = ex, this J is even strictly convex and analytic), but
ensure the existence of a minimizing sequence, i.e. (xn)n ∈ XN with J [xn]→ J for n→∞.

The direct method in the calculus of variations consists of the following steps

(i) Selection of a minimizing sequence (xn)n ∈ XN

(ii) Getting a convergent subsequence (xnk)k ∈ XN (denoting the limit by x∗ ∈ X)

(iii) Proving lower semi-continuity of J , i.e.

J [y] ≤ lim inf
n→∞

J [yn] for all (yn)n ∈ XN with yn → y ∈ X.

This means that function values do not “jump down”.

Then, x∗ is a minimizer, i.e. J [x∗] = J , since

J = lim
n→∞

J [xn] = lim
k→∞

J [xnk ] = lim inf
k→∞

J [xnk ] ≥ J [x∗] ≥ J.

§ 2.2 Example. Let us consider a simple finite dimensional example to study the existence of
minimizers, denoising in 1D after discretization. Given a noisy, discrete signal f ∈ Rn =: X,
the objective function is

J [x] =
n∑
i=1

(xi − fi)2 + λ
n−1∑
i=1

1

h
|xi+1 − xi| .

The admissible set is X. Here, we have J [x] ≥ 0, so we can select a minimizing sequence
(xn)n ∈ XN. For all x ∈ Rn we have

‖x‖2 ≤ ‖x− f‖2 + ‖f‖2 =

√
‖x− f‖22 + ‖f‖2 ≤

√
2J [x] + ‖f‖2 .

In particular, we have

‖xn‖2 ≤
√

2J [xn] + ‖f‖2 ≤ C,

since J [xn] is convergent and thus bounded. That means xn is a bounded sequence in Rn, thus
there is a convergent subsequence (xnk)k ∈ XN. Moreover, J is continuous and thus also lower
semi-continuous. Thus, the direct method in the calculus of variations can be applied.

To show that the minimizing sequence is norm-bounded, we have used that ‖x‖ can be
bounded in terms of J [x]. This property is a property of the objective J and called coercivity:

§ 2.3 Definition. Let X be a normed vector space and M ⊂ X. J : X → R is called coercive
on M , if there are constants r, C > 0 and β ≥ 0, such that

J [y] ≥ C ‖y‖r − β for all y ∈M.
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A more important property that we used in the direct method is a property of the underlying
space, i.e. that bounded sequences in Rn have a convergent subsequence. For this, the notion of
boundedness and convergence is crucial.

§ 2.4 Remark.

(i) In finite dimensional vector spaces all norms are equivalent, i.e. if X is a vector space
with dim(X) <∞ and ‖·‖a, ‖·‖b norms on X, there exists c, C ∈ (0,∞) with

c ‖x‖a ≤ ‖x‖b ≤ C ‖x‖a for all x ∈ X.

For infinite dimensional vector spaces, this is not true!

We will show that ‖·‖L∞ and ‖·‖L2 are not equivalent on X = C([0, 1]). For n ∈ N, let

fn(x) :=


2nx x ∈ [0, 1

2n)

2n
(

1
n − x

)
x ∈ [ 1

2n ,
1
n)

0 x ∈ [ 1
n , 1]

.

Obviously, fn ∈ X for all n ∈ N. Moreover, ‖fn‖L∞ = 1 and

‖fn‖L2 ≤
(

1

n
12

) 1
2

=
1√
n
.

Assuming there exists c > 0 with c ‖f‖L∞ ≤ ‖f‖L2 for all f ∈ X. Then,

c = c ‖fn‖L∞ ≤ ‖fn‖L2 ≤
1√
n

for all n ∈ N.

The implies c ≤ 0  . Thus, the two norms are not equivalent.

(ii) The choice of the norm defines the notion of a neighbourhood

Br(x) := {y ∈ X : ‖x− y‖ < r}

and is essential for convergence and continuity.

(iii) In infinite dimensional vector spaces, norm-bounded sequences in general do not have a
convergent subsequence. One can even show that B1(0) compact ⇔ dim(X) <∞.

To show the former, consider the sequence (fn) ⊂ L2[0, π] given by fn(x) = sin(nx). A
straightforward computation shows ‖fn‖L2 =

√
π
2 for all n ∈ N and ‖fn − fm‖L2 =

√
π

for n 6= m. Thus, (fn) is bounded in the L2-norm but no subsequence converges in the
L2-norm. (fn) also does not converge pointwise.

The problem is that norm-convergence is too restrictive. The notion of weak convergence
can be used to fix this problem.

§ 2.5 Definition (Dual space). Let X be a normed vector space with norm ‖·‖.

(i) The set

X ′ :=
{
x′ : X → R : x′ linear and continuous wrt. ‖·‖

}
is called (topological) dual space of X. Without the continuity, the set is called algebraic
dual space.
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§ 2 Existence of minimizers

(ii) The so-called dual pairing of x ∈ X and x′ ∈ X ′ is defined as 〈x′, x〉 := x′(x).

(iii) The dual space of the dual space is called double dual X ′′ := (X ′)′.

§ 2.6 Remark. With

+ : X ′ ×X ′ → X ′, (x′, y′) 7→ ((x′ + y′) : x 7→ x′(x) + y′(x)),

· : R×X ′ → X ′, (α, x′) 7→ ((αx′) : x 7→ αx′(x)),

X ′ is a vector space. Moreover, the so-called operator norm

|||·||| : X ′ → R, x′ 7→
∣∣∣∣∣∣x′∣∣∣∣∣∣ := sup

‖x‖≤1

∣∣x′(x)
∣∣

is a norm on X ′. With the completeness of R (Cauchy sequences converge), one can show the
completeness of X ′ wrt. |||·||| (exercise). Thus, X ′ is a Banach space (complete, normed vector
space).

Moreover, it holds that〈
x′, x

〉
≤
∣∣〈x′, x〉∣∣ ≤ ∣∣∣∣∣∣x′∣∣∣∣∣∣ ‖x‖ .

For x = 0 this is obviously true, for x 6= 0 it holds that∣∣〈x′, x〉∣∣ =
∣∣x′(x)

∣∣ = ‖x‖
∣∣∣x′ ( x

‖x‖

)∣∣∣ ≤ ‖x‖ sup
‖x̃‖≤1

∣∣x′(x̃)
∣∣ =

∣∣∣∣∣∣x′∣∣∣∣∣∣ ‖x‖ .
§ 2.7 Definition. Let X be a normed vector space.

(i) A sequence (xn) ⊂ X converges weakly to x ∈ X

:⇔ xn ⇀ x

:⇔ ∀x′ ∈ X ′ : 〈x′, xn〉 → 〈x′, x〉

(ii) A sequence (x′n) ⊂ X ′ converges weakly-* to x′ ∈ X ′

:⇔ x′n
∗
⇀ x′

:⇔ ∀x ∈ X : 〈x′n, x〉 → 〈x′, x〉

(iii) A set M ⊂ X (or X ′) is called weakly (or weakly-* ) sequentially compact, if all sequences
in M contain a subsequence that converges weakly (or weakly-*) to an element in M .

(iv) A mapping J : X → R is called weakly lower semi-continuous, if for every weakly
convergent sequence (xn) ⊂ X with xn ⇀ x ∈ X, it holds that

J [x] ≤ lim inf
n→∞

J [xn].

Weakly-* lower semi-continuity of J : X ′ → R is defined analogously.

§ 2.8 Lemma. If a sequence (xn) ⊂ X (or (x′n) ⊂ X ′) converges strongly, i.e. in the norm, to
x ∈ X (or x′ ∈ X ′), then it also converges weakly to x (or weakly-* to x′).
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Proof

xn → x⇒
∣∣〈x′, xn − x〉∣∣ ≤ ∣∣∣∣∣∣x′∣∣∣∣∣∣ ‖xn − x‖︸ ︷︷ ︸

→0

⇒
〈
x′, xn

〉
→
〈
x′, x

〉
x′n → x′ ⇒

∣∣〈x′ − x′n, x〉∣∣ ≤ ∣∣∣∣∣∣x′n − x′∣∣∣∣∣∣︸ ︷︷ ︸
→0

‖x‖ ⇒
〈
x′n, x

〉
→
〈
x′, x

〉
§ 2.9 Remark.

(i) Strong convergence implies weak convergence. In this sense, weak convergence is weaker
than our usual notion of convergence.

Caution: For continuity, this is the other way around! Since more sequences converge
weakly than strongly, weak (lower) continuity is stronger than strong (lower) continuity,
since the corresponding condition has to be satisfied for more sequences in the weak case.

(ii) Weakly (or weakly-*) converging sequences are bounded. This can be shown with the
Banach–Steinhaus theorem (also called uniform boundedness principle), see [1, Remark
8.3.(5)].

(iii) The weak and weak-* limits are unique (for a proof, see [1, Remark 8.3.(1)]).

§ 2.10 Example. Again, we consider the sequence (fn) ⊂ L2[0, π] given by fn(x) = sin(nx).
We already know that it is bounded in the L2-norm. Now we will show that fn converges
weakly to 0. Since L2[0, π] is a Hilbert space, we know from Riesz representation theorem that(
L2[0, π]

)′ ∼= L2[0, π]. Thus, it is sufficient to show that

ˆ π

0
y(x) sin(nx) dx −→

n→∞

ˆ π

0
y(x)0 dx = 0 for all y ∈ L2[0, π]. (∗)

For a, b ∈ [0, π] and c ∈ R, we get

ˆ b

a
c sin(nx) dx = − c

n
cos(nx)

∣∣∣∣b
a

=
c

n
(− cos(nb) + cos(na)) −→

n→∞
0,

thus (∗) follows for step functions. For arbitrary but fixed y ∈ L2[0, π] and ε > 0, there exists a
step function u ∈ L2[0, π] with ‖y − u‖L2 < ε. Thus,∣∣∣∣ˆ π

0
y(x) sin(nx) dx

∣∣∣∣ ≤ ∣∣∣∣ˆ π

0
u(x) sin(nx) dx

∣∣∣∣︸ ︷︷ ︸
−→0 for n→∞

+

∣∣∣∣ˆ π

0
(y(x)− u(x)) sin(nx) dx

∣∣∣∣︸ ︷︷ ︸
(Hölder’s ineq.) ≤‖y−u‖L2‖sin(n·)‖L2<Cε

and (∗) follows.

§ 2.11 Proposition. Let X be a normed vector space. The mapping J : X → X ′′ given by〈
Jx, x′

〉
:=
〈
x′, x

〉
for all x ∈ X,x′ ∈ X ′

is linear and isometric (thus, in particular, injective and continuous).
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§ 2 Existence of minimizers

For a proof, see [1, Proposition 8.2.(1)]. The proof uses |〈x′, x〉| ≤ |||x′||| ‖x‖ and that, for
every 0 6= x ∈ X, there exists x′ ∈ X ′ with |||x′||| = 1 and x′(x) = ‖x‖ (a consequence of the
Hahn-Banach theorem).

§ 2.12 Definition (Reflexivity). Let X be a normed vector space. X is called reflexive, if
the mapping J from Proposition § 2.11 is surjective. Thus, J is bijective, and X and X ′′ are
isomporphic, i.e. X ∼= X ′′.

§ 2.13 Proposition. Let X be a reflexive Banach space. Then, the closed unit ball

B1(0) = {x ∈ X : ‖x‖ < 1} ⊂ X

is weakly (or weakly-*) sequentially compact.

For a proof, see [1, Proposition 8.10].

§ 2.14 Remark. For 1 < p <∞, Hm,p(Ω) is reflexive (see [1, 8.11.(3)]). In particular, Proposi-
tion § 2.13 implies that bounded sequences in Hm,p(Ω) have weakly convergent subsequences.
For m ≥ 1, such sequences even converge strongly in Hm−1,p(Ω) due to Rellich’s theorem.

§ 2.15 Theorem. Let X be a reflexive Banach space, M ⊂ X and J : X → R. If M is
nonempty weakly sequentially closed (if a sequence from M converges weakly, the limit is in M)
and J coercive on M and weakly lower semi-continuous, then there exists y∗ ∈M with

J [y∗] ≤ J [y] for all y ∈M.

Proof We use the direct method in the calculus of variations. Due to the coercivity of J on
M , J is bounded from below. Thus, there is a minimizing sequence (yn)n ∈MN with

lim
n→∞

J [yn] = inf
y∈M

J [y] =: J.

In particular, the sequence (J [yn])n is bounded and combined with the coercivity it follows that

C̃ ≥ J [yn] ≥ C ‖yn‖r − β ⇒ ‖yn‖ ≤

(
C̃ + β

C

) 1
r

.

Thus, the sequence (yn)n is bounded. Since X is reflexive, it follows from Proposition § 2.13
that there is a weakly convergent subsequence (ynk)k with ynk ⇀ y∗ ∈ X. Since M is weakly
sequentially closed, we get y∗ ∈ M and with the weak lower semi-continuity of J we have
J [y∗] ≤ J and thus J [y∗] = J .

§ 2.16 Example. For a given g ∈ L2(Ω) the simple denoising functional

J [y] =
1

2
‖y − g‖2L2 +

λ

2
‖∇y‖2L2

is coercive on H1,2(Ω). This can be shown as follows.

‖y‖L2 ≤ ‖y − g‖L2 + ‖g‖L2 =

√
‖y − g‖2L2 + ‖g‖L2 ≤

√
2J [y] + ‖g‖L2

Combined with the inequality (a+ b)2 ≤ 2a2 + 2b2(
0 ≤ (a− b)2 ⇒ 2ab ≤ a2 + b2 ⇒ (a+ b)2 = a2 + 2ab+ b2 ≤ 2a2 + 2b2

)
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we get

‖y‖2H1,2 = ‖y‖2L2 + ‖∇y‖2L2 ≤
(√

2J [y] + ‖g‖L2

)2
+

2

λ
J [y]

≤ 2
√

2J [y]
2

+ 2 ‖g‖2L2 +
2

λ
J [y] =

(
4 +

2

λ

)
J [y] + 2 ‖g‖2L2

⇒ J [y] ≥ λ

4λ+ 2
‖y‖2H1,2 −

λ

2λ+ 1
‖g‖2L2

In contrast to the assumption g ∈ C(Ω) in Example § 3.12, one only needs g ∈ L2(Ω) here.

§ 2.17 Proposition. Let Ω ⊂ Rd be a bounded domain (i.e. open, nonempty and connected)
with piecewise smooth boundary,

f : Ω× R× Rd → R, (x, y, ξ) 7→ f(x, y, ξ)

continuous, wrt. to the third variable continuously differentiable, bounded from below and convex
in the third argument, i.e. for every x ∈ Ω and y ∈ R, the function

Rd → R, ξ 7→ f(x, y, ξ)

is convex. For 1 < p <∞, then

J : H1,p(Ω)→ R, y 7→ J [y] :=

ˆ
Ω
f(x, y(x),∇y(x)) dx

is weakly lower semi-continuous.

Proof Let (yn) ⊂ H1,p(Ω) be a weakly convergent sequence with yn ⇀ y ∈ H1,p(Ω) and
l := lim inf J [yn]. WLOG l = lim J [yn] (else consider a suitable subsequence). We need to show
J [y] ≤ l. Due to Rellich’s theorem (cf. [1, A8.4], here the boundary regularity of Ω is needed),
weak convergence in H1,p implies strong convergence in Lp, i.e. yn converges strongly to y in
Lp. Thus, there is another subsequence, again denoted with yn, which converges pointwise a.e.
in Ω to y (cf. [1, Lemma 3.22(1)]).

Let ε > 0 be arbitrary but fixed. Due to Egorov’s theorem (cf. [1, A3.18]), the pointwise
convergence implies that there exists a set Eε ⊂ Ω, such that

yn → y uniformly one Eε, where |Ω \ Eε| ≤ ε.

Let Fε :=
{
x ∈ Ω : |y(x)|+ ‖∇y(x)‖ ≤ 1

ε

}
. Due to

∞ > ‖y‖p
H1,p ≥

ˆ
Ω\Fε

yp + ‖∇y‖p dx
(|a|+|b|)p≤Cp(|a|p+|b|p)

≥
ˆ

Ω\Fε

1

Cpεp
dx =

1

Cpεp
|Ω \ Fε| ,

we get |Ω \ Fε| → 0 for ε→ 0. For Gε := Eε ∩ Fε, it follows that

0 ≤ |Ω \Gε| = |Ω \ (Eε ∩ Fε)| = |(Ω \ Eε) ∪ (Ω \ Fε)| ≤ |Ω \ Eε|+ |Ω \ Fε| → 0 for ε→ 0.

WLOG f ≥ 0 (else consider f + C for a lower bound C of f). With the convexity of f in ξ, we
get

J [yn] =

ˆ
Ω
f(x, yn(x),∇yn(x)) dx ≥

ˆ
Gε

f(x, yn(x),∇yn(x)) dx

(§ 3.16) ≥
ˆ
Gε

f(x, yn(x),∇y(x)) +∇ξf(x, yn(x),∇y(x)) · [∇yn(x)−∇y(x)] dx .
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§ 2 Existence of minimizers

Due to the continuity of f on Ω × R × Rd, f is bounded on D := Ω ×
[
−2
ε ,

2
ε

]
× B 1

ε
(0).

Moreover, due to the uniform convergence of yn on Eε, it follows that for sufficiently large n,
yn(x) ∈

[
−2
ε ,

2
ε

]
for all x ∈ Gε. The above combined with the dominated convergence theorem

implies

lim
n→∞

ˆ
Gε

f(x, yn(x),∇y(x)) dx =

ˆ
Gε

f(x, y(x),∇y(x)) dx .

∇ξf is uniformly continuous on D and ∇ξf(·, yn(·),∇y(·)) converges uniformly on Gε to
∇ξf(·, y(·),∇y(·)). Moreover, ∇yn converges weakly to ∇y in Lp due to the weak convergence
of yn in H1,p. Thus,∣∣∣∣ˆ

Gε

∇ξf(x, yn,∇y) · [∇yn −∇y] dx

∣∣∣∣
≤
∣∣∣∣ˆ
Gε

(∇ξf(x, yn,∇y)−∇ξf(x, y,∇y)) · [∇yn −∇y] dx

∣∣∣∣︸ ︷︷ ︸
→0 due to the uniform convergence of ∇ξf(·,yn(·),∇y(·)) and ∇yn⇀∇y

+

∣∣∣∣ˆ
Gε

∇ξf(x, y,∇y) · [∇yn −∇y] dx

∣∣∣∣︸ ︷︷ ︸
→0 since ∇yn⇀∇y

In total, we get

l = lim
n→∞

J [yn] ≥
ˆ
Gε

f(x, y(x),∇y(x)) dx .

This holds for an arbitrary ε > 0. Going to the limit ε → 0, we get from the monotone
convergence theorem

l ≥
ˆ

Ω
f(x, y(x),∇y(x)) dx = J [y].

Here, we used f ≥ 0 and, that one can construct Eε such that it increases for ε→ 0.

§ 2.18 Example. Let Ω ⊂ Rd be a bounded domain with piecewise smooth boundary and
g ∈ C(Ω). Then f(x, y, ξ) = 1

2(y − g(x))2 + λ
2 ξ

2 fulfills the assumptions in Proposition § 2.17.
Thus,

J [y] =

ˆ
Ω

1

2
(y(x)− g(x))2 +

λ

2
(∇y(x))2 dx

is weakly lower semi-continuous on H1,2(Ω). Moreover, J is coercive on H1,2(Ω) (Example § 2.16).
Since H1,2(Ω) is reflexive (since M = X = H1,2(Ω), M is weakly sequentially closed), Theo-
rem § 2.15 ensures the existence of a minimizer of J . Thus, the simple denoising problem can
be solved, in fact in H1,2(Ω).

The assumption g ∈ C(Ω) is too strong for real images (in particular, noisy images are not
continuous), but can be weakened for the denoising problem easily:

§ 2.19 Lemma. Let Ω ⊂ Rd be a bounded domain with piecewise smooth boundary and
g ∈ L2(Ω). If (yn) ⊂ H1,2(Ω) converges weakly to y ∈ H1,2(Ω), then

‖y − g‖2L2 ≤ lim inf
n→∞

‖yn − g‖2L2 .
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Proof WLOG lim inf ‖yn − g‖2L2 = lim ‖yn − g‖2L2 (else consider a suitable subsequence). Like
in the proof of Proposition § 2.17, one shows that there is a subsequence, again denoted by yn,
which converges pointwise a.e. in Ω to y. Thus, (yn − g)2 converges pointwise a.e. to (y − g)2

and we get

‖y − g‖2L2 =

ˆ
Ω

(y − g)2 dx =

ˆ
Ω

lim
n→∞

(yn − g)2 dx
Fatou
≤ lim inf

n→∞

ˆ
Ω

(yn − g)2 dx

= lim inf
n→∞

‖yn − g‖2L2 .

§ 2.20 Lemma. Let X be a normed vector space and J,K : X → R weakly lower semi-
continuous. Then, J +K is weakly lower semi-continuous. The analogous statement holds for
weakly-* lower semi-continuity mappings X ′ → R.

Proof Let (xn) ⊂ X be a weakly convergent sequence with xn ⇀ x ∈ X. Then,

J [x] +K[x] ≤ lim inf
n→∞

J [xn] + lim inf
n→∞

K[xn] ≤ lim inf
n→∞

(J +K)[xn].

§ 2.21 Remark. We have shown that minimizers of our simple denoising model

J [y] =
1

2
‖y − g‖2L2 +

λ

2
‖∇y‖2L2

are in H1,2(Ω). What can we infer from this about the suitability of this model to denoise images?
One important property of images is that they can have edges (jumps in image intensity). Is it
possible to have edges in H1,2(Ω)?

§ 2.22 Lemma. Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω. Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D
0 else

,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

Proof Exercise.

§ 2.23 Remark. Even though H1,1 does not allow for jumps, the H1,1-norm is a good starting
point. Let y ∈ C1[0, 1] be increasing. Then, we have

|y|H1,1 =

ˆ 1

0

∣∣y′(t)∣∣dt =

ˆ 1

0
y′(t) dt = y(1)− y(0).

Thus, for increasing functions in 1D, the H1,1-seminorm is independent of the size of the
derivative, just the difference of the function values at the interval boundary matters. In
particular, a function with jump like

(0, 1)→ R, t 7→

{
0 t < 1

2

1 t ≥ 1
2
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§ 2 Existence of minimizers

can be approximated with a sequence that is bounded in the H1,1-norm. To extend the H1,1-
norm to such functions, we need a more general concept than weak derivatives. For x ∈ Rd
with x 6= 0, we have

‖x‖2 = x · x

‖x‖2
≤ sup
‖p‖2≤1

−x · p ≤ sup
‖p‖2≤1

‖x‖2 ‖p‖2 = ‖x‖2 ⇒ ‖x‖2 = sup
‖p‖2≤1

−x · p.

Thus, for y ∈ H1,1(Ω)

ˆ
Ω
‖∇y‖2 dx = sup

p∈C∞c (Ω,Rd)∧‖‖p‖2‖L∞≤1

ˆ
Ω
−∇y · pdx = sup

‖‖p‖2‖L∞≤1

−
ˆ

Ω

d∑
i=1

∂iypi dx

= sup
‖‖p‖2‖L∞≤1

ˆ
Ω

d∑
i=1

y∂ipi dx = sup
‖‖p‖2‖L∞≤1

ˆ
Ω
y divp dx ,

which motivates the following definition:

§ 2.24 Definition. For y ∈ L1(Ω), the total variation is defined as

|y|BV (Ω) = sup
p∈C∞c (Ω,Rd)∧‖‖p‖2‖L∞≤1

ˆ
Ω
y divp dx .

The space of functions of bounded variation is

BV (Ω) :=
{
y ∈ L1(Ω) : |y|BV (Ω) <∞

}
.

The BV -norm of y ∈ BV (Ω) is defined as

‖y‖BV (Ω) := ‖y‖L1(Ω) + |y|BV (Ω) .

§ 2.25 Remark. Let y ∈ H1,1(Ω). As shown above, we have
´

Ω ‖∇y‖2 dx = |y|BV . From

‖x‖2 ≤ ‖x‖1 ≤
√
d ‖x‖2 and |y|H1,1 =

ˆ
Ω
‖∇y‖1 dx ,

it follows that

|y|BV ≤ |y|H1,1 ≤
√
d |y|BV ⇒ ‖y‖BV ≤ ‖y‖H1,1 ≤

√
d ‖y‖BV .

In particular, we have H1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω).

§ 2.26 Example.

(i) For the Heaviside Function

H : R→ R, t 7→

{
1 t > 0

0 t ≤ 0

it holds that |H|BV (R) = 1. Let p ∈ C∞c (R) with ‖p‖L∞ ≤ 1. Then,

ˆ
R
H(t) divp(t) dt =

ˆ ∞
0

p′(t) dt = lim
n→∞

ˆ n

0
p′(t) dt = lim

n→∞
(p(n)− p(0))

= −p(0) ≤ 1.

Since there is an admissible p with p(0) = −1, we get |H|BV (R) = 1.

11



(ii) Let a, b ∈ R with a < b. Then, for the characteristic function of the interval [a, b], we have∣∣χ[a,b]

∣∣
BV (R)

= 2.

Let p ∈ C∞c (R) with ‖p‖L∞ ≤ 1. Then,

ˆ
R
χ[a,b](t) divp(t) dt =

ˆ b

a
p′(t) dt = p(b)− p(a) ≤ 2.

Since there is an admissible p with p(a) = −1 and p(b) = 1, the statement follows.

(iii) Consider the characteristic function of the circle Br(0) ⊂ R2. For p ∈ C∞c (R2,R2) with
‖‖p‖2‖L∞ ≤ 1, we get

ˆ
R2

χBr(0)(x) divp(x) dx =

ˆ
Br(0)

divp(x) dx =

ˆ
∂Br(0)

p(x) · ν(x) dA(x)

≤
ˆ
∂Br(0)

‖p(x)‖2 ‖ν(x)‖2 dA(x) ≤
ˆ
∂Br(0)

dA(x) = 2πr.

Since there is an admissible p with p = ν on ∂Br(0), we get
∣∣χBr(0)

∣∣
BV (R2)

= 2πr.

In general, for a bounded domain D ⊂ Rd with piecewise smooth boundary and D ⊂ Ω,
|χD|BV (Ω) is the length of the boundary of D. Thus, as regularizer, |·|BV smoothens the
boundary of the sublevel sets {x ∈ Ω : y(x) < c}.

§ 2.27 Remark. As shown above, BV (Ω) allows for edges. Thus, the space suggests itself to
treat images and motivates a variant of our simple denoising functional (cf. Example § 3.12):

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of the ROF-functional

J : BV (Ω)→ R∞, y 7→ J [y] =
1

2
‖y − g‖2L2 + λ |y|BV (Rudin, Osher, Fatemi, 1992).

Existence of minimizers can be shown again with the direct method, but not using reflexivity
since BV (Ω) is not reflexive. Instead, one can show that BV (Ω) is the dual space of a separable
Banach space (cf. [2, 3.12]). Moreover, it is known that if X is a separable Banach space,
B1(0) ⊂ X ′ is weakly-* sequentially compact.

Thus, bounded sequences in BV (Ω) have weakly-* converging subsequences. Moreover, one
can show that weakly-* converging sequences in BV (Ω) converge strongly in L1 (to the same
limit), cf. [2, 3.11 + 3.12]. With this, one can show that J is weakly-* lower semi-continuous.
Also, J is coercive and we can finally apply the direct methods to guarantee existence of
minimizers.

12



§ 3 Characterization of minimizers

§ 3 Characterization of minimizers

§ 3.1 Remark. Idea from classical optimization:

Let x∗ be a minimizer of J : Rd → R, i.e. J(x∗) ≤ J(x) for all x ∈ Rd.
Choose a perturbation direction s 6= 0 ∈ Rd and consider ϕ : R → R, ε 7→ J(x∗ + εs). 0 is a
minimizer of ϕ and if J is differentiable in x∗, we get ϕ′(0) = 0. Since s was arbitrary and

∂sJ(x∗) = ϕ′(0) = 0,

every directional derivative of J vanishes. Since there are only finitely many linearly independent
directions in Rd, it follows that

∇J(x∗) · s = ∂sJ(x∗) = 0,

hence ∇J(x∗) = 0. This is the first order necessary condition known from analysis: A minimizer
(the same holds for maximizers) is a zero of the gradient.

This idea can be applied analogously to general vector spaces: Let X be a vector space and
M ⊂ X. Let y∗ ∈ M be a global minimizer of J : M → R. Choose z ∈ X as test function
(or perturbation function) and ε ∈ R as perturbation parameter. Since y = y∗ + εz has to
compete with y∗, we need y ∈M . In case M = X, this results in no further restrictions. If M ,
for instance, imposes boundary values (M =

{
y ∈ C1([a, b]) : y(a) = ya ∧ y(b) = yb

}
), then it

must hold that

ya = y(a) = y∗(a) + εz(a),

yb = y(b) = y∗(b) + εz(b).

Here, the test function z has to fulfill z(a) = z(b) = 0, to ensure y ∈ M , i.e. to make y
admissible.

For ε0 > 0 such that y∗ + εz ∈M for all ε ∈ (−ε0, ε0), consider

ϕ : (−ε0, ε0)→ R, ε 7→ J [y∗ + εz].

Since y∗ is a global minimizer of J , 0 is a global minimizer of ϕ. If J is sufficiently regular, ϕ is
differentiable and we get

0 =
d

dε
ϕ(ε)

∣∣∣∣
ε=0

.

§ 3.2 Definition. Let X be a vector space, D ⊂ X open and J : D → R. Moreover, let z ∈ X
such that y + εz ∈ D for all ε with sufficiently small absolute value. If the limit

lim
ε→0

J [y + εz]− J [y]

ε
=

d

dε
(J [y + εz])

∣∣∣∣
ε=0

=:
〈
J ′[y], z

〉
,

exists, 〈J ′[y], z〉 is called Gâteaux-differential of J in direction z at the position y. If X is
normed and the mapping

J ′[y] : X → R, z 7→
〈
J ′[y], z

〉
linear and continuous, J is called Gâteaux-differentiable at the position y and J ′[y] is called
Gâteaux-derivative of J at the position y. J ′[y] is also called first variation of J .
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§ 3.3 Remark. If X = Rd, D ⊂ X open and J ∈ C1(D), it follows from the chain rule that〈
J ′[y], z

〉
= ∇J(y) · z for all z ∈ Rd.

Thus, the Gâteaux-derivative and the classical derivative coincide for differentiable functions in
Rd.

§ 3.4 Proposition (Necessary condition). Let X be a vector space, y∗ ∈ M ⊂ X a global
extremum of J : M → R and z ∈ X such that y∗ + εz ∈ M for all ε with sufficiently small
absolute value. If 〈J ′[y∗], z〉 exists, it holds that〈

J ′[y∗], z
〉

= 0.

Proof WLOG y∗ is a minimizer (else consider −J). Since 〈J ′[y∗], z〉 exists, ϕ(ε) = J [y∗ + εz]
is differentiable in 0, and the proposition follows as in Remark § 3.1.

§ 3.5 Corollary. Let X be a normed vector space, y∗ ∈
◦
M ⊂ X a local extremum of J : M → R

and z ∈ X. If 〈J ′[y∗], z〉 exists, it holds that 〈J ′[y∗], z〉 = 0.

Proof Since y∗ is from the interior of M and a lokal extremum, there is r > 0 with Br(y
∗) ⊂

M such that y∗ is a global extremum of J on Br(y
∗). Then the proposition follows from

Proposition § 3.4.

§ 3.6 Example. Let Ω ⊂ Rd be a domain,

X = C1(Ω) :=
{
y ∈ C1(Ω) ∩ C(Ω) : ‖y‖C1 := max{‖y‖L∞ , ‖‖∇y‖2‖L∞} <∞

}
and J : X → R.

(i) For g ∈ C(Ω), let J [y] = 1
2 ‖y − g‖

2
L2 . We get

1

ε
(J [y + εz]− J [y]) =

1

2ε

ˆ
Ω

(y(x) + εz(x)− g(x))2 − (y(x)− g(x))2 dx

=
1

2ε

ˆ
Ω

(y(x)− g(x))2 + 2ε(y(x)− g(x))z(x) + ε2z(x)2 − (y(x)− g(x))2 dx

=
1

2

ˆ
Ω

2(y(x)− g(x))z(x) + εz(x)2 dx

−→
ε→0

〈
J ′[y], z

〉
=

ˆ
Ω

(y(x)− g(x))z(x) dx = (y − g, z)L2

〈J ′[y], z〉 is linear in z. Does this hold for all J?

(ii) Let X = R2, so dim(X) <∞. For

J(x) =

{
x2

1

(
1 + 1

x2

)
x2 6= 0

0 x2 = 0

and z ∈ R2 with z2 6= 0 it holds that

1

ε
(J(0 + εz)− J(0)) =

1

ε
J(εz) =

1

ε
ε2z2

1

(
1 +

1

εz2

)
= εz2

1 +
z2

1

z2

−→
ε→0

〈
J ′(0), z

〉
=
z2

1

z2

If z2 = 0, then 〈J ′(0), z〉 = 0. Thus, the Gâteaux-differential 〈J ′(0), z〉 exists for all z ∈ R2,
but it is neither continuous nor linear in z.
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§ 3 Characterization of minimizers

(iii) For J [y] = 1
2 ‖‖∇y‖2‖

2
L2 = 1

2

´
Ω ‖∇y(x)‖22 dx we get

1

ε
(J [y + εz]− J [y]) =

1

2ε

ˆ
Ω
‖∇(y + εz)‖2 − ‖∇y‖2 dx

=
1

2ε

ˆ
Ω
‖∇y + ε∇z‖2 − ‖∇y‖2 dx

=
1

2ε

ˆ
Ω
‖∇y‖2 + 2ε∇y · ∇z + ε2 ‖∇z‖2 − ‖∇y‖2 dx

=
1

2

ˆ
Ω

2∇y · ∇z + ε ‖∇z‖2 dx

−→
ε→0

〈
J ′[y], z

〉
=

ˆ
Ω
∇y · ∇z dx = (∇y,∇z)L2

Note: The perturbation z leads to a response in ∇z.
For the sake of simplicity, we consider the special case d = 1 and Ω = [a, b]. For
y ∈ C2([a, b]) and z ∈ C1

0 ([a, b]), it holds that

〈
J ′[y], z

〉
=

ˆ b

a
y′z′ dt = y′z

∣∣∣∣b
a

−
ˆ b

a
y′′z dt = (−y′′, z)L2

Thus, 〈J ′[y], z〉 = 0 for all z ∈ C1
0([a, b]) if y′′ = 0 (⇒ y′ = c1 ⇒ y = c1t + c2). Does

〈J ′[y], z〉 = 0 for all z ∈ C1
0 ([a, b]) also imply y′′ = 0?

(iv) For a given g ∈ C(Ω) consider the sum of (i) and (iii), i.e.

J [y] =
1

2
‖y − g‖2L2 +

λ

2
‖‖∇y‖2‖

2
L2 =

ˆ
Ω

1

2
(y(x)− g(x))2 +

λ

2
‖∇y(x)‖2 dx .

This is a very simple denoising model. While the square in the second term prevents
edges from being preserved (more on this later), this model can be solved with classical
methods: With f(x, y, ξ) = 1

2(y − g(x))2 + λ
2 ‖ξ‖

2, the model belongs to the following
general class of variational models:

§ 3.7 Problem (Classical variation problem (VP)). Let Ω ⊂ Rd be a bounded domain with
piecewise smooth boundary,

f : Ω× R× Rd → R, (x, y, ξ) 7→ f(x, y, ξ)

continuous and with respect to the second and third argument continuously differentiable,
M := C1(Ω) and

J : M → R, y 7→ J [y] :=

ˆ
Ω
f(x, y(x),∇y(x)) dx .

Find: A global minimizer y∗ of J on M , i.e y∗ ∈ argmin
y∈M

J [y].

§ 3.8 Proposition. Let Ω, f and J be as in (VP). Then, J is Gâteaux-differentiable with
respect to the C1-Norm and for y, z ∈ C1(Ω) it holds that〈

J ′[y], z
〉

=

ˆ
Ω
∂yf(x, y(x),∇y(x))z(x) +∇ξf(x, y(x),∇y(x)) · ∇z(x) dx .

15



Proof For y, z ∈ C1(Ω), we get

〈
J ′[y], z

〉
=

d

dε

ˆ
Ω
f(x, y(x) + εz(x),∇y(x) + ε∇z(x)) dx

∣∣∣∣
ε=0

=

ˆ
Ω

d

dε
f(x, y(x) + εz(x),∇y(x) + ε∇z(x))

∣∣∣∣
ε=0

dx (Leibniz’s rule)

=

ˆ
Ω
∇(y,ξ)f(x, y(x) + εz(x),∇y(x) + ε∇z(x)) · (z(x),∇z(x))

∣∣∣∣
ε=0

dx

=

ˆ
Ω
∂yf(x, y(x),∇y(x))z(x) +∇ξf(x, y(x),∇y(x)) · ∇z(x) dx .

For z1, z2 ∈ C1(Ω), we get∣∣〈J ′[y], z1

〉
−
〈
J ′[y], z2

〉∣∣
=

∣∣∣∣ˆ
Ω
∂yf(x, y(x),∇y(x))(z1(x)− z2(x)) +∇ξf(x, y(x),∇y(x)) · (∇z1(x)−∇z2(x)) dx

∣∣∣∣
≤
ˆ

Ω
|∂yf(x, y(x),∇y(x))(z1(x)− z2(x))|+ |∇ξf(x, y(x),∇y(x)) · (∇z1(x)−∇z2(x))|dx

≤
ˆ

Ω
|∂yf(x, y(x),∇y(x))|+ ‖∇ξf(x, y(x),∇y(x))‖dx︸ ︷︷ ︸

=const, independent of z1, z2

‖z1 − z2‖C1 .

This shows the continuity with respect to the C1-norm.

§ 3.9 Corollary (Integration by parts). Let Ω be as in (VP), ν the outer normal to ∂Ω,
ϕ ∈ C1(Ω) and v ∈ C1(Ω)d. Then, it holds that

ˆ
Ω
∇ϕ(x) · v(x) dx = −

ˆ
Ω
ϕ(x) divv(x) dx +

ˆ
∂Ω
ϕ(x)v(x) · ν(x) dA(x).

If ψ ∈ C2(Ω), it holds that

ˆ
Ω
∇ϕ(x) · ∇ψ(x) dx = −

ˆ
Ω
ϕ(x)∆ψ(x) dx +

ˆ
∂Ω
ϕ(x)∇ψ(x) · ν(x) dA(x).

Proof The first statement follows from the divergence theorem applied to ϕv and the product
rule:ˆ

∂Ω
ϕ(x)v(x) ·ν(x) dA(x) =

ˆ
Ω

div (ϕ(x)v(x)) dx =

ˆ
Ω
∇ϕ(x) ·v(x) dx +

ˆ
Ω
ϕ(x) divv(x) dx

The second statement follows from the first with v = ∇ψ since div∇ψ(x) = ∆ψ(x).

§ 3.10 Lemma (Fundamental lemma of calculus of variations). Let Ω ⊂ Rd be a domain. For
y ∈ C(Ω), the following statements are equivalent:

(i) y ≡ 0, i.e. y(x) = 0 for all x ∈ Ω

(ii)
´

Ω y(x)z(x) dx = 0 for all z ∈ C∞c (Ω)

Proof Exercise.
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§ 3 Characterization of minimizers

§ 3.11 Proposition (Euler–Lagrange equation (ELE) of calculus of variations). Let Ω, f and
J be as in (VP) and y∗ a solution of (VP). If y∗ ∈ C2(Ω) and f ∈ C2, then y∗ solves the
boundary value problem

∂yf(x, y∗(x),∇y∗(x))− divx (∇ξf(x, y∗(x),∇y∗(x))) = 0 in Ω,

∇ξf(x, y∗(x),∇y∗(x)) · ν(x) = 0 on ∂Ω.

Short notation: ∂yf − divx (∇ξf) = 0. The boundary values that appear here are called natural
boundary conditions, since they are automatically satisfied if no explicit boundary conditions
are prescribed.

Proof For y, z ∈ C1(Ω), Proposition § 3.8 implies〈
J ′[y], z

〉
=

ˆ
Ω
∂yf(x, y(x),∇y(x))z(x) +∇ξf(x, y(x),∇y(x)) · ∇z(x) dx .

If y∗ ∈ C2(Ω) solves (VP), we get for z ∈ C1(Ω) using Proposition § 3.4 (necessary condition)
and Corollary § 3.9 (integration by parts)

0 =
〈
J ′[y∗], z

〉
=

ˆ
Ω

(∂yf(x, y∗(x),∇y∗(x))− divx (∇ξf(x, y∗(x),∇y∗(x)))) z(x) dx

+

ˆ
∂Ω
z(x)∇ξf(x, y∗(x),∇y∗(x)) · ν(x) dA(x).

For z ∈ C1
0(Ω) the second term vanishes and the claimed equality in Ω follows with the

fundamental lemma. Thus, the first term vanishes for all z ∈ C1(Ω). The fundamental lemma
also holds for integrals of the form

ˆ
∂Ω
g(x)z(x) dA(x),

which proves the claimed boundary values.

§ 3.12 Example (Denosing in Rd). For a given g ∈ C(Ω), we consider again

J [y] =

ˆ
Ω

1

2
(y(x)− g(x))2 +

λ

2
‖∇y(x)‖2 dx

on C1(Ω). It holds that f(x, y, ξ) = 1
2(y − g(x))2 + λ

2 ‖ξ‖
2. Thus, if y∗ ∈ C2(Ω) solves (VP),

then, according to Proposition § 3.11, y∗ fulfills the ELE

0 = ∂yf − divx (∇ξf) = y∗ − g − div(λ∇y∗) = y∗ − g − λ∆y∗ in Ω

and the boundary values

0 = ∇ξf · ν = λ∇y∗ · ν = λ∂νy
∗ ⇒ ∂νy

∗ = 0 on ∂Ω.

In general, the assumptions in (VP) are not strong enough to guarantee that solutions of
the ELE solve (VP). In other words, solutions of the ELE fulfill the necessary condition for
minimizers, but this condition is not sufficient. In this example, f is also convex in (y, ξ). This
is sufficient to prove that every solution of the ELE is a minimizer. Here, f is even strictly
convex in (y, ξ), which also implies the uniqueness of the minimizer.
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§ 3.13 Definition. Let X be a vector space, M ⊂ X a set and J : M → R a mapping.

(i) M is called convex :⇔ ∀x, y ∈M ∀λ ∈ [0, 1] : λx+ (1− λ)y ∈M

(ii) J is called convex on M :⇔ ∀x, y ∈M ∀λ ∈ [0, 1] :

[λx+ (1− λ)y ∈M ]⇒ J [λx+ (1− λ)y] ≤ λJ [x] + (1− λ)J [y].

If for x 6= y and λ ∈ (0, 1) even “<” holds, J is called strictly convex .

§ 3.14 Proposition. Let X be a normed vector space, M ⊂ X convex, U an open neighborhood
of M and J : U → R Gâteaux-differentiable. Then,

(i) J convex on M ⇔ ∀x, y ∈M : J [y] ≥ J [x] + 〈J ′[x], y − x〉.

(ii) J strictly convex on M ⇔ ∀x, y ∈M,x 6= y : J [y] > J [x] + 〈J ′[x], y − x〉

Proof

(i) “⇒”: Let x, y ∈M and λ ∈ (0, 1]. Since J and M are convex, we get

J [x+ λ(y − x)] = J [λy + (1− λ)x] ≤ λJ [y] + (1− λ)J [x] = J [x] + λ(J [y]− J [x]).

Reorganizing the terms and division by λ leads to

1
λ (J [x+ λ(y − x)]− J [x]) ≤ J [y]− J [x].

Since J is Gâteaux-differentiable, the limit λ→ 0 exists and it follows that〈
J ′[x], y − x

〉
≤ J [y]− J [x].

“⇐”: Let x, y ∈M and λ ∈ [0, 1]. Since M is convex, we get x̂ = λx+ (1− λ)y ∈M and
due to the assumptions, it holds that

J [x] ≥ J [x̂] +
〈
J ′[x̂], x− x̂

〉
(∗1)

J [y] ≥ J [x̂] +
〈
J ′[x̂], y − x̂

〉
(∗2)

With λ(∗1) + (1− λ)(∗2) it follows that

λJ [x] + (1− λ)J [y] ≥ J [x̂] + 0 = J [λx+ (1− λ)y].

Thus, J is convex.

(ii) “⇒”: Let x, y ∈M with x 6= y. Then, z = 1
2 (x+ y) ∈M and with the strict convexity it

follows that

J [z] <
1

2
(J [x] + J [y])⇒ J [z]− J [x] <

1

2
(J [y]− J [x]) .

Combined with (i), this leads to

J [y]− J [x] > 2(J [z]− J [x])
(i)

≥ 2
〈
J ′[x], z − x

〉
=
〈
J ′[x], y − x

〉
.

“⇐” follows analogously to (i) “⇐” using the strict inequality in (∗1) and (∗2).
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§ 3 Characterization of minimizers

§ 3.15 Corollary. Let X, M and J be as in Proposition § 3.14 and J additionally convex.
Moreover, let y∗ ∈M with J ′[y∗] = 0 (i.e. 〈J ′[y∗], z〉 = 0 for all z ∈ X). Then, y∗ ∈ argmin

y∈M
J [y].

Proof Let y ∈M be arbitrary but fixed. Using Proposition § 3.14, it immediately follows that

J [y] ≥ J [y∗] +
〈
J ′[y∗], y − y∗

〉
= J [y∗].

§ 3.16 Corollary. Let M ⊂ Rd be convex, U an open neighborhood of M and f ∈ C1(U).
Then,

(i) f convex on M ⇔ ∀x, y ∈M : f(y) ≥ f(x) +∇f(x) · (y − x)

(ii) f strictly convex on M ⇔ ∀x, y ∈M,x 6= y : f(y) > f(x) +∇f(x) · (y − x)

Proof Immediately follows from Remark § 3.3 and Proposition § 3.14.

§ 3.17 Proposition. Let f be as in (VP) and additionally convex in the second and third
argument, i.e. for all x ∈ Ω let the function

R× Rd → R, (y, ξ) 7→ f(x, y, ξ)

be convex and f ∈ C2. Then, every solution y ∈ C2(Ω) of the ELE ∂yf − divx (∇ξf) = 0 from
Proposition § 3.11 with natural boundary conditions solves (VP). If f is strictly convex in the
second and third argument, the solution of (VP) is unique.

Proof Let y∗ ∈ C2(Ω) be a solution of the ELE and y ∈ C1(Ω) arbitrary. Then z := y − y∗ ∈
C1(Ω) and from the convexity of f and Corollary § 3.16 it follows that

J [y] =

ˆ
Ω
f(x, y(x),∇y(x)) dx

(§ 3.16) ≥
ˆ

Ω
f(x, y∗,∇y∗) + (∂y,∇ξ)f(x, y∗,∇y∗) · [(y,∇y)− (y∗,∇y∗)] dx

=

ˆ
Ω
f(x, y∗,∇y∗) + ∂yf(x, y∗,∇y∗)z +∇ξf(x, y∗,∇y∗) · ∇z dx

=

ˆ
Ω
f(x, y∗,∇y∗) + (∂yf(x, y∗,∇y∗)− divx (∇ξf(x, y∗,∇y∗)))︸ ︷︷ ︸

=0 (ELE)

z dx

+

ˆ
∂Ω
z ∇ξf(x, y∗,∇y∗) · ν︸ ︷︷ ︸

=0 (boundary conditions)

dA(x) = J [y∗].

Thus, y∗ is a global minimizer of J on C1(Ω) and, thus, solves (VP). Using the strict convexity,
it follows analogously that for y 6= y∗ it holds that J [y] > J [y∗] (here the continuity of the
integrand and the positive volume of Ω is needed). Thus, the solution of (VP) is unique.

§ 3.18 Proposition. Let X be a vector space, M ⊂ X convex and J : M → R strictly convex.
Then, at most one global minimizer of J on M exists.

Proof Assume there are two global minimizers u, v ∈ M of J on M with u 6= v. Then,
1
2u+ 1

2v ∈M , since M is convex and it follows that

J
[

1
2u+ 1

2v
]
< 1

2J [u] + 1
2J [v] = J [u]  to u global minimizer of J on M .
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§ 3.19 Definition. Let X be a normed vector space and J : X → R∞ := R ∪ {∞} convex.
u ∈ X ′ is called subgradient of J at position y ∈ X, if

J [y] + 〈u, x− y〉 ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J at position y.

§ 3.20 Proposition. Let X be a normed vector space and J : X → R∞ convex. Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ 0 ∈ ∂J [y∗].

Proof y∗ is a minimizer, if and only if J [y∗] ≤ J [y] for all y ∈ X. Due to

J [y∗] = J [y∗] + 〈0, y − y∗〉 ,

this is equivalent to 0 ∈ ∂J [y∗].

§ 3.21 Proposition. Let X be a normed vector space and J : X → R Gâteaux-differentiable
and convex. Then, ∂J [y] = {J ′[y]} for all y ∈ X.

Proof From Proposition § 3.14(i) it immediately follows that J ′[y] ∈ ∂J [y], thus {J ′[y]} ⊂ ∂J [y].
Now let u ∈ ∂J [y]. Let ε > 0 and z ∈ X be arbitrary. Then,

J [y] + 〈u, (y + εz)− y〉 ≤ J [y + εz]⇒ 〈u, z〉 ≤ 1

ε
(J [y + εz]− J [y]) .

Since J is Gâteaux-differentiable, going to the limit ε→ 0 implies

〈u, z〉 ≤
〈
J ′[y], z

〉
for all z ∈ X.

For z ∈ X, we have −z ∈ X and it follows that

〈u,−z〉 ≤
〈
J ′[y],−z

〉
⇒ −〈u, z〉 ≤ −

〈
J ′[y], z

〉
⇒ 〈u, z〉 ≥

〈
J ′[y], z

〉
.

Altogether, it follows that 〈u, z〉 = 〈J ′[y], z〉 for all z ∈ X, i.e. u = J ′[y], i.e. ∂J [y] ⊂ {J ′[y]}.
It is possible to characterize convexity completely without differentiability:

§ 3.22 Proposition. Let X be a normed vector space, M ⊂ X convex and J : M → R∞.
Then,

(i) J convex ⇐ ∀x ∈M ∃u ∈ X ′ ∀y ∈M : J [y] ≥ J [x] + 〈u, y − x〉.

(ii) J strictly convex ⇐ ∀x ∈M ∃u ∈ X ′ ∀y ∈M \ {x} : J [y] > J [x] + 〈u, y − x〉.

Proof The proof follows immediately from the proof of “⇐” in Proposition § 3.14.

§ 3.23 Remark. The definition of the subdifferential ∂J [y] can also be considered, if J is not
convex. With the proposition above, it follows immediately that a function is convex, in case
∂J [y] 6= ∅ for all y ∈ X.

The direction “⇒” in Proposition § 3.22 does not hold without further assumption, e.g.
consider X = R, M = [0, 1] and J = χ{0,1}. If M is open and J : M → R continuous, then “⇒”
holds (exercise). If dim(X) <∞, M open and J : M → R convex already imply the continuity
of J .
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§ 4 Minimization using the proximal operator

§ 4 Minimization using the proximal operator

Convex functions have a lot of structure that can be exploited to numerically compute minimizers.
It is even possible to create efficient minimization algorithms for non-smooth, but convex
functions.

§ 4.1 Definition. Let X be a vector space and J : X → R∞. Then

dom(J) = {x ∈ X : J [x] <∞}

is called effective domain of J . Moreover,

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t}

is called epigraph of J . A convex J is called proper , if epi(J) 6= ∅, i.e. if there exists x ∈ X with
J [x] <∞. If X is a normed vector space, a proper convex functional J is called closed, if epi(J)
is closed.

The set of closed proper convex functionals on X is denoted by Γ0(X).

§ 4.2 Proposition. Let X be a Banach space and J ∈ Γ0(X). Then, J is weakly lower
semi-continuous and {J ≤ t} := {y ∈ X : J [y] ≤ t} is weakly sequentially closed for all t ∈ R.

Proof Let X be a normed vector space and J : X → R∞. Then, [3, Bem. 6.26] implies

• J convex ⇔ epi(J) convex

• J convex and lower semi-continuous ⇔ epi(J) convex and closed

• J convex and lower semi-continuous ⇒ {J ≤ t} closed for all t ∈ R

If X is also complete and J convex, then [3, Korollar 6.28] implies that J is weakly lower
semi-continuous, if and only of it is lower semi-continuous.

Let J ∈ Γ0(X). Since J is convex, epi(J) is convex. Since epi(J) is convex and closed,
J is lower semi-continuous. Then, [3, Korollar 6.28] implies the weak lower semi-continuity.
Since {J ≤ t} is convex and closed, [1, Proposition 8.13] implies that it is weakly sequentially
closed.

§ 4.3 Proposition. Let X be a reflexive Banach space and J ∈ Γ0(X). Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
‖u− y‖2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal mapping / proximal
operator.

Proof From Proposition § 4.2, it follows that J is weakly lower semi-continuous. Due to the
weak lower semi-continuity of norms (cd. [3, Korollar 6.15]) py[·] := J [·] + 1

2 ‖· − y‖
2 is weakly

lower semi-continuous. Moreover, py is coercive, since convex functions decay at most linearly
(the Brøndsted-Rockafellar theorem implies that ∂J is dense in dom(J), in particular, there
exists a subgradient that is a linear lower bound).

Since dom(J) 6= ∅, there exists z ∈ dom(J). It holds that py[z] <∞, thusM := {u ∈ X : py[u] ≤ py[z]}
is weakly sequentially closed. From Theorem § 2.15, the existence of minimizers of py on M
follows and thus also on all of X. This minimizer is unique according to Proposition § 3.18,
since py is strictly convex on dom(J) and dom(J) is convex.

In the following, X always denotes a Hilbert space and we identify X ′ with X.
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§ 4.4 Lemma. Let J ∈ Γ0(X) and τ > 0. Then,

y∗ ∈ argmin
y∈X

J [y]⇔ y∗ = proxτJ [y∗].

Proof This can be shown elementally, it is even sufficient if X is just a reflexive Banach space
(exercise). The statement for Hilbert spaces later follows from a more general statement.

§ 4.5 Lemma. Let J ∈ Γ0(X) and τ > 0. Then, for y, y∗ ∈ X

y∗ = proxτJ [y]⇔ y ∈ y∗ + τ∂J [y∗].

In particular, y ∈ proxτJ [y] + τ∂J [proxτJ [y]] and ∂J [proxτJ [y]] 6= ∅.

Proof Let y, y∗ ∈ X be arbitrary but fixed and Gτ,y[z] := 1
2τ ‖z − y‖

2.

“⇒” Let y∗ = proxτJ [y]. Then, y∗ is a minimizer of the convex function J + Gτ,y. Due to
Proposition § 3.20, we have 0 ∈ ∂(J +Gτ,y)[y

∗]. Moreover, y∗ ∈ dom(J) ∩ dom(Gτ,y) and
Gτ,y is continuous. Then, due to [3, Satz 6.51 3.], we get

∂(J +Gτ,y)[y
∗] = ∂J [y∗] + ∂Gτ,y[y

∗] = 1
τ (y∗ − y) + ∂J [y∗]

It follows that 0 ∈ 1
τ (y∗ − y) + ∂J [y∗]⇒ y ∈ y∗ + τ∂J [y∗].

“⇐” Let y ∈ y∗ + τ∂J [y∗]. Analogously to “⇒”, we get

0 ∈ 1
τ (y∗ − y) + ∂J [y∗] = ∂J [y∗] + ∂Gτ,y[y

∗].

Since ∂J [z] = ∅ for z ∈ X\dom(J), we get y∗ ∈ dom(J) = dom(J)∩dom(Gτ,y). Combined
with the continuity of Gτ,y, it follows from [3, Satz 6.51 3.] that

0 ∈ ∂J [y∗] + ∂Gτ,y[y
∗] = ∂(J +Gτ,y)[y

∗].

Due to Proposition § 3.20, we get y∗ ∈ argmin(J +Gτ,y). Due to the uniqueness of this
minimization problem (Proposition § 4.3), it follows that y∗ = proxτJ [y].

§ 4.6 Corollary. Let J ∈ Γ0(X) and τ > 0. The proximal operator coincides with the so-called
resolvent of the subdifferential, i.e. for y ∈ X, we have

{proxτJ [y]} = (id +τ∂J)−1[y].

Here, for a set-valued mapping A : X → P(Y ), the inversion is defined by

A−1 : Y → P(X), y 7→ A−1[y] := {z ∈ X : y ∈ A[z]} .

Proof

“⊂” Let z = proxτJ [y]. Due to Lemma § 4.5, we have

y ∈ z + τ∂J [z] = (id +τ∂J)[z].

Thus, with the definition of the inversion, it holds that z ∈ (id +τ∂J)−1[y].
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§ 4 Minimization using the proximal operator

“⊃” Let z ∈ (id +τ∂J)−1[y]. It immediately follows that y ∈ (id +τ∂J)[z] and Lemma § 4.5
implies z = proxτJ [y].

§ 4.7 Corollary. Let J ∈ Γ0(X), τ > 0 and y, y∗ ∈ X. Then,

y∗ ∈ ∂J [y]⇔ y = proxτJ [y + τy∗].

Proof With the definition of the inversion and Corollary § 4.6, we get

y∗ ∈ ∂J [y]⇔ y + τy∗ ∈ (id +τ∂J)[y]

⇔ y ∈ (id +τ∂J)−1[y + τy∗]

⇔ y = proxτJ [y + τy∗].

§ 4.8 Remark. With y∗ = 0 and the corollary above together with Proposition § 3.20, it directly
follows that Lemma § 4.4 holds.

For the sake of simplicity, in the following, we confine to the case X = Rn and ‖·‖ = ‖·‖2, i.e.
we consider minimization problems after discretization (Discretize Then Optimize).

§ 4.9 Remark. Due to Lemma § 4.4, finding a minimizer of J ∈ Γ0(Rn) is equivalent to finding
a fixed point of proxτJ . This motivates the proximal point algorithm

yk+1 = proxτJ(yk)

for a step size τ > 0 and an initial value y0 ∈ Rn. If a minimizer of J exists, yk converges to
the set of minimizers and J(yk) to the optimal value (proof will be given later).

§ 4.10 Example. Let τ > 0.

(i) For J ≡ c ∈ R, we have proxτJ(y) = argmin
u∈Rn

(
τc+ 1

2 ‖u− y‖
2
2

)
= y.

(ii) Let g ∈ Rn and J(y) = 1
2

n∑
i=1

(yi − gi)2 = 1
2 ‖y − g‖

2
2. It holds that

u∗ := proxτJ(y) = argmin
u∈Rn

(
τ

2
‖u− g‖22 +

1

2
‖u− y‖22

)

⇒ 0 = τ(u∗ − g) + (u∗ − y)⇒ proxτJ(y) =
y + τg

1 + τ

(iii) For J(y) =
n∑
i=1

Ji(yi) with Ji ∈ Γ0(R), we have proxτJ(y) = (proxτJ1(y1), . . . ,proxτJn(yn)).

(iv) For J(y) := ‖y‖1, proxτJ(y) is the so-called soft threshold operator (exercise), i.e.

(proxτJ(y))i =


yi − τ yi ≥ τ
0 |yi| < τ

yi + τ yi ≤ −τ
.
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(v) If C ⊂ Rn is a nonempty, closed, convex set, then

IC : Rn → R∞, y 7→

{
0 y ∈ C
∞ y 6∈ C,

is called indicator function of C in Γ0(Rn) and we have proxτIC (y) = ΠC(y), where ΠC is
the Euclidean projection to C, i.e. ΠC(y) = argmin

z∈C
‖z − y‖2.

§ 4.11 Remark. If J ∈ C1(Rn)∩Γ0(Rn), then yk+1 = proxτJ (yk) is determined by the necessary
condition:

0 = τ∇J(yk+1) + (yk+1 − yk)⇒ yk+1 = yk − τ∇J(yk+1)

This is the same as the backward Euler discretization of the gradient descent of J . Thus, for
differentiable J , the proximal point algorithm is equivalent to the fully implicit gradient descent.

With additional assumptions on the structure of J , one can construct algorithms that also
work in case proxτJ cannot be computed with sufficient efficiency. Very widespread are so-called
operator splitting methods.

§ 4.12 Remark. For J = G+H, we consider the optimization problem

min
y∈Rn

(G(y) +H(y)),

where G ∈ C1(Rn)∩Γ0(Rn) and H ∈ Γ0(Rn), i.e. a part of the objective function is differentiable.
Then, the proximal gradient algorithm is given by

yk+1 = proxτkH

(
yk − τk∇G(yk)

)
for step sizes τk > 0 and an initial value y0 ∈ Rn. Using

Fτ (y) =
1

τ
(y − proxτH (y − τ∇G(y))) ,

we get

yk+1 = yk − τkFτk(yk).

This method is also called forward-backward splitting , since it combines a forward Euler gradient
descent step in G with a proximal point algorithm step in H, which, in the smooth case, is
equivalent to a backward Euler gradient descent step in H.

§ 4.13 Lemma. Assumptions as in Remark § 4.12. Moreover, let ∇G be Lipschitz continuous
with constant L > 0. Then, for all y, z ∈ Rn and τ ∈ [0, 1

L ], it holds that

J(y − τFτ (y)) ≤ J(z) + Fτ (y) · (y − z)− τ

2
‖Fτ (y)‖22 .

Proof Let y, z ∈ Rn be arbitrary but fixed. For an arbitrary w ∈ Rn and v = w − y, we get

G(w) = G(y) +∇G(y) · v +

ˆ 1

0
(∇G(y + tv)−∇G(y)) · v dt

≤ G(y) +∇G(y) · v +

ˆ 1

0
‖∇G(y + tv)−∇G(y)‖2 ‖v‖2 dt

≤ G(y) +∇G(y) · v +

ˆ 1

0
Lt ‖v‖22 dt = G(y) +∇G(y) · v +

L

2
‖v‖22 .
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§ 4 Minimization using the proximal operator

For w = y − τFτ (y), it follows that v = −τFτ (y) and

G(y − τFτ (y)) ≤ G(y)− τ∇G(y) · Fτ (y) +
τ2L

2
‖Fτ (y)‖22 .

For τ ∈ [0, 1
L ], we get

G(y − τFτ (y)) ≤ G(y)− τ∇G(y) · Fτ (y) +
τ

2
‖Fτ (y)‖22 . (∗1)

Due to Lemma § 4.5, for w ∈ Rn, it holds that

w ∈ proxτH(w) + τ∂H(proxτH(w)).

From the definition of Fτ , we get proxτH (y − τ∇G(y)) = y−τFτ (y), thus, for w = y−τ∇G(y),
it follows that

y − τ∇G(y) ∈ y − τFτ (y) + τ∂H(y − τFτ (y))

⇒ Fτ (y)−∇G(y) ∈ ∂H(y − τFτ (y)).

For w ∈ Rn and u ∈ ∂H(w), we get

H(w) + u · (z − w) ≤ H(z).

With w = y − τFτ (y) and u = Fτ (y)−∇G(y), it holds that u ∈ ∂H(w) and we get

H(y − τFτ (y)) ≤ H(z)− (Fτ (y)−∇G(y)) · (z − y + τFτ (y)) . (∗2)

Combined with G(y) ≤ G(z) +∇G(y) · (y − z) (Corollary § 3.16), (∗1) and (∗2) lead to

J(y − τFτ (y)) ≤ G(y)− τ∇G(y) · Fτ (y) +
τ

2
‖Fτ (y)‖22 +H(y − τFτ (y))

≤ G(z) +∇G(y) · (y − z)− τ∇G(y) · Fτ (y) +
τ

2
‖Fτ (y)‖22

+H(z)− (Fτ (y)−∇G(y)) · (z − y + τFτ (y))

≤ G(z) +H(z) + Fτ (y) · (y − z)− τ

2
‖Fτ (y)‖22 .

§ 4.14 Theorem. Assumptions as in Remark § 4.12. Moreover, let ∇G be Lipschitz continuous
with constant L > 0, τk ∈ [τmin,

1
L ], where τmin ∈ (0, 1

L ], and let minimizer y∗ of J exist. Then,
the proximal gradient algorithm converges. More precisely, it holds that

0 ≤ J(yk)− J(y∗) ≤ 1

2kτmin

∥∥y0 − y∗
∥∥2

2
= O

(
1
k

)
.

Proof Let y+ = y − τFτ (y). For z = y, it follows from Lemma § 4.13 that

J(y+) ≤ J(y)− τ

2
‖Fτ (y)‖22 ≤ J(y).

Thus, we have J(yi+1) ≤ J(yi) for i ∈ N0. For z = y∗ and J = J(y∗), Lemma § 4.13 gives

J(y+)− J ≤ Fτ (y) · (y − y∗)− τ

2
‖Fτ (y)‖22 =

1

2τ

(
‖y − y∗‖22 − ‖y − y

∗ − τFτ (y)‖22
)

=
1

2τ

(
‖y − y∗‖22 −

∥∥y+ − y∗
∥∥2

2

)
.
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In particular, ‖y+ − y∗‖22 ≤ ‖y − y∗‖
2
2, i.e. the distance to the minimizer decreases. If y+ is not

already a minimizer, we have J(y+) 6= J and thus the strict inqeuality ‖y+ − y∗‖22 < ‖y − y∗‖
2
2

holds.
Summing the inequality for y = yi−1 and y+ = yi with τ = τi−1 ≥ τmin gives

k∑
i=1

(
J(yi)− J

)
≤

k∑
i=1

1

2τi−1

(∥∥yi−1 − y∗
∥∥2

2
−
∥∥yi − y∗∥∥2

2

)
≤ 1

2τmin

(∥∥y0 − y∗
∥∥2

2
−
∥∥∥yk − y∗∥∥∥2

2

)
≤ 1

2τmin

∥∥y0 − y∗
∥∥2

2
.

Since J(yi+1) ≤ J(yi), we get

J(yk)− J ≤ 1

k

k∑
i=1

(
J(yi)− J

)
≤ 1

2kτmin

∥∥y0 − y∗
∥∥2

2
.

Thus, O(1/ε) iterations are necessary to get J(yk)− J ≤ ε.
§ 4.15 Remark. Since the proximal gradient algorithm is a generalization of several other
methods, Theorem § 4.14 proves also their convergence.

• With G = 0 and H = J , one gets the proximal point algorithm and since ∇0 is Lipschitz
continuous with constant 0, it follows (as long as J has a minimizer) the convergence for
arbitrary, bounded step sizes.

• With G = J and H = 0, one gets the fully explicit gradient descent. If ∇J is Lipschitz
continuous and has a minimizer, we get convergence for suitable τn.

• If C ⊂ Rn is nonempty, convex and closed, G = J and H = IC lead to the so-called
projected gradient descent, which minimizes J(y) under the constraint y ∈ C. If ∇J is
again Lipschitz continuous and there exists a minimizer of J under the above constraint,
we get convergence for suitable τn.

§ 4.16 Definition. Let J : X → R∞ be proper. Then,

J∗ : X ′ :→ R∞, x′ 7→ sup
x∈X

(〈
x′, x

〉
− J [x]

)
is called Fenchel conjugate of J .

§ 4.17 Remark. Particularly relevant in image processing are problems of the type

min
y∈Rn

(G(y) +H(Ay)),

whereG ∈ Γ0(Rn),H ∈ Γ0(Rm) and A : Rn → Rm is linear. Here, the second term is decomposed
in H and A to simplify the computation of the proximal operator. Since H ∈ Γ0(Rm), it follows
from [3, Lemma 6.63] that H = H∗∗. Thus, we get

inf
y∈Rn

(G(y) +H(Ay)) = inf
y∈Rn

(G(y) +H∗∗(Ay))

= inf
y∈Rn

(G(y) + sup
z∈Rm

(Ay · z −H∗(z)))

= inf
y∈Rn

sup
z∈Rm

(Ay · z +G(y)−H∗(z)) .
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§ 4 Minimization using the proximal operator

The necessary conditions for z and y are

0 ∈ ∂z (Ay · z −H∗(z)) = Ay − ∂H∗(z)⇒ Ay ∈ ∂H∗(z),

0 ∈ ∂y
(
AT z · y +G(y)

)
= AT z + ∂G(y)⇒ −AT z ∈ ∂G(y).

Due to Corollary § 4.7, this is equivalent to

z = proxσH∗ [z + σAy],

y = proxτG[y − τAT z]

for τ, σ > 0 and motivates the algorithm

zk+1 = proxσH∗ [z
k + σAyk]

yk+1 = proxτG[yk − τAT zk+1]

yk+1 = yk+1 + θ(yk+1 − yk)

for θ ∈ [0, 1], y0 = y0 ∈ Rn, z0 ∈ Rm. The third step of this is an extrapolation step. The
algorithm shows the effect of the decomposition of the second term in H and A: One just has
to compute proxσH∗ and typically A is chosen such that proxσH∗ can be computed pointwise,
i.e. as in § 4.10 (iii)).

This algorithm was proposed by Chambolle and Pock in 2010, is currently very popular
in image processing (2000+ citations) and belongs to the class of primal-dual methods. In
particular, the algorithm is well suited for models that use the total variation as regularizer.

§ 4.18 Remark. For the primal-dual method we consider discrete images y = (yi,j) ∈ X :=
RM×N , i.e. Ω is a rectangle and discretized with a cartesian grid with M nodes in x-direction,
N nodes in y-direction and grid width h. The gradient of y is computed with forward difference
quotients, i.e. (∇hy)i,j = ((∂h+

1 y)i,j , (∂
h+
2 y)i,j) ∈ X ×X, where

(∂h+
1 y)i,j =

{
yi+1,j−yi,j

h i < M ;

0 i = M ;
, j = 1, . . . , N,

(∂h+
2 y)i,j =

{
yi,j+1−yi,j

h j < N ;

0 j = N ;
, i = 1, . . . ,M.

Then, the discretized total variation of y is

H(∇hy) :=
∥∥∥∇hy∥∥∥

1
:=
∑
i,j

∣∣∣(∇hy)i,j

∣∣∣ .
For g ∈ X, the discretized data term is

G(y) =
1

2λ
‖y − g‖22

§ 4.10 (ii)
=⇒ proxτG(y) =

y + τ
λg

1 + τ
λ

.

With Rn ' X, Rm ' X ×X and A ' ∇h, G(y) +H(Ay) is a discretization of the ROF-model
that fits to Remark § 4.17. One can show (exercise), that H∗ = IP , where

P =

{
p ∈ X ×X : ‖p‖∞ := max

i,j
|pi,j | ≤ 1

}
.
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Thus, it follows from Example § 4.10 (v) that proxσH∗ = ΠP . Moreover, for p ∈ X×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm for the ROF model is

zk+1 = ΠP (zk + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)

There are variants of the primal-dual method, which exploit the strict convexity of the data
term G for an even faster convergence.
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