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The Impact of Deep Learning

Health Care

SurveillanceSelf-Driving Cars

Legal Issues
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Deep Learning = Artificial Intelligence?

AlphaGo Zero Shows Machines Can Become Superhuman Without Any Help

“AlphaGo wasn’t the best Go player on
the planet for very long. A new version
of the masterful AI program has
emerged, and it’s a monster. In a
head-to-head matchup, AlphaGo Zero
defeated the original program by 100
games to none.”

‘...AlphaGo Zero...started with nothing
but a blank board and the rules of the
game. It learned simply by playing
millions of games against itself, using
what it learned in each game to
improve.”

MIT Technology Review (Oct. 2017)
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Further Applications of Deep Neural Networks

Some Examples from Areas in Mathematics...

Imaging Sciences.
 Image denoising (Burger, Schuler, Harmeling; 2012).

PDE Solvers.
 Schrödinger equation (Rupp, Tkatchenko, Müller,

von Lilienfeld; 2012).

Inverse Problems.
 Limited-angle tomography (Bubba, K, Lassas,

März, Samek, Siltanen, Srinivan; 2018).

Deep, Deep Trouble:

Deep Learnings Impact on Image Processing, Mathematics, and Humanity

Michael Elad (CS, Technion), SIAM News, 2017
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A Need for Theory...?
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First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):

Develop an algorithmic approach to learning.

Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!
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Neural Networks in Mathematical Terms

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

σ : R→ R: (Non-linear) function called rectifier.

W` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps (x 7→ Ax + b)

Then Φ : Rd → RNL given by

Φ(x) = WLσ(WL−1σ(. . . σ(W1(x))), x ∈ Rd ,

is called a (deep) neural network (DNN).
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Looking closer...

Remark: The affine linear map W` is defined by a matrix A` ∈ RN`−1×N`

and an affine part b` ∈ RN` via

W`(x) = A`x + b`.
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Training of Deep Neural Networks

High-Level Set Up:

Samples (xi , f (xi ))m
i=1 of a function

such as f :M→ {1, 2, . . . ,K}.

Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and σ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (W`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
A`,b`

m∑
i=1

L(ΦA`,b`(xi ), f (xi )) + λR(A`, b`)

yielding the network ΦA`,b` : Rd → RNL ,

ΦA`,b`(x) = WLσ(WL−1σ(. . . σ(W1(x))).

This is often done by stochastic gradient descent.

Goal: Φ ≈ f
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Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
 Networks with hundreds of layers can be trained.
 Deep Neural Networks!

Age of Data starts.
 Vast amounts of training data is available.

Current Situation:

Setting up a deep neural network for a particular application is more or
less trail-and-error and based on experience.

Training a deep neural network is very unpredictable.

Almost no knowledge about why a deep neural network mades a
decision.
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Danger of Deep Neural Networks?

AI researchers allege that machine learning is alchemy

“Ali Rahimi, a researcher in artificial
intelligence (AI) at Google in San
Francisco, California, took a swipe at his
field last December–and received a
40-second ovation for it. Speaking at an AI
conference, Rahimi charged that machine
learning algorithms, in which computers
learn through trial and error, have become
a form of “alchemy.” Researchers, he said,
do not know why some algorithms work
and others don’t, nor do they have rigorous

criteria for choosing one AI architecture
over another...”

“For example, he says, they adopt pet methods to tune their AIs’ “learning rates”how
much an algorithm corrects itself after each mistake–without understanding why one is
better than others. In other cases, AI researchers training their algorithms are simply
stumbling in the dark. For example, they implement what’s called ”stochastic gradient
descent” in order to optimize an algorithm’s parameters for the lowest possible failure rate.
Yet despite thousands of academic papers on the subject, and countless ways of applying
the method, the process still relies on trial and error...”

Science (May 2018)
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, ...
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Outline

1 1. Lecture: Mathematical Learning Theory

2 1. Lecture: Expressivity of Deep Neural Networks
Classical Results
(Optimal) Bounds for Approximation

3 1. Lecture: Learning and Generalization of Deep Neural Networks
Stochastic Gradient Descent
Thoughts about a Theory

4 1. Lecture: Explainability of Deep Neural Networks
What are the Goals?

5 2. Lecture: Applications to Inverse Problems
Sparse Regularization
Deep Learning meets Inverse Problems
Learning (only) the Invisible: A Hybrid Approach
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Mathematical Learning Theory

Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 12 / 81



What is Learning?

Definition by T. Mitchell (1997):
“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T , as measured by P, improves with experience E .”

 Needs certainly to be made mathematically precise!
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Examples for Task T

Classification Task:
Compute a function f : Rn → {1, . . . , k}, which maps a data point x ∈ Rn

to the class k .

 Handwritten Digits, ...

Regression Task:
Compute a function f : Rn → R, which hence predicts a numerical value.

 Prediction of future prices of securities, ...

Density Estimation Task:
Learn a probability density p : R→ R+, which can be interpreted as a
probability distribution on the space the test data was drawn from.

 Finding corrupted data, determining anomalies in data,...
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Example for Experience E

Experience as a Data Set:
The experience is typically given by a data set containing many data points
such as xi ∈ X for all i = 1, . . . ,m.

Two Cases:

Supervised learning:

I Each data point is associated with a label.
 Think of a classification task, in which you know the classes the

data points in the (test) data set belong to.

Unsupervised learning:

I The data point are not labeled.
 Think of a classification task, in which you do not know the classes

the data points in the (test) data set belong to.
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Example for Performance Measure P

Accuracy as Performance Measure:
The performance is typically measured by the proportion of data points, for
which the model (function) outputs the correct value.

Cross-Validation:
The data set is often split into two sets:

Training set:
This is used to learn the function or density.

Test set:
This is used to measure the performance of the model.
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Linear Regression as one Example, I

Task T :
Predict the function f : Rn → R.

Experience E :
We split our data set into

training set ((x train
i , y train

i ))m
i=1 ⊆ Rn × R,

test set ((x test
i , y test

i ))m
i=1 ⊆ Rn × R.

Performance Measure P:
We evaluate the performance of an estimator f̂ : Rn → R as the mean
squared error

1

m

m∑
i=1

|f̂ (x test
i )− y test

i |2.
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Linear Regression as one Example, II

Learning Algorithm:

Define a hypothesis space

H := span{ϕ1, . . . , ϕ`} ⊆ C (Rn).

Given training data

z := ((x train
i , y train

i ))m
i=1 ⊆ Rn × R.

Define the empirical error/risk for some f : Rn → R by

Ez(f ) :=
1

m

m∑
i=1

(f (x train
i )− y train

i )2.

Find the empirical target function

fH,z := argminf ∈HEz(f ).
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Linear Regression as one Example, III

Computing the Empirical Target Function:

Note that every f ∈ H can be written as
∑`

i=1 wiϕi .

We set
y := (y train

i )m
i=1 and w := (wi )

`
i=1.

Let
A = (ϕj (x

train
i ))i ,j ∈ Rm×`.

With this notation, we obtain

Ez(f ) = ‖Aw − y‖2.

Let
ŵ := argminw∈R`Ez(f ).

Then the seeked estimate (= solution of the regression task) is

f̂ :=
∑̀
i=1

(ŵ)iϕi .
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The General Statistical Learning Problem
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A Mathematician’s Definition of Learning

Definition (Statistical Learning Problem): Let

(Ω,Σ, %) be a probability space,

X : Ω→ Rn and Y : Ω→ Rk random vectors,

X and Y be the images of X and Y , (assume X ⊆ Rn compact),

loss function ` : Rk × Rk → [0,∞].

For a (measurable) function f : X → Y, define the error

E(f ) := E [`(f (X ),Y )] =

∫
Ω
`(f (X (ω)),Y (ω))d%(ω).

Then the corresponding learning problem is to find

g = argminf :X→YE(f ).

Simplification:

Regression case k = 1.

Squared error loss function `(ỹ , y) = (ỹ − y)2.
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The Regression Function

Definition: For x ∈ X let %(y |x) be the conditional probability measure on
Y (with respect to x) and %X be the marginal probability measure on X .
We have

%X (S) = %(π−1
X (S)),

where πX : X × Y → X , (x , y) 7→ x . Then also∫
X×Y

φ(x , y)d%(x , y) =

∫
X

(∫
Y
φ(x , y)d%(y |x)

)
d%X (x)

for every integrable function φ : Z → R. Define the regression function by

f% : X → Y, f%(x) =

∫
Y
yd%(y |x), for x ∈ X .

Theorem: The regression function f% is a minimizer of the error E over
L2(X , %X ), more precisely

E(f ) = ‖f − f%‖2
L2(X ,%X ) + E(f%), for any f ∈ L2(X , %X ).
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The Target Function

Definition:

Let H be a subspace of C (X ,Y). We then call H hypothesis or model
space.

A target function fH ∈ H is a minimizer of the error E over the
hypothesis space H, that is

fH = argminf ∈HE(f ).

Remark:
The distribution % is not known, hence the target function can not be
computed.

Examples of Hypotheses Spaces:

Space of homogenous polynomials

Reproducing Kernel Hilbert Spaces RKHS

...
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Underfitting versus Overfitting
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The Empirical Target Function

The True Situation:
We only have access to the evidence data. Hence we have to

assume we are given a sample S = ((x1, y1), . . . , (xN , yn)) and

assume S was drawn i.i.d. according to %.

The goal is to estimate fH from S .

Definition:

The empirical error of f with respect to loss ` and sample data S is
defined as

ES (f ) =
1

N

N∑
i=1

`(f (xi ), yi ) =
1

N

N∑
i=1

(f (xi )− yi )
2.

An empirical target function fH,S ∈ H is a minimizer of the empirical
error ES over the hypothesis space H, that is

fH,S = argminf ∈HES (f ).
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The Bias-Variance Decomposition

The error of the empirical target function can be decomposed:

E(fH,S ) = E(fH,S )− E(fH)︸ ︷︷ ︸
sample error

+ E(fH)︸ ︷︷ ︸
approximation error

Remark:

The approximation error is only affected by the choice of the
hypothesis space H.

The sample error depends on the size of the sample S but also on the
choice of H.

We have the following typical behaviour for a fixed sample size:

sample error approximation error

larger H increases decreases
smaller H decreases increases
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Three Types of Errors in Learning Problems

YX

L2(X , %X )

H

fopt

fH,S

fH

f%

approximation error
(expressiveness)

sample error
(generalization)

training error
(optimization)

Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 26 / 81



Universally Best Method?

Approaches:

(Regularized) least squares

Maximum A Posteriori (MAP) estimate

Principal Component Analysis (PCA)

(Kernel) Support Vector Machines (SVM)

...

Aim for a universally best method!!!
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Deep Neural Networks Enter the Stage
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Artificial Neurons

Mimic the human brain!
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Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R and
activation function (rectifier) σ : R→ R is defined as the function
f : Rn → R given by

f (x1, ..., xn) = σ

(
n∑

i=1

xiwi − b

)
= σ(〈x ,w〉 − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

Heaviside function σ(x) =

{
1, x > 0,

0, x ≤ 0.

Sigmoid function σ(x) = 1
1+e−x .

Rectifiable Linear Unit (ReLU) σ(x) = max{0, x}.
Softmax function σ(x) = ln(1 + ex ).
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Artificial Neural Network

Definition:
An artificial neural network is a graph which consists of artificial neurons. A
feed-forward neural network is a directed, acyclic graph. All other neural
networks are called recurrent neural networks.
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Key Notions, I

Definition: Let

d ∈ N be the input dimension,

L ∈ N be the number of layers,

N0,N1, ...,NL the number of neurons in each layer and N0 := d ,

Al ∈ RNl×Nl−1 , l = 1, ..., L be the weights of the edges

bl ∈ RNl , l = 1, ..., L be the biases, and

σ : R→ R be the (non-linear) activation function/rectifier.
Then

Φ = ((Al , bl ))L
l=1

is called neural network (“architecture”) and the map

Rσ(Φ) : Rd → RNL , Rσ(Φ)(x) := xL,

where x0 := x , xl := σ(Alxl−1 − bl ), l = 1, ...L− 1, and xL := ALxL−1 − bL

is called the realization of Φ with activation function σ.
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Key Notions, II

Definition (continued):
We further call

N(Φ) := d +
∑L

l=1 NL the total number of neurons,

L(Φ) := L the number of layers,

M(Φ) :=
∑L

l=1 ‖Al‖0 the number of weights (edges) where ‖ · ‖0 is
the number of non-zero entries.

We say that

Φ is sparsely connected, if M(Φ) is small,

Φ is a shallow neural network, if L(Φ) is small,

Φ is a deep neural network, if L(Φ) is large.

For d ∈ N and M, L,N ∈ N ∪ {∞}, we denote by

NN d ,M,N,L

the set of neural networks Φ with input dimension d , NL = 1 and

M(Φ) ≤ M,N(Φ) ≤ N, L(Φ) ≤ L.
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Key Notions, III

Definition (continued):
If the size of the weights are a concern, we denote by

NNR
d ,M,N,L

the set of neural networks Φ with input dimension d , NL = 1, with

M(Φ) ≤ M,N(Φ) ≤ N, L(Φ) ≤ L,

and with all weights bounded by R.
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Doing Nothing...

Lemma: Define
ΦId := ((A1, b1), (A2, b2))

with

A1 =

(
IdRd

−IdRd

)
, b1 = b2 = 0, A2 = (IdRd ,−IdRd ).

Then
RReLU(ΦId)(x) = x for all x ∈ Rd .

Remark: Let Φ be a neural network with input dimension d . Then

RReLU(Φ) = RReLU(Φ ◦ ΦId),

i.e., different architectures can lead to the same realization.
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Expressivity

Main Task:
Deep neural networks approximate highly complex functions typically based
on given sampling points.

Image Classification:

f :M→ {1, 2, . . . ,K}

Speech Recognition:

f : RS1 → RS2
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Main Research Goal

Questions:

Which architecture to choose for a particular application?

What is the expressive power of a given architecture?

What effect has the depth of a neural network in this respect?

What is the complexity of the approximating neural network?

What are natural function spaces for DNN applications?

Mathematical Problem:
Under which conditions on a neural network Φ and an activation function σ
can every function from a prescribed function class C be arbitrarily well
approximated, i.e.

‖Rσ(Φ)− f ‖∞ ≤ ε, for all f ∈ C.
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Universal Approximation Theorem

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991)
(Pinkus, 1999):
Let σ : R→ R be continuous, but not a polynomial. Also, fix d ≥ 1, L = 2,
NL ≥ 1, and a compact set K ⊆ Rd . Then, for any continuous
f : Rd → RNL and every ε > 0, there exist M,N ∈ N and Φ ∈ NN d ,M,N,2

with
sup
x∈K
|Rσ(Φ)(x)− f (x)| ≤ ε.

...there exist N ∈ N, ak , bk ∈ R,wk ∈ Rd such that

sup
x∈K
|

N∑
k=1

akσ(〈wk , x〉 − bk )− f (x)| ≤ ε.

Interpretation: Every continuous function can be approximated up to an
error of ε > 0 with a neural network with a single hidden layer and with
O(N) neurons.
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Idea of Proof

Restrict to NL = 1 and claim: For d ≥ 1, σ continuous, σ : R→ R TFAE:

(i) span{σ(〈w , x〉 − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) σ is not a polynomial.

Now: (ii)⇒ (i) for d = 1 and a smooth rectifier σ.

Since σ is not a polynomial, there exists one x0 ∈ R with

σ(k)(−x0) 6= 0 for all k .

Constant functions can be arbitrarily well approximated:

σ(hx − x0)→ σ(−x0) as h→ 0,

Linear functions can be arbitrarily well approximated:

σ((λ+ h)x − x0)− σ(x − x0)

h︸ ︷︷ ︸
→xσ′(λx−x0) for h→0

→ x · σ′(−x0), as h, λ→ 0,

 Any polynomial can be well approximated, then use Stone-Weierstraß Thm.

 Finally, extend to d arbitrary and σ not smooth.
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Universal Approximation Theorem

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991)
(Pinkus, 1999):
Let σ : R→ R be continuous, but not a polynomial. Also, fix d ≥ 1, L = 2,
NL ≥ 1, and a compact set K ⊆ Rd . Then, for any continuous
f : Rd → RNL and every ε > 0, there exist M,N ∈ N and Φ ∈ NN d ,M,N,2

with
sup
x∈K
|Rσ(Φ)(x)− f (x)| ≤ ε.

...there exist N ∈ N, ak , bk ∈ R,wk ∈ Rd such that

sup
x∈K
|

N∑
k=1

akσ(〈wk , x〉 − bk )− f (x)| ≤ ε.

Interpretation: Every continuous function can be approximated up to an
error of ε > 0 with a neural network with a single hidden layer and with
O(N) neurons.

What is the connection between ε and N?
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One Size Fits All?

“Universal Network Theorem” (Maiorov and Pinkus, 1999):
There exists an activation function σ : R→ R such that for any d ∈ N,
K ⊂ Rd compact, f : K → R continuous, and any ε > 0, we find an
associated neural network Φ with two hidden layers of fixed size only
dependent on dimension d such that

sup
x∈K
|Rσ(Φ)(x)− f (x)| ≤ ε.

The weights can be arbitrarily huge!
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Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd ) and (ϕi )i∈I ⊆ L2(Rd ). Measure the suitability of
(ϕi )i∈I for uniformly approximating functions from C.

Definition: The error of best M-term approximation of some f ∈ C is
given by

‖f − fM‖L2(Rd ) := inf
IM⊂I ,#IM =M,(ci )i∈IM

‖f −
∑
i∈IM

ciϕi‖L2(Rd ).

The largest γ > 0 such that

sup
f ∈C
‖f − fM‖L2(Rd ) = O(M−γ) as M →∞

determines the optimal (sparse) approximation rate of C by (ϕi )i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity
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Approximation with Sparse Deep Neural Networks

Definition: Given C ⊆ L2(Rd ) and fixed σ. Then C has the effective
approximation rate γeff (C, σ) > 0, if there exists a polynomial π such that
with

ΓM(f ) := inf
Φ∈NNπ(M)

d,M,N,π(log(M))

‖f − Rσ(Φ)‖L2(Rd ), M ∈ N, f ∈ C,

we have
sup
f ∈C

ΓM(f ) = O(M−γ
eff (C,σ)) as M →∞.

Approximation accuracy ↔ Complexity of approximating DNN
in terms of memory efficiency
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Non-Exhaustive List of Previous Results

Approximation by NNs with one Single Hidden Layer:
Bounds in terms terms of nodes and sample size (Barron; 1993, 1994).

Localized approximations (Chui, Li, and Mhaskar; 1994).

Fundamental lower bound on approximation rates (DeVore, Oskolkov, and
Petrushev; 1997)(Candès; 1998).

Lower bounds on the sparsity in terms of number of neurons (Schmitt; 1999).

Approximation using specific rectifiers (Cybenko; 1989).

Approximation of specific function classes (Mhaskar and Micchelli; 1995), (Mhaskar;
1996).

Approximation by NNs with Multiple Hidden Layers:
Approximation with sigmoidal rectifiers (Hornik, Stinchcombe, and White; 1989).

Approximation of continuous functions (Funahashi; 1998).

Approximation of functions together and their derivatives (Nguyen-Thien and
Tran-Cong; 1999).

Relation between one and multi layers (Eldan and Shamir; 2016), (Mhaskar and
Poggio; 2016).

Approximation by DDNs versus best M-term approximations by wavelets (Shaham,
Cloninger, and Coifman; 2017).
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Impact of Depth: Adding one Layer

Theorem (Eldan, Shamir; 2016):
“There exists a simple (approximately radial) function on Rd , expressible by
a 3-layer neural network of width polynomial in the dimension d , which
cannot be arbitrarily well approximated by 2-layer networks, unless their
width is exponential in d .”

Remark:

It shows that depth – even if increased by 1 – can be exponentially
more valuable than width for standard feedforward neural networks.

Key idea of proof:
I Approximating radial function: First the squared norm function, then the

univariate function acting on the norm  Easy with 3 layers!
I But approximating radial functions with 2-layers  Difficult (see Ron’s

talk)!
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Impact of Depth: Compositorial Functions

Theorem (Mhaskar, Liao, Poggio; 2017):
“Deep (hierarchical) networks can approximate the class of compositional
functions f (x1, ...xn) = h1(h2(h3(x1, x2), h4(x3, x4)), ...) with the same
accuracy as shallow networks but with exponentially lower number of
(training) parameters.”
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Impact of Depth: Approximation Spaces

Definition (Gribonval, K, Nielsen, Voigtlaender; 2019):
Given a depth growth function

L : n ∈ N 7→ L(n) ∈ N ∪ {∞}

we define, for instance, approximation spaces Aαq (X , (Σn)n) (see definition
in Ron’s talk) associated with deep neural networks, where X is a
quasi-Banach space of whose elements are functions f : Ω→ Rk and

“Σn := Rσ(NN d ,n,∞,L(n))”.

Results (Gribonval, K, Nielsen, Voigtlaender; 2019):

“The expressiveness grows considerable with depth.”

“Skip connections (such as in ResNets) do not change the
expressiveness.”

“The expressiveness of polynomial activation functions saturates
at degree 2.”
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Lower Bounds for Approximation
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Vapnik-Chervonenkis Dimension, I

Definition:
Let X be a set, S ⊂ X , and let H ⊆ {h : X → {0, 1}} be a set of binary valued
maps on X . We define

H|S := {h|S : h ∈ H},

which, in words, is the restriction of the function class H to S . The VC dimension
of H is now defined as

VCdim(H) := sup

{
m ∈ N : sup

|S|≤m

|H|S | = 2m

}
.

Intuition:

This is a tool for understanding the classification capabilities of a function
class.

The VC dimension of H is the largest integer m such that there exists a set
S ⊂ X containing only m points such that H|S has the maximum possible
cardinality given by 2m.
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Vapnik-Chervonenkis Dimension, II

Example: Let X = R2.

1 Let H = {0, χΩ} for some fixed non-empty set Ω ⊂ R2. Then VCdim(H) = 1.

2 Let h = χR+ and

H =

{
hθ,t := h

(〈(
cos θ

sin θ

)
, • − t

〉) ∣∣ θ ∈ [−π, π], t ∈ R2

}
.

Then H is the set of all linear classifiers. If S contains 3 points in general
position, then |H|S | = 8. On the other hand, 4 points cannot be shattered
by H.
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Vapnik-Chervonenkis Dimension, III

Theorem (Anthony, Bartlett; 2009): Let σ be piecewise polynomial with p pieces of
degree at most `, h = χR+ , and for N,M, d ∈ N we define

HN,M,d,L := {h ◦ Rσ(Φ) : Φ ∈ NN d,M,N,L} .

Then
VCdim(HN,M,d,L) = O(ML log2(M) + ML2).

Theorem (Yarotsky; 2017): Let n, d , L ∈ N and H = {h ∈ C n([0, 1]d ) : ‖h‖C n ≤ 1).
Further let σ be the ReLU. If for every ε > 0 and every h ∈ H there exists a neural
network Φ ∈ NN d,M(ε),M(ε),L such that

‖h − Rσ(Φ)‖∞ < ε,

then, for all δ > 0,
M(ε) = Ω(ε−d/n(1+δ)).
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Rate Distortion Theory

Key Ingredient from Information Theory (Rate Distortion Theory):
The optimal exponent γ∗(C) is a measure of complexity of the function
class C:
“The optimal exponent describes the dependence of the code length for
encoding the function class on the required approximation quality.”

Precise Definition:
With E : L2(Rd )→ {0, 1}`, D : {0, 1}` → L2(Rd ), set

L(ε, C) := min{` ∈ N : ∃(E ,D) ∈ E` ×D` : sup
f∈C
‖D(E (f ))− f ‖L2(Rd ) ≤ ε},

and then
γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.
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A Fundamental Lower Bound

Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let d ∈ N, ρ : R→ R, and let C ⊂ L2(Rd ). Assume that

Learn : (0, 1)× C → NN∞,∞,d ,ρ

satisfies that, for each f ∈ C and 0 < ε < 1:

(1) Each weight of Learn(ε, f ) can be encoded with < −c log2(ε) bits,

(2) and
sup
f ∈C
‖f − Learn(ε, f )‖L2(Rd ) ≤ ε.

Then, for all γ < γ∗(C), there is no C > 0 with

sup
f ∈C
M(Learn(ε, f )) ≤ Cε−γ for all ε > 0,

ε

M(Learn(ε, C))

with M(Learn(ε, f )) the number of non-zero weights in Learn(ε, f ).
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Idea of Proof

Every network with M edges can be encoded in a bit string of length O(M).

1

2 3

4 5 6

7

1 2

3 4 5 76

8 9 10

Encode:

# layers,

# neurons in each layer,

for each neuron in chronological
order # the number of children,

for each neuron in chronological
order the indices of children,

in chronological order the
weights of edges.
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A Fundamental Lower Bound
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What happens for γ = γ∗(C)?
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Optimally Sparse Deep Neural Networks
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DNNs and Representation Systems, I

Question:
Can we exploit approximation results with representation systems?

Observation: Assume a system (ϕi )i∈I ⊂ L2(Rd ) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Φi .

Then we can construct a network Φ with O(M) edges with

Φ =
∑
i∈IM

ciϕi , if |IM | = M.
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DNNs and Representation Systems, II

Corollary: Assume a system (ϕi )i∈I ⊂ L2(Rd ) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Φi .

There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd ), there exists
IM ⊂ I with

‖f −
∑
i∈IM

ciϕi‖ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ε by a neural
network with only O(ε−γ

∗(C)) edges.

Proof:

There exists a network Φ with O(M) edges with Φ =
∑

i∈IM
ciϕi .

Set ε = C̃M−1/γ∗(C) and solve for the number of edges M, yielding

M = O(ε−γ
∗(C)).
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DNNs and Representation Systems, II

Corollary: Assume a system (ϕi )i∈I ⊂ L2(Rd ) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Φi .

There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd ), there exists
IM ⊂ I with

‖f −
∑
i∈IM

ciϕi‖ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ε by a neural
network with only O(ε−γ

∗(C)) edges.

Recall: If a neural network stems from a fixed learning procedure Learn,
then, for all γ < γ∗(C), there does not exist C > 0 such that

sup
f ∈C
M(Learn(ε, f )) ≤ Cε−γ for all ε > 0.
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Road Map

Construction of optimally sparse deep neural networks:

(1) Determine a class of functions C ⊆ L2(R2).

(2) Determine an associated representation system with the following
properties:

I The elements of this system can be realized by a neural network with
controlled number of edges.

I This system provides optimally sparse approximations for C.

DNNs have as much expressive power as most classical systems!

 But this does not yet control the size of the weights!
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Applied Harmonic Analysis

Representation systems designed by Applied Harmonic Analysis concepts
have established themselves as a standard tool in applied mathematics,
computer science, and engineering.

Examples:

Wavelets.

Ridgelets.

Curvelets.

Shearlets.

...

Key Property:
Fast Algorithms combined with Sparse Approximation Properties!
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Affine Transforms

Building Principle:
Many systems from applied harmonic analysis such as

wavelets,

ridgelets,

shearlets,

constitute affine systems:

{| detA|d/2ψ(A · −t) : A ∈ G ⊆ GL(d), t ∈ Zd}, ψ ∈ L2(Rd ).

Realization by Neural Networks:
The following conditions are equivalent:

(i) | detA|d/2ψ(A · −t) can be realized by a neural network Φ1.

(ii) ψ can be realized by a neural network Φ2.

Also, Φ1 and Φ2 have the same number of edges up to a constant factor.
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{| detA|d/2ψ(A · −t) : A ∈ G ⊆ GL(d), t ∈ Zd}, ψ ∈ L2(Rd ).

Realization by Neural Networks:
The following conditions are equivalent:

(i) | detA|d/2ψ(A · −t) can be realized by a neural network Φ1.

(ii) ψ can be realized by a neural network Φ2.

Also, Φ1 and Φ2 have the same number of edges up to a constant factor.

Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 58 / 81



The Class of Cartoon-Like Functions

Definition (Donoho; 2001)(Grohs, Keiper, K, and Schäfer; 2016):
Let α ∈ [ 1

2 , 1] and ν > 0. We then define the class of α-cartoon-like
functions by

E
1
α (R2) = {f ∈ L2(R2) : f = f1 + χB f2},

where B ⊂ [0, 1]2 with ∂B ∈ C
1
α , and the functions f1 and f2 satisfy

f1, f2 ∈ C
1
α

0 ([0, 1]2), ‖f1‖
C

1
α
, ‖f2‖

C
1
α
, ‖∂B‖

C
1
α
< ν.

Illustration:
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Constructing α-Shearlets

Shearlets (K, Labate; 2006):

Aj :=

(
2j 0

0 2j/2

)
, Sk :=

(
1 k
0 1

)
, j , k ∈ Z.

Then
ψj ,k,m := 2

3j
4 ψ(SkAj · −m).

Notice: x 7→ SkAjx −m is an affine-linear map!
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Constructing α-Shearlets

Shearlets (K, Labate; 2006):

Aj :=

(
2j 0

0 2j/2

)
, Sk :=

(
1 k
0 1

)
, j , k ∈ Z.

Then
ψj ,k,m := 2

3j
4 ψ(SkAj · −m).

Extension to α-Shearlets (Grohs, Keiper, K, and Schäfer; 2016):
For j ∈ Z, define

Aα,j =

(
2j 0
0 2αj

)
.

α = 0 1
2 1

Ridgelets Curvelets/Shearlets Wavelets
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Optimal Sparse Approximation with α-Shearlets

Theorem (Grohs, Keiper, K, and Schäfer; 2016)(Voigtlaender; 2017):
Let α ∈ [ 1

2 , 1], let φ, ψ ∈ L2(R2) be sufficiently smooth and compactly
supported, and let ψ have sufficiently many vanishing moments. Also set
ψ̃(x1, x2) := ψ(x2, x1) for all x1, x2 ∈ R.
Then there exists some c∗ > 0 such that, for every ε > 0, there exists a
constant Cε > 0 with

‖f − fN‖L2(R2) ≤ CεN
− 1

2α
+ε for all f ∈ E

1
α (R2),

where fN is a best N-term approximation with respect to SHα(ϕ,ψ, ψ̃, c)
and 0 < c < c∗.

This is the (almost) optimal sparse approximation rate!
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Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
Yes

(2) Determine an associated representation system with the following
properties:
Yes

I The elements of this system can be realized by a neural network with
controlled number of edges.
Yes

I This system provides optimally sparse approximations for C.
This has been proven!
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Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
 α-Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
 α-Shearlets!

I The elements of this system can be realized by a neural network with
controlled number of edges.
 Still to be analyzed!

I This system provides optimally sparse approximations for C.
 This has been proven!
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Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

Assume activation function ρ(x) = max{x , 0} (ReLUs).

Define
t(x) := ρ(x)− ρ(x − 1)− ρ(x − 2) + ρ(x − 3).

t

 t can be constructed with a 2 layer network.

Observe that
φ(x1, x2) := ρ(t(x1) + t(x2)− 1)

yields a 2D bump function.

Summing up shifted versions of φ yields a function ψ with vanishing
moments.
 ψ can be realized by a 3 layer neural network.
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Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

Assume activation function ρ(x) = max{x , 0} (ReLUs).

Define
t(x) := ρ(x)− ρ(x − 1)− ρ(x − 2) + ρ(x − 3).

t

 t can be constructed with a 2 layer network.

Observe that
φ(x1, x2) := ρ(t(x1) + t(x2)− 1)

yields a 2D bump function.

Summing up shifted versions of φ yields a function ψ with vanishing
moments.
 ψ can be realized by a 3 layer neural network.

Our Construction: Use a smoothed version of a ReLU.
 Leads to appropriate α-shearlet generators!
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Optimal Approximation

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let ρ be an admissible
smooth rectifier, and let ε > 0. Then there exist Cε > 0 such that, for all
α-cartoon-like functions f and N ∈ N, we can construct a neural network
Φ ∈ NN3,O(N),ρ,O(polylog(N)) satisfying

‖f − Φ‖L2(R2) ≤ CεN
− 1

2α
−ε.

Remark: The topology and quantized weights of this network can be stored
with C · N · polylog(N) bits.

Function classes which are optimal representable by affine systems

are also optimally effectively approximated

by memory-efficient neural networks with a parallel architecture!
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Some Numerics

Typically weights are learnt by backpropagation. This raises the following
question:

Does this lead to the optimal sparse connectivity?

Our setup:

Fixed network topology with ReLUs.

Specific functions to learn.

Learning through SGD.

Analyze the learnt subnetworks.

Analysis of the connection between approximation error and number of
edges.
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Example: Function 1
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Observation: The decay is exponential. This is expected if the network is a sum of
0-shearlets, which are ridgelets.

Examples of Subnetworks:
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These have indeed the shape of ridgelets!
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Example: Function 2
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Observation: The decay is of the order M−1. This is expected if the network is a
sum of 1

2 -shearlets.

Examples of Subnetworks:

These seem to be indeed anisotropic!
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Problem Setting

Let d = N0 ∈ N and N1, ...,NL, L ∈ N and let σ be a rectifier. Then
consider the hypothesis space

H := {Rσ(Φ) : Φ = ((A1, b1), ..., (AL, bL)), Al ∈ RNl−1,Nl , bl ∈ RNl}.

Task: Given samples z = ((xi , yi ))m
i=1 ⊆ Rd ×RNL , find the empirical target

function

fz := fH,z = argminf ∈H
1

m

m∑
i=1

(f (xi )− yi )
2.

More General Task: One can also consider a more general case such as

fz = argminf ∈H

m∑
i=1

L(f , xi , yi )

where L : C (Rd ,RNL)× Rd × RNL → R is a loss function.
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Gradient Descent

Optimization Approach: A simple optimization method is gradient descent.
For F : RN → R, this amounts to

un+1 ← un − η∇F (un) for all n ∈ N

where ∇F (u) = ( ∂F
∂u1

(u), ... ∂F
∂un

(u)) and η is the step size.

In our problem... we have

F =
m∑

i=1

L(f , xi , yi ) and u = ((Al , bl ))L
l=1.

Since

∇((Al ,bl ))L
l=1

F =
m∑

i=1

∇((Al ,bl ))L
l=1
L(f , xi , yi ),

we need to compute

∂L(f , x , y)

∂(Al )i ,j
and

∂L(f , x , y)

∂(bl )i
for all i , j , l .
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Backpropagation

Data: A neural network f , a loss function L, points x , y .

Result: The matrices ∇(Al ,bl )
L
l=1
L(f , x , y).

Algorithm:

Compute al , zl for l = 0, ...L;

Set δL := 2(f (x)− y);

Then ∂L(f ,x ,y)
∂AL

= δL · aT
L−1 and ∂L(f ,x ,y)

∂bL
= δL;

for l = L− 1 to 1 do

δl := diag(σ′(zl ))AT
l+1 · δl+1;

Then
∂L(f , x , y)

∂Al
= δla

T
l−1 and

∂L(f , x , y)

∂bl
= δl ;

return ∇(Al ,bl )
L
l=1
L(f , x , y).
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Stochastic Gradient Descent

Goal: Find a stationary point of

F =
m∑

i=1

Fi : RN → R where Fi = L(f , xi , yi ).

Data: A neural network f , a loss function L.

Result: A point un.

Algorithm:

Set starting value u0 and n = 0.

while (error is large), do
Pick i∗ ∈ {1, ...,m} uniformly at random;
Update un+1 ← un − η∇Fi∗ ;
Set n + 1← n;

return un.

 Mini-Batch!
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Learning

Type of Results:

Understanding the energy landscape: Global
minima versus local minima.

Designing new training algorithms.

Approach initiated by (Haber, Ruthotto; 2017):
A Residual Neural Network has the following form for each layer:

Yj+1 = Yj + F (θ(j),Yj )

The ResNet can be seen as a forward Euler discretization (with a fixed step
size of δt = 1) of the initial value problem

∂tY (θ, t) = F (θ(t),Y (t)), for t ∈ (0,T ],

Y (θ, 0) = Y0.

 Stable parabolic (hyperbolic) DNNs!
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Generalization

No convincing theory yet!
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Explainability

Main Questions:
Given a trained deep neural network.

Which input features contribute most to the decision?

How can the outcome be explained?
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Relevance Maps

Goal: Consider the realization of a neural network

f : Rd → R.

Determine the relevance of each xp of x = (x1, ...xd ) for the output f (x).

Definition:
A collection R = (Rp)d

p=1 of functions Rp : Rd → R is called relevance map.
R is non-negative, if Rp(x) ≥ 0 for all p, x .

R is conservative with respect to f , if∑
p

Rp(x) = f (x).

R is consistent, if it is both non-negative and conservative.

Remark: Consistency implies that the decision f (x) is distributed among the
input pixels and only the contribution towards the decision is counted
(not against it).
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Sensitivity Analysis

Definition:
Assume f is continuously differentiable. Then

Rp(x) := (
∂f (x)

∂xp
)2

is a relevance map called sensitivity analysis.

Remarks:

This relevance map is non-negative, but not conservative or consistent.

Sensitivity analysis only uses ∇f , but not the decision f (x). It answers
the question Changing which pixels makes the image look less/more
like a cat?”, but not ”Which pixels make the image a cat?”.
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Taylor Decomposition Relevance Map

Definition (Müller et al.; 2017):
Assume f is continuously differentiable and x̃ a suitably chosen root point
of f , for instance f (x̃) = 0. Then

Rp(x) :=
∂f (x̃)

∂xp
(xp − x̃p)

is the Taylor decomposition relevance map.

Remarks:

The idea is to choose a root point x̃ near x which is neutral with
respect to f in the sense of f (x) = 0.
Up to second-order terms, this relevance map is conservative:

f (x) = f (x̃) +∇f (x̃)T (x − x̃) + O(‖x − x̃‖2)

=
∑

p

Rp(x) + O(‖x − x̃‖2).

This relevance map can be efficiently computed by starting at f (x)
and going reversely through the network.
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Explainability

“Easier” Subproblem:
Given Φ : {0, 1}n → {0, 1}, x ∈ {0, 1}n, k ∈ N, and δ > 0. Compute a set
of significant pixels S ⊂ {0, 1}n, #(S) ≤ k with

#{y ∈ {0, 1}n : xS = yS and Φ(x) = Φ(y)}
#{y ∈ {0, 1}n : xS = yS}

≥ δ.

Theorem (Wäldchen, Macdonald, Hauch, K; 2019):
“This problem is NNPP -complete and NP-hard to approximate.”

 Solution strategy of a relaxed optimization problem based on assumed
density filtering (Wäldchen, Macdonald, Hauch, K; 2019)!
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Explainability

“Easier” Subproblem:
Given Φ : {0, 1}n → {0, 1}, x ∈ {0, 1}n, k ∈ N, and δ > 0. Compute a set
of significant pixels S ⊂ {0, 1}n, #(S) ≤ k with

#{y ∈ {0, 1}n : xS = yS and Φ(x) = Φ(y)}
#{y ∈ {0, 1}n : xS = yS}

≥ δ.

Theorem (Wäldchen, Macdonald, Hauch, K; 2019):
“This problem is NNPP -complete and NP-hard to approximate.”

 Solution strategy of a relaxed optimization problem based on assumed
density filtering (Wäldchen, Macdonald, Hauch, K; 2019)!
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Numerical Results, I
(Wäldchen, Macdonald, Hauch, K; 2019)

Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 79 / 81



Numerical Results, II
(Wäldchen, Macdonald, Hauch, K; 2019)
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:
www.math.tu-berlin.de/∼kutyniok

Code available at:
www.ShearLab.org

Related Books:

G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.

P. Grohs and G. Kutyniok
Theory of Deep Learning
Cambridge University Press (in preparation)
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Example for Hypothesis Space

Intuition behind Feature Maps:

Suppose there exists a suitable similarity measure K : X × X → R on
X and we would like to search for the closest points to some x ∈ X .

Assume there exists a map Φ : X → Rn which linearizes K as
K (x , x ′) = 〈Φ(x),Φ(x ′)〉.

Question: For which K does there exist such a feature map?
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Mercer Kernels

Definition:
Fix some map K : X × X → R.

K is called symmetric, if K (x , x ′) = K (x ′, x) for all x , x ′ ∈ X .
Let x := {x1, ..., xk} ⊆ X . Then the matrix K (x) ∈ Rk×k with entries
K (xi , xj ) for i , j = 1, ...k is called a Gramian of K in x.
K is called positive semi-definite, if everyone of its Gramians is always
positive-semidefinite.
K is a Mercer Kernel, if it is symmetric, positive semi-definite and
continuous.

Example:

Let f : R+
0 → R be strictly monotone and let K be defined by

K (x , x ′) := f (‖x − x ′‖2). This is a Mercer kernel.
In particular, the Gaussian kernel

K (x , x ′) = e
−‖x−x′‖2

c2 , c > 0,

is a Mercer kernel.
Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 81 / 81



Reproducing Kernel Hilbert Spaces

Theorem (Mercer Theorem):
Let K be a Mercer kernel. Then there exists a unique Hilbert space HK of
functions defined on X mapping into R with

(i) the functions Kx : x ′ → K (x , x ′) belong to HK for all x ∈ X .

(ii) span{Kx : x ∈ X} = HK .

(iii) For all f ∈ HK and x ∈ X , we have f (x) = 〈f ,Kx〉HK
, which in

particular means that K (x , x ′) = 〈Kx ,Kx ′〉 for all x , x ′ ∈ X .

The spaces HK are called Reproducing Kernel Hilbert Spaces (RKHS).

Return
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