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RESTRICTED NONLINEAR APPROXIMATION!

ALBERT COHEN, RONALD A. DEVORE AND REINHARD HOCHMUTH

1. Introduction.

Approximation by a linear combination of n wavelets is a form of nonlinear
approximation that occurs in several applications including image processing, sta-
tistical estimation, and the numerical solution of differential equations. In this
paper, we shall consider variants of n term approximation which we call restricted
approximation. As explained further, we are motivated by certain applications in
statistics and by the interpolation of Besov spaces.

To describe our results, we recall the usual setting of multivariate wavelet analy-
sis. Let D be the set of dyadic cubes in R? and for k € Z, we let D, denote the set
of those cubes I € D at dyadic level k, i.e. |I| = 27%¢ where we use |K| to denote
the Euclidean measure of a set K C R?. We denote by Q := [0,1]? the unit cube
in R?. Each cube I € Dy, is of the form T = 27%(j + Q) with j € Z¢. We identify T
with (j,k). If g is any function defined on R?, we define

grp(x) = de/pg(Qkx —J)-

In the case g € L,, then || g7
tion spaces and all norms are taken over R? unless explicitly stated otherwise. In
order to streamline notation, we shall often simply write g7 in place of gy ,; however,
it will always be clear from the text what is the value of p in the normalization.

Wavelet theory generates a set W C Ly of 2¢ — 1 functions whose shifted dilates
form a Riesz basis for Ly as follows. We begin with univariate scaling function ¢
and an associated univariate wavelet function 1 and define ¥° := ¢ and 9! := .
Let E denote the set of nonzero vertices of {2 and define

|z, = |lgllz,. Here and throughout this paper all func-

d

(1.1) v (@1,...,xq) ::Hd)ei(mi), ec k.

i=1

Then, ¥ := {¢¢ : e € E'} is such a set.

We shall restrict ourselves in this paper to the case of compactly supported
biorthogonal wavelets. This means that the family of functions ¢ e € FE, are
assumed to have been generated by a compactly scaling function ¢ with a dual
scaling function gg which also has compact support. The wavelet function ¢ also has
compact support and has associated to it a compactly supported dual wavelet ¢ (see
[CDF] or [Da, Chapter 8] for the definition and properties of biorthogonal wavelets).
We remark that all of our theorems hold in more generality. In particular compact
support can be replaced by suitable decay conditions. However, by imposing these
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the third author was visiting the University of South Carolina



2 ALBERT COHEN, RONALD A. DEVORE AND REINHARD HOCHMUTH

additional assumptions, our development will be more simple and hopefully more
clear.

The set of functions given in (1.1) generates by shifts and dyadic dilates a Riesz
basis for Ls. This means that each function f € L, has the unique expansion

(1.2) F=> Anf), Al(f)=_ ai(f)vs,

I1eD eckE

with the wavelet functions ¢ = 97 ; normalized in L (R?). Moreoever, we have

1/2
(1.3) 1117, ey = D ar(f)? as(f) = <Zla§(f)l2) :

IeD eckE

The set of functions {¥$}/ep.ccr is also an unconditional basis for L,(R%),
1 < p < 00, and for many other function spaces such as the Hardy spaces and the
Besov spaces. We shall discuss this in more detail in the following section. For
now, we want to turn to the formulation of the nonlinear approximation problem
that we shall study in this paper.

Let —oo < a < 1 and define for each set A C D,

B(A) 1= Do(A) = ) |1

IcA

Thus, ® is a measure defined on the subsets of the discrete space D. For each t > 0,
we define the space ¥; as the set of all

(1.4) S=Y"A1(S), ®(A) <t
IeA

Since the set A is possibly infinite, some sense of convergence must be attached to
the series in (1.4). We postpone a discussion of this until §2 when we formulate the
restricted approximation problem in more detail. One should note in any case that
3¢ is not a linear space. For example, the sum of two elements from ¥, is generally
not in ¥; although it is in Xq;.

We shall consider approximation in the Hardy space H,, 0 < p < oo, by the
elements of X;. We recall that H, = L,, 1 <p < co. Given f we define

(1.5) o(f,0)p = 0(f,)m, = jnf |If = Slm,.

We remark that we do not necessarily assume that f € H, in the definition (1.5);
however, this situation will only appear in our results when dealing with the case
a > 0. In this case, it can happen that (1.5) is finite even when f is not in H,. In
the case = 0 and ¢t = n is a positive integer, the space X, consists of all functions
S which are a linear combination of n wavelets. Then, (1.5) is the error of n term
approximation in H,,.

We shall be interested in this paper in describing the functions f for which
o(f,t), has a prescribed asymptotic behavior as t — oo and t — 0. For 0 < p < oo,
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0 < g < o0 and v > 0, we define the approximation class .Ag(Hp) to be the set of
all f such that

0 o - { oo, ), 0<q<o
sup;so t7o(f,t)p, q = oo.
;From the monotonicity of o(f,t),, it follow that (1.6) is equivalent to a discrete
norm
(Seal2motr2),) ", 0<g <o
(1.7) | Flag ) < T8 o ’ ’

SUp ez, 2970 (f, 2j)p, q = oo.

In the case a < 0, one can actually restrict ¢ in (1.6) to be > 1 (j in (1.7) to be
> 0) without changing the space AJ(H,). However, in order to treat all cases of
simultaneously we need the full range of ¢ > 0.

Our main results characterize the spaces AY(H,) in several ways: in terms of
interpolation spaces; in terms of wavelet coefficients; and in terms of smoothness
spaces (Besov spaces). Consider for example the case 1 < p < oo and a < 0
and let 3 := 1 — a so that 8 > 1. For s > 0, let B;(L,) denote the Besov
space of smoothness order s in L, and auxilliary parameter g (a fuller discussion
of Besov spaces is given in §2). For spaces X,Y we also denote by (X,Y)g , the
interpolation spaces generated by the real method of interpolation (K-functional)
with parameters 0 < 8 < 1, 0 < ¢ < oo (see §2). We show that for each 1 < p < o0
and g > 0, we have

(]‘8) Ag(LP) = (LpﬂBi(LT))’y/s,cp O < 7 < 87 O < q S 007

for a certain range of s which depends on the wavelets @b,iz and with 7 defined
by s = Bd(1/7 — 1/p). It is well know that for each such v and for ¢ defined by
v = Bd(1/q — 1/p), the interpolation space on the right side of (1.8) is the Besov
space BJ(Ly). This has a simple geometrical description given in Figure 1. In
this figure, the z-axis corresponds to L, spaces with x identified with 1/¢q. The
y-axis corresponds to the smoothness order. Thus, the point (1/q,v) corresponds
to the smoothness space B)(L,). Then, (1.8) says that the approximation space
AJ(Lp) corresponds to the point (1/g,7) on the line segment connecting (1/p,0)
(corresponding to L,) to (1/7,s) (corresponding to BS(L.)). This line segment has
slope (3d.

Our results also serve to prove theorems about the interpolation of Besov spaces
on the line with slope 3d in Figure 1. While these interpolation theorems are
known, wavelet methods provide simple proofs and also allow ways to realize the
K-functional between H, and one of these Besov spaces.

Another way to describe the space A7 (H,) is through thresholding and wavelet
coefficients. It turns out that restricted approximation is intimately connected to
thresholding coefficients in the L, norm with » := p/3. Let aj(f) be defined as
in (1.3) except we now take the wavelets normalized in L,.. We can create a good
approximation to f from A; by a sum of the form

S= > Alf)

IeA(e,f)
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Slope = d

(1/ ,s)~B1S:(Lt)

(1/g,1) ~B} (L)

\J

(1/p,0) ~L )
FIiGURE 1

with A(e, f) := {I : ar(f) > €}. The proper choice of € gives an element of 3.
Using these ideas, we can characterize the approximation space A’qY(Hp) as the set
of all f for which the sequence (ar(f))rep is in the weighted Lorentz space ¢, o(w)
with p related to v by v = 8d(1/u — 1/p), and w(I) :=|I|*, I € D.

The study of the LP error resulting from a thresholding of the wavelet expansion
in L™ norm with r # p is motivated by problems of statistical estimation: in a
white noise model, one is required to threshold the noisy signal in L?, even when
interested by minimizing the estimation error in LP for p # 2 (see [DJKP] for
a general review of wavelet thresholding techniques for statistical estimation and
[CDKP] for the application of our results in this context).

In order to prove our main results, we shall introduce new techniques for nonlin-
ear wavelet approximation which apply even to the case of n-term approximation.
These new proofs for n-term wavelet approximation are somewhat simpler than
those given in [DJP].

An outline of this paper is as follows. In §2, we discuss wavelet characterizations
of spaces and define the smoothness spaces (in terms of wavelet coefficients) which
we shall use in the characterization of approximation order. In §3, we discuss cer-
tain fundamental relations between approximation spaces and interpolation spaces
which we shall use in our characterization of approximation spaces. In particular,
we discuss the role of Jackson and Bernstein inequalities in these matters. We
also prove some general results on when approximation methods can realize the
K-functional for a pair of spaces. In §4, we consider n-term wavelet approxima-
tion corresponding to the particular choice @ = 0. Most results of this section are
already known, but the way of proof is somehow simplier than in the existing lit-
erature. In §5, we consider the general case of restricted nonlinear approximation



as described above and prove the corresponding Jackson and Bernstein inequalities
for this type of approximation. In §6, we characterize the approximation spaces
for restricted nonlinear approximation as noted above. In §7, we show that re-
stricted approximation can be achieved through simple thresholding procedure of
the wavelet expansion. For the sake of simplicity, all our results are stated for
spaces of functions defined on the whole of R?, using the whole range of scales
k € Z in the wavelet decomposition. In §8, we make some concluding remarks
on the adaptation of our results to the approximation of functions defined on a
bounded domain, using the scales £ > 0 together with a layer of scaling functions
at the coarsest resolution.

2. Wavelet decompositions and characterization of function spaces.

We shall describe in this section the properties of wavelet decompositions which
we shall use in this paper. Let E be the non-zero vertices of ) as introduced
earlier and let 9§, e € D, I € D, be the biorthogonal wavelet basis obtained from
the compactly supported scaling function ¢ and compactly supported univariate
wavelet ¢ as described in (1.1). This basis will be fixed throughout this paper. We
denote by ng the functions in the dual basis. If f is a tempered distribution, the
wavelet coefficients

(2.1) ag ,(f) = ([, 15§7p,>, leDeck,

with the dual wavelets ¢¢ ¢ normalized in L, 1/p+ 1/p" =1, are defined whenever

the order of f is sufficiently small compared to the smoothness of qb, 1/) For example,

they are defined if ¢ and ¢ are in C" with r exceeding the order of the distribution

[. Thus, for example, they are defined whenever f € L,, 1 < p < oo and whenever

f € H,, 0 <p<1, provided the dual wavelets are in C” with r > [d(1/p — 1)4].
We continue with the notation of the introduction and in particular define

1/2
(2.2) arp(f (Z a7, (f ) , lekE.

ecE

We shall frequently use the following formula for changing between normalizations:
(23)  [7TPaq, (F) = 1T 0aq4(F), 17 Pary(f) = 17 %ar(f),

which holds for any 0 < p, ¢ < 0.
It is well known (see [Dal) that (¢);ep,eck is an unconditional basis for L,,
1 <p < oo. Each f € L, has a unique decomposition

(2.4) f=3 Anf), Ar(f)=) ai(f)vr.
IeD cCE

We can compute L, norms of functions f from their wavelet decompositions using
the square function which is defined by

1/2 1/2
(2.5) S(f) = (Z a1,2(f)2|1|_1XI> = <Z aI,p(f)2|I|_2/pXI> :

IeD
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Namely, for 1 < p < oo,

(2.6a) Ifllz, =< 15Oz,

The equivalence (2.6a) follows from general results in Littlewood Paley theory (see
[Me] or [FJ]).

When p < 1 the right side of (2.6a) gives the norm in the real Hardy space H,
(see [FS] for the definition and properties of H,) for a certain range of p which

depends on the univariate wavelets 1, gzv We shall say that p < 1 is admaissible if

(2.6b) [z, < ISz, -

Wavelet coefficients also can be used to characterize smoothness spaces. We shall
use wavelet coefficients to define a class of spaces B, , for 0 < p,q < 0o, s > 0. For
certain values of these parameters, these spaces will coincide with the Besov spaces
as we shall explain. If p is admissible then the space B?  is defined as the set of

a,p
all distributions in H,, for which the following (quasi-semi-)norm is finite:

(2.7) |

By, = (2% (arp(N)1ep. e, (D0 rezlle, @ -

a,p

There are many other forms for the right side of (2.7) obtained by using different
normalization of the wavelets ¢; and the fact that |I| = 27%¢ for I € D;. For
example, when ¢ = p, we can rewrite (2.7) as

(2.8) Fla;, = 1017 ar,(F)renlle, -

We shall use the abbreviated notation B, := B, , throughout. The case s = 0 in
(2.8) will be important in this paper. We shall denote Bg simply as B,. Thus,

(2.9) |18, = l(ar,p(f))1enl

The space B, can be viewed as a substitute for L,; it has a simpler structure in
terms of its wavelet decomposition.
The spaces B , are the same as Besov spaces for a certain range of s which

2 (D)-

depends on the smoothness of ¥ and the number of vanishing moments of ¢ as
we shall now describe. Consider first the case 1 < p < oo in which case the B;,p
are related to the Besov spaces BS(L ) defined by moduli of smoothness in L, (see

[DJP]). Let r(p) be a real number such that ¢ is in Br(p)(Lp) and all moment of
¢ of order < r(p) vanish. Then, B; , is the same as the Besov space B;(L,) for all
0<g<ooand0 < s <r(p). When 0 <p < 1, we use the Besov spaces B;(H,)
which can be defined in several ways (Fourier transforms, Littlewood-Paley theory,
or H, moduli of smoothness) as is thoroughly discussed in [K]. If p is admissible
and 7(p) is defined as before (with H,, in place of L), then B; S = B;(H,), for all
0 < s <7r(p),and 0 < g < co. Finally, it is known that B;(L,) = B;(H,) whenever
s>d(1/p—1)4 (see [K])), in which case these spaces are embedded in L;.

In summary, the spaces By ,, are defined by the size properties of wavelet coeffi-
cients for the full range s > 0, whereas the Besov spaces are characterized by these
wavelet coefficients for a smaller range of s.



3. K-functionals and interpolation spaces.

Approximation spaces and interpolation spaces are intimately connected; each
can be characterized in terms of the other. In this section, we wish to recall some
of these connections and add a little to this theory.

Let X,Y be a pair of spaces which are embedded in some Hausdorff space X.
Then, one can form the space X + Y which consists of all functions f which can
be written as h + g with h € X, g € Y. We define the norm on X +Y by

= inf ||h|lx + .
Ifllcsy = int [l + [y

More generally, for any ¢t > 0, we define the K-functional
(3.1) K(f,t):=K(f,t; X,Y):= inf |h|x +t|g|y-
f=h+g

In this definition, we may also replace norms by semi-norms.

K-functionals have many uses. They were originally introduced as a means of
generating interpolation spaces. We recall that if 0 < 8 < 1 and 0 < ¢ < oo then
the interpolation space (X,Y)g , is defined as the set of all functions f € X +Y
such that

(R (F0]94) T, 0<g< oo,

(3.2) | flx vy, = {
' supesot O K (f,1), g =00

is finite.

We next describe the usual vehicle for characterizing approximation spaces and
connecting them to interpolation spaces as described in DeVore and Lorentz [DL
§9 of Chapter 7]. We suppose that X and Y are as above and for each t > 0, X}
is a (possibly nonlinear) subspace of X + Y. The usual setting for approximation
takest =n,n=1,2,... and Y C X but the results are the same (and the proofs
almost identical) in this more general setting. We let

o(ft)x == Slgg If —gllx

measure the approximation error for this family and define the approximation
spaces A7 (X) as in (1.6) with I, replaced by X.

We assume in addition that X; C X, if ¢ < u and that the nonlinearity of the
family X, is controlled in the following sense: there exists a constant a such that
X+ Xy C Xa(t-l—u)-

We can characterize the approximation spaces if for some r > 0, we can establish
the following two inequalities:

Jackson inequality: o(f,t)x <Ct "||flly, feY,t>0.
Bernstein inequality: |[S|y < Ct"||S||x, S €%, t>0.

i From the Jackson inequality, one can derive a comparison between ¢ and K as
follows. Let € > 0 be arbitrary and let g be such that the decomposition f = f—g+g
gives the K-functional to within e:

If = gllx + 7" lglly = K(f,t77) + e
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If S is a best approximation to g from X; (when best approximation is not known to
exist then one adds another € in the following derivation with the same end result),
then

o(f,t)x <IIf = Sllx < IF —gllx +1lg = Slix
SK(ftT") +e+ Ot lglly < CK(f,t77) + e

Since € is arbitrary, we have
(3.3) o(f,t)x < CK(f,t7").

The Bernstein inequality provides a weak inverse inequality to (3.3) which we do
not give (see Theorem 5.1 of Chapter 7 in [DL]). From this one derives the following
relation between approximation spaces and interpolation spaces.

Theorem 3.1. If the Jackson and Bernstein inequalities are valid, then for each
0<y<rand0 < qg< oo the following relation holds between approximation spaces
and interpolation spaces

(3.4) AY(X) = (X,Y)

q v/
with equivalent norms.

Proof. See Theorem 9.1 of Chapter 7 in [DL] where the Theorem is proved under
the additional assumption that Y is embedded in X: a simple modification of that
proof gives (3.4) in the general case.

There is a further connection between approximation and interpolation. In cer-
tain cases, we can realize the K-functional by an approximation process. We con-
tinue with the above setting. We say a family (A¢), ¢ > 0, of (possibly nonlinear)
operators, with A; mapping X into X,, provides near best approximation if there
is an absolute constant C' > 0 such that

(3.5) If —Aifllx < Co(f,t)x, t>0.
We say this family is stable on Y if
[Aeflly < Cliflly, t>0,

with an absolute constant C > 0.

Theorem 3.2. Let X, Y, X; be as above and suppose that X; satisfies the Jackson
and Bernstein inequalities. Suppose further that the family of operators A¢, t >
0, provides near best approrimation and is stable on Y then A; realizes the K-
functional, in the sense that

(3.6) If = Aefllx +t7"[[Aefly < CK(f,677, X,Y),

with an absolute constant C'.

Proof. We fix t > 0 and let g € Y be a function which realizes K(f,t7"), i.e

(3.7) If —gllx +¢t7"lglly < K(f,¢77).
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When ¢ is not known to exist, we add an ¢ > 0 as above. From the near best
assumption, we have

If — Acfllx < Co(f,t)x
< CO|f — Asgllx
< C(If —gllx +1lg — Awgllx)
< O(If —gllx +o(g,t)x)
<C(lf —gllx +t7"glly)
< CK(f,t7"),

where we have used the Jackson inequality.
Moreover, using the Y-stability of A; and the Bernstein inequality, we obtain

Ay < CETT( A — Awglly + | Avglly)
< O(1Acf — Awglix + 17" lglly)
<CO(If = Acfllx +1If —gllx +¢7"llglly)
S CO(If = Acfllx + K(f,£77))

This combined with (3.8) shows that A, f realizes the K-functional. O

Remark 3.1. If in place of near best approximation we assume only that

”f - Atf“X < CJ(f? at)X7
with absolute constant a < 1, then (3.6) is still valid.

Indeed, the same proof gives (3.8) with ¢~" replaced by (at)~" and the remark
follows because

K(f,(at)™") <a™"K(f,t77).

In practice, the stability of an approximation operator B; mapping X to X,
is not always easy to check directly, but it can be derived from the stability of
one particular approximation operator A; combined with Jackson and Bernstein
estimates, as shown by the following result. We say that A; provides a Jackson
inequality if

(3.9) lg — Awgllx < Ct7|lglly

holds for all g € Y with an absolute constant C'.

Theorem 3.3. Let X, Y, X, be as above and suppose that X, satisfies the Jackson
and Bernstein inequalities. Let Ay, By provide the Jackson inequality and suppose
that A; 1s stable on'Y . Then, By is also stable on'Y .

Proof. Let g € Y. Then,

[Beglly < C([|Arg — Beglly + [ Aeglly) < C(t"[[Ag — Bugllx + llglly)
< Ct"llg — Awgllx +"llg — Begllx + llglly) < Cliglly. O



10 ALBERT COHEN, RONALD A. DEVORE AND REINHARD HOCHMUTH

4. n-term wavelet approximation in H,, 0 <p < oco.

In this section, we shall treat the case a@ = 0 in restricted nonlinear approxima-
tion. This case corresponds to the standard n-term wavelet approximation. While
the results of this section are for the most part known (see [DJP]), we shall give
new and simpler techniques for their proof. We shall later use these same ideas
to obtain the corresponding theory for restricted nonlinear approximation. The
main new ingredient here is the use of the interval I(x) defined below for a set A of
intervals and a point z € R?. The interval I(x) can be used to replace the role of
maximal functions used in the original proofs of Jackson and Bernstein inequalities
for n-term approximation given in [DJP].

We take a = 0 throughout this section. In this case, it is enough to consider
approximation from ¥; only in the case ¢ = n with n a natural number. We shall
use the notation

on(f)p =0(fin)p
in this section.

Let A be any finite set of dyadic intervals . For each x € Ujrcpal, we define
I(x) to be the smallest interval in A which contains z. We use the notation for
wavelet decompositions given in §§1-2. We shall frequently make use of the following
observation of Temlyakov [T2] which holds for any finite set A C D.

Lemma 4.1. Let 0 < p < oo be admissible and let A be a finite subset of D. If f
has the wavelet decomposition

(4.1) F=> Alf)
IeA
with ar,(f) < M, for all I € A, then

(4.2a) Iflla, < CrM#AN?

with Cy depending only on p. Similarly, if ar ,(f) > M, for all I € A, then
(4.2b) Iflla, > CoM#AN?

with Cy depending only on p.

Remark 4.1. Recall that H, = L, with equivalent norms when p > 1.

Proof. We let ar := ar,(f). Then, for (4.2a), we use the square function (2.5-6) to
find

1/2
1z, < CIS(Hz, = Cl (Z a?lll_2/p><1> Iz,

IcA

1/2
< CM]|| (Z |I|‘2/p><f> Iz, < CM|[I(2)|7/7 |z,
IeA

where |I(z)|~" is defined to be 0 when z ¢ Ureal. If J € A then the set J := {x :
I(z) = J} is a subset of J, and we have Ureal = UjeaJ. It follows that

1ll7, < CmP /R 1) de < CMP S

[ 71 < CMP#A.
Jeavd
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which proves (4.2a).
For the proof of (4.2b), we have

1/2
S(fa)= M (Z |I|-2/P>a<x>) > M|I()| /7.

IcA
Also, |I(z)|™' > C Y cp |7 x1(2). Hence,

1%, 2 CISUIE, 2 oM [ 37117 vule) = corgea. O
" IEA

As a consequence of the Lemma we will prove the following interesting theorem
of Temlyakov|[T2]. We fix an admissible value of p with 0 < p < oo and let

an — Z Z b?dﬁ) #Ab S n,
IcA, e€E

be a best Hp-approximation to f from X, (the existence of best m-term approxi-
mations was proved in [T1]). We modify B, f by replacing b by a$(f) to get B, f
which is also in ¥,,. It follows that S(f — B, f) < S(f — B,f) with S the square
function of (2.5). Therefore, from (2.6b) we obtain

1f = Bufllm, <CIf = Bufllm, < Con(f)p,

We also introduce the thresholding operator 7, f := >, Ar(f) where A; consists
of the n cubes I for which ay,(f) is largest (with ties handled in an arbitrary way).

Theorem 4.1. For any admissible p with 0 < p < oo and for alln =1,2,..., T.f
1$ a near best approrimation to f from X, i.e.

If = Taflla, < Con(f)p-
Proof. 1t is enough to estimate

Bof —=Taf=— >, AN+ Y, Alf)=fo+h.

ITeA\A, TeA\A,
Using the square function, we have
1folle, < CIIf = Bufllm, < Conl(f)p.

If M is the smallest of the values ar,(f), I € Ay, then for all I € Ay \ A¢ we have
arp(f) < M. Hence, from Lemma 4.1, we have

If1lla, < CM#(Ap \ AP,
On the other hand, for all I € A, \ Ay we have ar ,(f) > M and hence
1 follzr, > CM##(A:\ Ap)'/P.

Since #(A¢ \ Ay) = #(As \ A¢), we have ||fillm, < Cfollr, < Con(f)p which
completes the proof. [
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4.1. The Jackson inequality for n-term wavelet approximation.
Recall that for 0 < 7 < oo, a sequence (a,) of real numbers is in the Lorentz
space wl, := {; o (called weak ¢;) if

(4.3) #{n:lan| > ep < M7,

for all ¢ > 0. The norm ||(ay)||we, is the smallest value of M such that (4.3) holds.
Also,

(an)|lwe. < ||(an)lle, -

Theorem 4.2. Let p be admissible with 0 < p < oo, and s > 0, and let f € H,
and ay = ay(f) := arp(f), I € D, be such that (ar)rep is in wl,y, 1/7 = s+ 1/p.
Then, we have

on(f)p < Cn7?[[(@r(F))lwe, »
with the constant C' depending only on p and s.

Proof. We have

(4.4) #{Il:ar>e} < M7e 7,

for all € > 0 with M := |[(ay)||we,. Let Aj := {I:277 < |a;| < 277*!}. Then, for
each k =1,2,..., we have

k
D #A; < CMT2M,

j=—o0

with C' depending only on 7.

Let S; := > jep, Ar(f) and T} := E?z_oo S;. Then T}, € ¥n with N =
CM72k". We finish the proof in the case 1 < p < co (the case 0 < p < 1 is handled
similarly but with || - ”1;1}, used in place of || - ||, ). We have

(4.5) If = Tillmr, < > 11Sila,-

j=k+1

We fix j > k and estimate ||S;||g,. Since ay < 279%! for all I € A;, we have
from Lemma 4.1 and (4.4),

1Sj]lm, < C27I4AYP < CMT/P2iC/p=1),
We therefore conclude from (4.5) that
If = Tkllm, < CMT™/P i 23(r/p=1) < CM(M2*)T/PL
j=k+1
because 7/p — 1 < 0. In otherwords, for N < M72%7 we have
on(f)y < CMNYP=U™ — CM N

JFrom the monotonicity of o,, it follows that the last inequality holds for all N >
1. O
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Corollary 4.1. Let p be admissible with 0 < p < oo, let s > 0 and let f € B2,
1/ = s/d+ 1/p, with T admissible. Then,

(4.6) on(f)p < CIf
with C' depending only on p and s.

Proof. We have ar , = arp|I|'/™"1/? = a; ,|I|*/¢. Thus, from the definition (2.8)
we find

(4.7) /182, = l(an)lle, = [[(ar)llwe, -

Hence (4.6) follows from Theorem 4.2 with s replaced by s/d.

Remark 4.1. As noted in §2, the space BE coincides with the Besov space BE(H.)
for a certain range of s and this space coincides with Bi(L,) if s > d/T —d.

—s/d
B:sN / )

Remark 4.2. Theorem 4.2 also holds with H, replaced by B, with a simpler proof.
This 1s proved for restricted nonlinear approxrimation in §5.4.

4.2. The Bernstein inequality for n-term wavelet approximation.
We shall next prove the Bernstein inequality which is the companion to (4.6).

Theorem 4.3. Let p be admissible with 0 < p < oo, and let s > 0. If f =
Yoren Ar(f) with #A < n, we have

Iflls; < Cn*/if L, ,
with 1/7 = s/d + 1/p whenever T is admissible.
Proof. Case 1: p > 2. With ar := ar,(f). we have from (4.7)

1/ 1/p
|flB: = (Z a}) < nl/m=1/p <Z |a1|p> .

IcA IeA

On the other hand,

1/p
IS(Hlz, =10 Tl P x0) 2lle, > 10 a8l x0) "L, = (Z a?) ,

IcA IeA IeA

which in view of (2.6b) completes the proof in this case.
Case 2 : p < 2. With I(z) defined as the smallest interval in A that contains
x, we have

|f|TBg = /Rd Z |aI|T|I|_1X[ = /Rd Zaﬂ[|_T/pXI|I|_1+T/pXI

IecA IeA

< C/Rd ()| I(2)[+7/7 < ¢ (/R S(f’;r)p) "Ip (/R |I(x)|_l)1—r/p

< On'TTP|S(F)7, < OntTT| 7

where the second to last inequality follows as in the proof of Lemma 4.1. [
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Remark 4.3. The Bernstein inequality of Theorem 4.3 also holds with H, replaced
by B,. The proof is simply Hélder’s inequality (as in the first line of the above
proof ).

4.3. Approximation spaces for n-term wavelet approximation.

In this section, we state without much elaboration the conclusions that can be
drawn from the Jackson and Bernstein inequalities for n-term approximation vis
a vis the characterization of approximation spaces. A similar development with
more details is given in §6 for restricted nonlinear approximation (which includes
the results of this section as a particular case).

Let p be admissible with 0 < p < co. Let s > 0 be and 1/7 := s/d + 1/p with
7 admissible. We denote by K(f,t) the K-functional for the pair H,, B with the
semi-norm of B: used in the definition of K. It follows (see Theorem 3.1) from the
Jackson and Bernstein inequalities that for any 0 < v < s and any 0 < ¢ < o0,

AY/UH,) = (H,, BY)
Ay/U(B,) = (B,, BY)

/8,0

(4.8)

v/5,q°

The interpolation spaces on the right side of (4.8) are in fact identical and can
be described in two ways. First of all they can be described by a condition on the
wavelet coefficients. Namely, a function is in this space if and only if (a7 ,(f))rep
is in the Lorentz space ¢, 4 where 1/u :=v/d+ 1/p and in fact, we have

(49) |f|AZ/d(Hp) = H(aI:P(f))qu,q‘

Secondly, in the case that ¢ = u, then Az/d(Hp) = B} with equivalent norms.
Thus, as noted before, for a certain range of v these spaces are the Besov spaces
B}(H,).

There is a further connection between n term approximation and interpolation
that we wish to bring out. Let p, s, and 7 have the same meaning as above. We
recall the thresholding operator 7, of Theorem 4.1. Tt follows from Theorem 4.1
and Theorem 3.2 that for each n = 1,2,..., we have

K(f,n™% Hy, BY) < |f = Taf ||z, +n7°|Tnf|B: -

In other words, 7, f realizes the K-functional at ¢t = n™*.

5. Restricted approximation in H,.

For the remainder of this paper, we shall consider the general problem of re-
stricted nonlinear approximation. Since we have already treated the case a = 0
(the case of n-term approximation) in the previous section, for convenience, we
shall exclude that case in the following development. We fix o and let & := ¢,
throughout this section.

We fix an admissible value of p with 0 < p < oo and a value of s > 0 and let 7
be defined by the equation s = dB(1/7 — 1/p) where 8 := 1 — a. We shall prove
Jackson and Bernstein inequalities for restricted nonlinear approximation in H),
using for Y (as in §3) the space

B? .= B;

T,T?
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in the case that 7 is admissible. This scale of spaces is depicted in Figure 1. They
lie on the line with slope Sd which passes through the point (1/p,0) corresponding
to the space Hp,.

For each t > 0, we define the space ¥, as the set of all S € H,+ B for which (1.4)
holds. In particular, the wavelet coefficients of S are defined and (1.4) converges in
the sense of H, + H-.

If f € Hy, + B;, we define

o(f,t)y = it |If = S,

It will follow from the discussion in §5.1 that o(f,t), is finite for each t > 0.

The case 3 = 1 is the usual case of nonlinear approximation. If 3 > 1, the
restricted nonlinear approximation will follow the same lines as the usual nonlinear
approximation since B? is embedded in H,. However, in the case § < 1 (i.e.
0 < a < 1) several new ingredients appear. First of all the space B? is not embedded
in H,. This means that in the theory of K-functionals we need to consider the full
range of ¢ > 0 (not just 0 < ¢ < 1). Correspondingly, we need the full range of ¢ in
o(f,t)p, not just t > 1.

As we have seen in §4, a near best n-term wavelet approximation in H, can
be obtained by thresholding the L, normalized wavelet coefficients. We shall see
in §7 that restricted approximation is intimately connected with thresholding the
normalized wavelet coefficients ay,.(f) with r := p/g.

The development given below is similar to that in §4 except that we use ¢ := ¢,
to count the number of cubes and we use the different thresholding. Let A C D be
a set of cubes for which ®(A) is finite. As earlier, we define I(x) as the smallest
interval from A which contains x. In the case 0 < a < 1, for certain x, there may
not be a smallest I(z) since there may be cubes of arbitrary small measure in A.
However, it is easy to see that the set F of such x has measure zero. Indeed, if
E := AN Dy, then E C Ug>m Urekg, I for each m > 0. Hence,

EI< YD =Y > [ < @A) Y 20emDdk < cp(a)2lamhim,

k>m I€E), k>m I€E), k>m

and the right side tends to zero as m — oo.
We shall use the following analogue of Lemma 4.1.

Lemma 5.1. Lelp,s,7,r be as above. If f € H,+ B3 has the wavelet decomposition

(5.1) f=Y A,

IecA

with ®(A) finite. If a5 -(f) < M, for all I € A, then
(5.2a) Ifller, < CLMB(A)P,
with Cy depending only on p. Similarly, if ar,.(f) > M, for all I € A, then

(5.2b) I fllm, > C2aMO(A)P,
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with Cy depending only on p.
Proof. We first note that the square function (2.5) satisfies

S(f,0) = S ar (f) () < CMAI(2)[ 727, e RY,
IeA

where we define |I(x)|™2/" := 0 if ¢ Ureal. Hence,

115, < CIUS(IE, < CMPII()|~Hr|[G, < CMP Y |I|'7F" = CMP(A),
IeA

which is (5.2a).
For the proof of (5.2b), we have

S(f,e)? > MY |17 xi(e) > MP|1(2)] 72",
IecA

Also, |I(z)|7P/" > C'3jep I|7P/"x1(z). Hence,

11, = CIS(IE, = €M7 [ 1@ 71" do = CMP 30 |1t
R IeA
=CMP > |I]* = CMPR(A). O
IeA

5.1. A Jackson inequality for restricted nonlinear approximation.
We fix f € B? and let ar :=a;(f) :=ar(f), I € D, and for j € Z define

Aj = Aj(F) =A{1:277 ar.(f) <2774,

and the operators

Sif:= Y Adf),

TeA;(f)
and
k
ka = Z Sj.
j=—o0

Theorem 5.1. Let s >0, and p and 7 be admissible, 0 < 7 < p < o0, and satisfy
s=pd(1/Tr—1/p). If f € B2, then for each j, k € Z, we have

B B(h;) < Clflp, 207,

(ii) ®(Uj<khj) < C[f]5: 27,

i) I = Tufllm, < C2PCPD| R

In addition, for each real numbert > 0, we have

(5.3) o(f,t)p < C|f|pst /7.
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Proof. The proof is similar to that in §4.1.
(i) Since ar.(f) = |I|*"~Y"as ,.(f), the assumption f € B? implies that

Clflp: =D Y I ar (N7 =) D I/ ar ()

JELIEA, j€Z Ieh;
= Z (|1 /=T T =Bl g, (F)]T > CZQ—J'T Z 7]
IEAj J1EZL IEAj
=C) 2797(A).
JET

It follows therefore that
®(A;) < C|f

52T,

which is (i).
(ii) We obtain (ii) by summing the inequalities in (i).
(iii) From Lemma 5.1, we have

1551, < C279P@(A;) < 0279 7)|f

B J=12....

We complete the proof in the case p < 1 (the case p > 1 being handled in a similar
way). We have

1 =Tl <> NS5, < €Y 277 |f|5, < c27+=7))|
>k i>k

T
s
B'r

which is (iii).
From (ii) and (iii), we have that for ¢ < |f

T 9kt
Bf;z )

o(f,t)y <C|f Bﬁt_s/gd‘

[l 2Pt = C|f

B:
;From the monotonicity of o(f,t), we obtain (5.3) for all real numbers ¢ > 0 which
is (5.3). O

Corolary 5.1. For eacht > 0, we have
o(ft)p < K(f,t7/74)

where K is the K-functional for the pair H, and B;.
Proof. This follows from the Jackson inequality and (3.3) for the pair X = H,,
Y = B;.

5.2. The Bernstein inequality for restricted approximation.
We shall prove next the Bernstein inequality which is the companion of the
Jackson inequality in §5.1. We continue with the notation of §5.1.
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Theorem 5.2. Lets > 0, and p and T be admissible and satisfy s = Bd(1/7—1/p).
If f € Hy has the wavelet expansion f =3 ;. Ar(f) with ®(A) <t, then

11

with C depending only on p and s.
Proof. Case 1: p > 2. We have

15 =S 1™ ar ()" = ag (f) =412 = 5" ap o (£)7 1«0 =7/P)

B < CtP £ m,

TeA Ten Ten
T/p 1-71/p T/p
< (Z aI,p(f)p> <Z |I|a> < ¢oT/pd (Z aI,p(f)p> -
IEA IeA IeA

On the other hand, as in the proof of Theorem 4.3, we have

1/p
ISz, = 10O arp(H)?I1Px0) ||, = (Zaf,p(f)p> ;

IeA IeA

which completes the proof in this case.

Case 2 : p < 2. With I(z) defined as the smallest interval in A that contains
z, we have with 1/pu:=1—7/p,

oy = S ar )" = [ S ans7 17

IeA IeA

T/p 1/p
< C/Rd S(f,z)"|[I(z)|"*/4dz < C (/Rd S(f,z)P d:z:) (/Rd HE G da:)

T/p 1w
<c( [ strora) (Z |f|1-““/d) — CIIS(F)IF, B(A)
R{l

Tea
< Ci' T/p||f||H = trs/ﬁdHfHH ,

because 1 — sTp/d =a. O

5.3. An analogue of Temlyakov’s result for restricted approximation.

We shall prove an analogue of the theorem of Temlyakov for restricted approx-
imation. We assume that 8 # 1(«a # 0) since the case § = 1 is already covered in
§4. We continue with the same notation as in the previous sections on restricted
approximation. Let f € Hy + B} and for t > 0, let B,f = > ;.\ A1(By) € %4
satisfy

(5.4) If = Billm, <20(f,1)p.

The set A; thus satisfies ®(A;) < t. By adding small (in the case a > 0) or large
(in the case a < 0) cubes to A; (and putting coefficients equal to 0 for the new
cubes), we can assume that ®(A;) =t
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We modify B;f by replacing Aj(B;) by the exact components A7(f) of f to get
Bif := Y 1ca, A1(f) which is also in ¥;. We also introduce operators associated
with thresholding. Given € > 0, let A, := {I : ar,.(f) > €} where as before
1/r:=B/p. Welet t :=t.:= ®(A.) and define B, f := > ;.5 Ar(f).

While the results that follow in this section include statements for By, they are

not completely satisfactory because B, f is not necessarily defined for a given value
of £ > 0. We shall discuss thresholding operators in more detail in §7

Theorem 5.3. Lets >0, and p and 7 be admissible and satisfy s = Bd(1/7—1/p).
For each t > 0 and f € H, + B; the functions B,f and B{ f are near best H,

approzimations to f from .. Similarly, for each t for which B,f is defined, it is
also a near best approximation to f from X,. In other words,

(5.5) |f— Atf“Hp < Ca(f7t)107

for Acf = Bif or Bff, and for A f = B:f when the latter is defined, with a
constant C' > 1 depending only on p.

Proof. The conclusions of the theorem for B;f are obvious in view of its definition
(5.4). For B f, we have from the square function

If =B flla, < Cllf —Bef|lu, <2Co(f,t)p.

Finally, we prove the theorem for B,f. Let A. be the set associated with B;f
and let A; be the set associated with B}. It is enough to show that

(5.6) \BS — Buflls, < Colf.0)
We have )
Bif—Bif= Y, AN+ >, Alf)=fo+h

IEAE\At IEAt\/_\e

Using the square function, we see that
[ follm, < ClIf — B fllu, < Co(f,t)p.
Now, for all I € A;\ A. we have ar,»(f) < e. Hence, from Lemma 5.1, we have
1fillm, < Ce®(Ar\ Al)'/P.
On the other hand, for all I € A, \ A¢ we have ay ,.(f) > € and hence
Ifollm, = Ced(Re\ Ar)H/P.

Since ®(Ac \ Ay) = ®(A; \ A.), we have ||fi|lm, < Cl|lfollu, < Co(f,t), which
completes the proof. [
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Corollary 5.2. Lets > 0, and p and 7 be admissible and satisfy s = Bd(1/7—1/p).
For each f € L, + B} and eacht > 0, the function B{ f realizes the K-functional
i€

If — B; fllm, +t~*/P4 B flg. < CK(f,t~*/°* H,,B?),

with the constant C' depending only on p, s, and 3. The same result holds for B.f
whenever By f is defined.

Proof. This follows from Theorem 3.2. Indeed, both operators B; and B, provide
near best approximations as was shown in Theorem 5.3 and both are B? stable (with
stability constant C' = 1 since we use the wavelet definition of these spaces). O

5.4. Jackson and Bernstein inequalities for restricted approximation in

By.

The proofs of the Jackson and Bernstein inequalities for restricted approximation
in B, are somewhat simpler than in H, and all follow simply by analyzing the
sequence of wavelet coefficients. We shall continue to use the spaces B; where
s =dp(1/7 —1/p) and the parameter r := p/S.

To prove the Jackson inequality, we use the notation of §5.1.

Theorem 5.4. Let s > 0, and p and 7 be admissible and such that s = Bd(1/1 —
1/p). If f € B2, then for each j, k € 7, we have

() (M) < Clf]5,2",

(i) ®(Uj<r;) < C|f|5.2%7,

(i) I = Tuflls, < C2CIPI|fIEE.

In addition, for eacht > 0, we have

(5.7) o(f,t)B, < C|f|p:t*/P4.

Proof. (i) and (ii) were proved in Theorem 5.1. For the proof of (iii), we have
1S5l = > af JIPOPTH < comin R e
IEAJ' IEAJ’
= C277P®(A;) < C27I=7)| |3, ,

where we used (i). Therefore, assuming p > 1 ( a simple modification applies when
p < 1), we have

If —TillB, < CZ 1S;1|8, < ZQ_j(l_q/p)|f|TB/ip < CQ_k(l_T/p”ﬂ;/ip’
i>k i>k
which is (iii).
From (ii) and (iii), we have that for ¢ < |f

B:

%$2kr,
o(f,t)p, <C|f pat /P,

which is (5.7). O

f|%$2k7')l/p—1/7' < C|f

We shall prove next the Bernstein inequality which is the companion of the
Jackson inequality for B,. We continue with the previous notation.
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Theorem 5.5. Lets > 0, and p and 7 be admissible and satisfy s = Bd(1/7—1/p).
If f € Hy + B3 has the wavelet expansion f = ;.4 Ar(f) with ®(A) <t, then

I fll: < Ct/P4)|f| B, -

Proof. We have

|f %ﬁ = Z |I|_sr/d(1[,7-(f)r — Za}-,p [|1—7’/P—sr/d _ ZaI,p(f)T|I|a(1_T/p)
IcA IeA IeA
T/p 1—-7/p r/p
< (Z a?,p> <Z |f|a> < gom/pd (Z az,p(f)P> . O
IeA IcA IecA

6. Approximation spaces for restricted approximation.

The following discussion applies to both the case of restricted approximation and
the case of ordinary n-term wavelet approximation (the case 8 =1, a = 0). We fix
an admissible p with 0 < p < co. Further, we let s, 7 be parameters for which the
Jackson and Bernstein inequalities hold in §5 and which satisfy s = dg(1/7 — 1/p)
with 7 admissible. We fix s and 7 throughout. We shall use frequently in this section
without further mention the fact that the Jackson and Bernstein inequalities also
hold for any 0 < v < s and p := p(7) defined by the relation v = 8d(1/u — 1/p).

For any 0 < 7 and 0 < ¢ < oo, we define the approximation space AZ(Hp)
by using the quasi-semi-norm |f| 4y(g,) of (1.6) or the equivalent quasi-semi-norm
(1.7). We add ||f||z,+B: to |f|la7(m,) to obtain the norm | f|| 47(m,) We remark
that in the case 8 > 1, we have Bj is embedded in H), and therefore f € H,. It
follows that o(f,t)m, < ||f||m,. Therefore, the indices in (1.7) can be taken over
k > 0 with an equivalent norm. However, we shall not make any use of this fact in
what follows.

The spaces Ag(Bp) and their semi-norms and norms are defined in the same way
with H, replaced by B,,.

We shall show how the spaces AY(H,) and AJ(B,) can be characterized by
wavelet coefficients. We use the abbreviated notation ay := aj(f) = as.(f)
throughout this section with r» = p/f3 as introduced and used earlier.

6.1. Approximation in B,.
We shall first consider approximation in B, which is somewhat simpler than
approximation in H,. We first note that

(6.1) 11, = > arp(f)P = D ar(FPUITP7 =Y ar(H)PI]™

1eD I1eD 1eD

Similarly, for each 0 < v < s, and p := u(v) defined by v = dB(1/u—1/p), we have

(6:2) /5y == D [T aru(£)F =Y ar(HPUFHATRT =3 " ar(f)F|1]*.

1eD 1eD 1eD
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For 0 < A < oo, we let £)(w) denote the space of all sequences (cy)rep with the
norm

1/
(6.3) I(er)llen(w) = (Z|I| |01|A> :

IeD

corresponding to the weight w(I) := |I|*. We similarly define the weighted Lorentz
spaces £y ,(w) (see Chapter 1, p.8 of [BL]).

The identities (6.1-6.2) say that the linear mapping which takes f into its wavelet
coefficients is an isometry between B, and {,(w) and between B? and ¢,(w). It
follows therefore that this mapping also gives an isometry between the interpolation
spaces (B, B%)o,, and the interpolation spaces ({,(w), ¢, (w))g 4. The latter are
well-known to be weighted Lorentz spaces £,, ,(w) with 1/p = (1 —8)/p+ 0/ (see
Chapter 5, p.109 of [BL]). Therefore, f € (Bp, B:)o,q, 0 < 0 < 1,0 < ¢ < oo, if
and only if

1—6 06

1
K p
and ||(a;(f))ll¢,., is an equivalent norm for (B, B} )e,q
In particular, (6.4) (with ¢ = p) and (6.2) give that for any 0 < § < 1

(6.4) (ar(f))rep € Luq(w),

(6.5) (Bp, B3 )o,u = Bl, v:=0s,

where p and v are related as before by v = ﬁd(i — %) More generally, let p; and

v, be related by v; = 8d(1/p; —1/p), 7 = 1,2. Then, from the reiteration theorem
for interpolation, we obtain

1—-60 0

Y

6.6 B, B%), = Bl,
(6:6) ( o = B "o

H1?

=2 |~

where again p and ~ are related by v = dﬁ(i — %)

Theorem 6.1. Let p be admissible with 0 < p < oo and let s > 0 and T be defined
by s = Bd(1/17 — 1/p) with T admissible. For each 0 < v < s/8d, 0 < g < o0, we
have

(6'7) AV(BP) = (Bp, Bvs-)Q,qv g := Vﬁd/sv

q

with equivalent norms.

Proof. This follows from the Jackson and Bernstein inequalities of §5.4 and Theo-
rem 3.1. [

Corollary 6.1. Letp be admissible with 0 < p < oo and let s > 0 and 7 be defined
by s = Bd(1/7 —1/p) with T admissible. For each0 <y < s, and p:= p(y) defined
by the equation v = Bd(1/p — 1/p), we have

(6.8) A)/P4(B,) = By,

with equivalent norms.

Proof. This follows from Theorem 6.1 and (6.5). O
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Corollary 6.2. Letp be admissible with 0 < p < oo and let s > 0 and 7 be defined
by s = Bd(1/T — 1/p) with T admissible. Let 0 < v < s and let p be defined by
the relation v = Bd(1/u — 1/p). Then, for each 0 < g < oo, f € AZ/Bd(Bp) if and
only if (ar(f))rep € Lu,q(w), and the two norms ||f||A;,/ﬁd(Bp) and ||(ar(f))lle,., are
equivalent.

Proof. This follows by using (6.4) to characterize the interpolation space. [

Finally, we observe that, in view of our results, Corollary 5.2 also holds with B,
in place of H,

6.2. Characterization of A)(H,) by interpolation.

We can carry out an analysis similar to that of §6.1 to show that restricted
approximation in H, can also be characterized by interpolation. We use the same
notation as in §6.1 except that now K denotes the K-functional for the pair of
spaces H, and B;. Using the Jackson and Bernstein inequalities for restricted
approximation in H,, we derive the following analogue of Theorem 6.1.

Theorem 6.2. Let p be admissible with 0 < p < oo and let s > 0 and T be defined

by s = Bd(1/7 — 1/p) with T admissible. For each 0 < v < s/8d, 0 < q < oo, we
have

(6.9) Aj(Hp) = (Hp, B)o,q, 0 :=~pd]s,

q
with equivalent norms.

At present, Theorem 6.2 is not quite satisfactory because we still do not know
the interpolation spaces appearing on the right side of (6.9). However, the next

theorem will show that these interpolation spaces are the same as those for the pair
B,, B; which we have already characterized.

Theorem 6.3. Let p be admissible with 0 < p < oo and let s > 0 and 7 be defined
by s = Bd(1/17 — 1/p) with T admissible. For each 0 < vy < s and 0 < g < oo, we
have

(6.10) AVPYH,) = AYPY(By).
Proof. We first note the embeddings
(6.11) AYVPY(H,) C BY € AYPY(H,),

which hold for any 0 < v < s, u = pu(y) satisfying v = Bd(1/pu — p) and i :=
min{1l, u}. Indeed, the right embedding in (6.11) follows from (5.3) with s replaced
by 7. To prove the left embedding in (6.11), we let f € AZ/Bd(Hp) and let Sy € Yqx
satisfy

17 = Sellu, <o)y kel
Then, we have f =Y 72 _ (Sp — Sk—1) and therefore

o0

iy < D 18k = Skeallyy <C Y 29RP S, — Sl

k=—0c0 k=—c0

< 3 2PY(f,2), + o (£.2 7)) < CUFA

k=—o0
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Here, we have used the subadditivity of |- |§; ,p 1n the first inequality, the Bernstein
I

inequality of Theorem 5.2 (with s replaced by v) in the second inequality, and the
discrete norm (1.7) in the last inequality.

Let 0 < v; < s and p; be related by v; = Bd(1/pu; — 1/p), j = 1,2. We assume
that y1 < 72. We recall that both the AJ(H,) and A}(B,) are interpolation
families. Therefore, the reiteration theorem for interpolation together with the
embeddings (6.10-6.11) give that for each 0 < 8 < 1 and 0 < ¢ < oo, we have
(6.12)

(Azll/ﬁd(Hp)aAzz/ﬁd(ﬂp))&q = (B71 BZZ)O,q = (Azll/ﬁd(Bp)aAzz/ﬁd(Bp))&q'

K12
The left side of (6.12) is the approximation space AZ/Bd(Hp), vy=(1=60)y1 + 0y,

and the right side of (6.12) is the approximation space Ag/gd(Bp) with the same
parameters. Since 6 and g are arbitrary and ~; can be chosen arbitrarily close to 0
and 7, arbitrarily close to s, (6.9) follows. O

Corollary 6.3. Letp be admissible with 0 < p < co and let s > 0 and T be defined
by s = Bd(1/7 —1/p) with T admissible. For each0 <y < s, and p:= p(y) defined
by the equation v = Bd(1/p — 1/p), we have

(6.13) AY/PiH,) = BY,

with equivalent norms.

Proof. This follows from Theorem 6.3 and Corollary 6.1. O

Corollary 6.4. Letp be admissible with 0 < p < oo and let s > 0 and 7 be defined
by s = Bd(1/7 — 1/p) with T admissible. Let 0 < v < s, and let u be defined by
the relation v = Bd(1/p — 1/p). Then for each 0 < g < oo, f € Ag/ﬁd(Hp) if and
only if (ar(f))rep € u,q(w), and the two norms HfHquy/Bd(Hp) and ||(ar(f))lle,.,
are equivalent.

Proof. This follows from Theorem 6.3 and Corollary 6.2. O

7. Thresholding.

One of the most frequently used numerical methods for generating adaptive
wavelet approximations consists in thresholding the coefficients of the function to
be approximated. In this section, we shall look more closely at thresholding for
restricted approximation. We fix an admissible p with 0 < p < oo. Further, we
let s, 7 be parameters which satisfy s = d3(1/7 — 1/p) with 7 admissible. We fix s
and 7 throughout. For f € H, + B, we let a; := aj(f) := ar,(f) with r = p/3
throughout this section.

For each € > 0, we let

and let

T€A(e,f)
The next theorem characterizes functions f for which [|f — T.f||z, has a certain
decay. We recall the weighted Lorentz spaces £, (w), w(I) := |I|* which appeared
in the characterization of the approximation spaces for restricted approximation.
We shall be especially interested in the case ¢ = co where £, o (w) = weak — {,,.
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Theorem 7.1. Let p be admissible with 0 < p < oo and let s > 0 and 7 be defined
by s = Bd(1/7 — 1/p) with T admissible. For each T < u < p, a function f satisfies

(7.1) £ — 7;f||Hp < MH/P -1/

if and only if (ar(f))rep € Ly,00(w) and the smallest M satisfying (7.1) is equivalent
to [[(ar(f)lle,, o (w)-
Proof. First assume that (ay) € £, oo(w) and let M := |[(a1)|l¢, . (w)- Let € > 0and

define k € Z such that 275~ < ¢ < 27%. We define the sets A; and the function

S;f as in Theorem 5.1. Then, from the definition of the ¢, o (w) norm, we have
®(A;) < MH2IE . e

i,From Lemma 5.1, we have

1 flla, < CQ—jq,(Aj)l/p < 027 I MHIPIrlP < o pprlPe—i(l=p/P),

We continue with the case p > 1 (a similar argument applies when 0 < p < 1). We

have N N
If=Teflm, < > 1S;llm, < CMp/P Y~ 2mil=r/p)
j=k+1 j=k+1

< C MH/Po—k(l—n/p) < CMHPL—1/P)

This proves one of the implications in the theorem.
Conversely, we assume that for each ¢ > 0,

If — Tef||H,, < MH/P—1/P
With §; as above, and using the square function, we find
Iill, < CIf = Toms fllm, < CM#/P27I07002),
Hence, using Lemma 5.1 again, we find
P(A;)H/P27I < C|IS;fllm, < C M#/Po—i(l—n/p)

That is, '
D(A;) < CMHH,

Therefore, with 27%71 < ¢ < 27, we have
k+1 .
S(A(f,€) < Y CMFI* < CMMeH,

j=—c0

which proves the other implication in the Theorem. O
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8. Adaptation to a bounded domain.

Most practical applications of restricted approximation arise in the context of
bounded domains, i.e. the function f to be approximated is defined on an open
connected set 2 C RY.

With a little more work (see e.g. [D] or [C]) and some reasonable assumptions
on the geometry of {2, multiscale decompositions into wavelet bases can be adapted
to such bounded domains. In such decompositions, the range of scales is only
k=0,1,2,---, i.e. functions on {2 are decomposed according to

(8.1) =Y Alf),

IeD,

with Dy = Up>0Dr(f2), and Dg(2) a subset of Dy that describes the wavelets
adapted to 2 at scale k. The basis functions in the coarsest layer Do () are scaling
functions which do not not oscillate (their integrals differ from zero), since they are
meant to describe a coarse approximation of f.

We want to discuss here the adaptation of our results to this slightly different
setting. A first remark is that all the results of this paper will also hold in this
setting, if we formulate them in terms of sequence spaces: we define h, and bg ,
consisting repectively of those sequences a = (as)rep, such that

(82) lalln, = [/ (> a1 x )21,
R rep,

and

(8:3) la 2he kA2 (ar)

b, = |I( repy(e)lle, Jr>olles

are finite. Replacing Hy, by h;, and B; , by by ,, we can utilise the same method of
proof and characterize restricted approximation in the h, metric.

Accordingly, we thus obtain similar results for restricted approximation if we
define H,(Q2) and B; () to be spaces of distributions f in € such that for a fixed
wavelet basis, the sequence of coefficients a;(f) = ar2(f) exists and belong to the
space hy, and b , with corresponding norms given by (8.2) and (8.3).

In general, the above defined H,(f2) and B; (f2) will depend on the particular
choice of the wavelet basis, unless we can identify them as classical function spaces.
In [C], it is proved that, under general smoothness asssumptions on the wavelet
basis, Hp(f) coincides with the usual Lebesgue space L,(§2) for 1 < p < oo and
B; ,(Q) with the usual Besov space B(L,(2)) if s > d/p — d (under minimal
smoothness assumptions on the boundary of the domain, the latter can be defined
equivalently by restriction of the Besov spaces defined on R? or by their inner
description using moduli of smoothness in ).

Our results can thus be applied to these classical spaces for this range of indices
s and p. For more general indices, we can accept H,(f2) and B; (1) as a definition
of Hardy and Besov spaces on domains, having in mind the possible dependence of
these spaces upon the choice of the wavelet basis.
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