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ABSTRACT

We study the efficiency of greedy type algorithms with regard to redundant
dictionaries in Hilbert space. In Section 2 we prove a general result which gives
a sufficient condition on a dictionary to guarantee that Pure Greedy Algorithm is
near best in the sense of power decay of error of approximation. We discuss also
some important examples in Section 2.

It is known (see [DT1]) that the Pure Greedy Algorithm for to some dictionaries
has a saturation property. In Section 3 we construct an example which shows that a
natural generalization of the Pure Greedy Algorithm also has a saturation property.

In Section 4 we discuss some new phenomena which occur in approximation by
a greedy type algorithm with regards to a highly redundant dictionary.



1. INTRODUCTION

Nonlinear approximation is an important tool in many numerical algorithms. We
consider in this paper one particular method of nonlinear approximation, namely,
m-term approximation. The m-term approximation is used in image and signal
processing as well as in the design of neural networks. One of the basic questions
in nonlinear approximation is how to construct an algorithm which realizes best
or near best approximation. This question was discussed in many papers for dif-
ferent settings of nonlinear approximation problem (see for instance [B], [DDGS1],
[DDGS2], [DJP], [DMA], [DT1], [DT2], [J], [T1], [T2]). In this paper we present
some recent results in studying the settings discussed in [D'T1] and [DT2]. The ma-
jor question we try to answer is: how does redundancy effect the efficiency of best
m-term approximation and the efficiency of greedy type algorithms with regards to
a given dictionary.

We shall confine ourselves to studying in this paper only approximation in Hilbert
space. Let H be a real, separable Hilbert space equipped with an inner product (-, -)
and the norm ||z|| := (z,2)/2. We briefly recall some definitions and notations from
[DT1] and [DT2]. We call a system D of elements (functions) from H a dictionary
if each g € D has norm one (||g|| = 1) and its linear span is dense in H.

We let ¥,,,(D) denote the collection of all functions in H which can be expressed
as a linear combination of at most m elements of D. Thus each function s € ¥, .=
Y (D) can be written in the form

s = chg, ACD, |Al<m, (1.1)
geA

with the ¢, € R.
For a function f € H, we define its m-term approximation error by

Tnlf) = on(£,D) = inf |f s (1.2)

The quantity o,,(f, D) gives the best possible error of approximation of f by a
linear combination of m elements from a given dictionary D. We define now an
algorithm (Pure Greedy Algorithm) which realizes the best m-term approximation
in the particular case when D is an orthonormal basis for H.

We describe this algorithm for a general dictionary D (in which case it does not
generally produce a best approximation). If f € H, we let ¢ = g(f) € D be an
element from D which maximizes |(f, g)|. We shall assume for simplicity that such
a maximizer exists; if not, some modifications are necessary in the algorithms that

follow. We define
G(f):==G(f,D):=(f.9)9 (1.3)
and
R(f):= R(f,D) := f - G().
Pure Greedy Algorithm. We define Ry(f) := Ro(f,D) := f and Gy(f) := 0.
Then, for each m > 1, we inductively define
Gm(f):=Gn(f,D) = Gr1(f) + G(Rm_1(f))

Ru(f):=Rn(f,D):=f —Gu(f) = R(Rp-1(f)). (1.4)
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The above algorithm is greedy in the sense that at each iteration it approximates
the residual R,,(f) as best possible by a single function from D. One of advantages
of the Pure Greedy Algorithm is that it is simple — the repetition of one basic step.

In Section 2 we present some partial progress in the following general problem.

Problem 1.1. Let0 < r < 1/2 be given. Characterize dictionaries D which posses
the property: for any f € H such that

om(f,D)<m™", m=1,2,...,

we have

If = Gun(f,D)| < C(r,D)m™", m=12....
We impose the restriction r < 1/2 in Problem 1.1 because of the following result
from [DT1]. We constructed in [DT1] a dictionary D = {¢g }52, such that for the
function f = ¢ 4+ @2 we have

|f —Gm(f,D)| = m~2 m >4

It is clear that 0,,(f,D) = 0 for m > 2. This example of dictionary shows that in
general we cannot get better than m /2 rate of approximation by the Pure Greedy
Algorithm even if we impose extremely tough restrictions on o,,(f, D). We call this
phenomenon a saturation property.

In Section 2 we give a sufficient condition on D to have the property formulated

in Problem 1.1. We consider dictionaries which we call A-quasiorthogonal.

Definition 1.1. We say D is a A-quasiorthogonal dictionary if for any n € N and
any g; € D, 1=1,...,n, there exists a collection p; € D, j=1,...,M, M <
N := An, with the properties:

9i € Xy :=span(p1,...,0Mm); (1.5)
and for any f € Xy we have

S > N7V . :
(max {f,05)] 2 N (1.6)

Remark 1.1. It is clear that an orthonormal dictionary is a 1-quasiorthogonal
dictionary.

We shall prove in Section 2 the following theorem and its slight generalization
on asymptotically A-quasiorthogonal dictionary. Examples of asymptotically A-
quasiorthogonal dictionaries are also given in Section 2.

Theorem 1.1. Let a given dictionary D be A-quasiorthogonal and let 0 < r <
(20)~1 be a real number. Then for any f such that

om(f,D)<m™", m=1,2...,

we have

|f — Gm(f,D)|| < C(r, )Y m™™", m=1,2,....



In Section 3 we consider a generalization of the Pure Greedy Algorithm. We
study the n-Greedy Algorithm which differs from the Pure Greedy Algorithm in the
basic step: instead of finding a single element g(f) € D with the largest projection
of f on it we are looking for n elements g1(f),...,gn(f) € D with the largest
projection G™(f, D) of f onto their span. It is clear that

If =G, DI <|If = Gu(f, DI (1.7)

However, we construct in Section 3 an example of a dictionary D and a nonzero
function f € X4, (D) such that

If = G (£, D) = C(nm) 2| £]].

This relation implies that like the Pure Greedy Algorithm the n-Greedy Algorithm
has a saturation property for (for details see Section 3).

Section 4 deals with approximation of functions in Ls. We consider the peri-
odic one-variable case. In the linear theory of approximation there is a powerful
discretization method which allows us to reduce an approximation problem for
smooth functions to the corresponding problem in a finite dimensional subspace,
for instance, in the space T (n) of trigonometric polynomials of degree n. In Section
4 we make an attempt to use the idea of discretization in the case of nonlinear ap-
proximation with regards to a highly redundant dictionary. The difficulty arises in
studying nonlinear algorithms, for instance, Pure Greedy Algorithm. The standard
way of studying a linear approximation problem for classes of smooth functions is
the following. We expand a function f into a series

f:Zfs:

and get some restrictions on ||fs|| from the assumption about smoothness of f.
Then we deal with each f, separately and using the linearity of the operator under
investigation we sum the corresponding errors. It is clear that this method does not
work for a nonlinear algorithm. For instance, if we take a dictionary D = {¢x}32,
from Theorem 4.1 in [DT1] we have for f = 1 + ¢

If = Gm(f,D)|| > Cm™/2

despite the relations
gDi:Gl((pi,D), = 1,2.

In Section 4 we study among other problems the efficiency of the Pure Greedy
Algorithm in the Holder smoothness class Hj. We consider a highly redundant
dictionary TV that consists of all trigonometric polynomials ¢t with ||tz = 1 and
such that all nonzero Fourier coefficients of ¢ are of the same absolute value. We
prove that redundancy helps very much in this particular case. We obtain an
exponential decay of the error: for any f € H; we have

1f = G, TV)||2 < C(r)e= A

with absolute positive constant A.



2. SOME SPECIAL REDUNDANT DICTIONARIES

In this section we prove Theorem 1.1 and discuss A-quasiorthogonal dictionaries.
We begin with a numerical lemma.

Lemma 2.1. Let three positive numbers a < v < 1, A > 1 be given and let a
sequence of positive numbers 1 > a1 > as > ... satisfy the condition: if for some
v € N we have

a, > Av™“

then
apy1 < a,(l—7v/v). (2.1)

Then there exists B = B(A,a,y) such that for alln =1,2,... we have

a, < Bn™“.

Proof. We have a; < 1 < A which implies that the set
Vi={v:a, > Av "}

does not contain ¥ = 1. We prove now that for any segment [n,n + k] C V we have
k < C(a,v)n. Indeed, let n > 2 be such that n —1 ¢ V, which means

ap—1 < A(n—1)"9, (2.2)
and [n,n 4+ k] C V, which in turn means
ant; > Aln+35)"% j7=0,1,... k. (2.3)

Then by the condition (2.1) of the lemma we get

n+k—1 ntk—1
anie<an [[ =7y/v)<an [ A=7/v). (2.4)

Combining (2.2) — (2.4) we obtain
n+k—1
(n+ k)™ <(n-1)" [T @—q/v). (2.5)

Taking logarithms and using the inequalities

In(l—2z) < -2z, =ze€l0,1);

St / +=Ldz = In(m/n),



we get from (2.5)

?’L—|—k n+k—1 n+k—1 7’L—|—]€
—ozlnn_1 < VZ; In(1—~v/v)<— VZ; v/v < —vln m

Hence

(vy—a)ln(n+ k) < (v—a)lnn—i—aln—l
n—

bl

which implies

n+ k< 27w n
and

k< C(a,v)n.

Let us take any p € N. If u ¢ V we have the desired inequality with B = A.
Assume p € V, and let [n,n + k| be the maximal segment in V' containing u. Then

—1\ ¢
Sy <A - ) = (P21 (26)
1

Using the inequality & < C(a,y)n proved above we get

7 n+k
< < . .
n—1"n—-1 _Cl(aaﬁy) (27)

Substituting (2.7) into (2.6) we complete the proof of Lemma 2.1 with B = ACY (a, 7).
|

Proof of Theorem 1.1.. Let v(r,\) be such that for v > v(r, ) we have
A +1))7" > (r/2+3/(4X)) /v.

Take two positive numbers C' > v(r,A\)” and k which will be chosen later.
We consider the sequence a, := 1 for v < v(r,\) and a,, := ||f.||?, v >v(r,N),
where

fvi=f—=G.(f,D).
The assumption o1 (f, D) < 1 implies

a’l/(r,)\) = ||fu(r,>\)||2 S ||f1||2 S L.

Let us assume that for some v we have a, > C?r~2". We want to prove that for
those same v we have

avy1 < ay(1—7/v)

with some v > 2r. We shall specify the numbers C and « in this proof. The
assumptions C' > v(r,\)" and a, > C?v=2" imply v > v(r,\) and ||f,|| > Cv~", or

v < OIS (2.8)
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We know that f, has the form
fu:f_zci¢i, o, €D, 1=1,...,v.
=1

Therefore, by the assumption of Theorem 1.1 we have

0'[(1+rs)u]-l-1(f1/) < J[fw]—l-l(f) < (k)77

where [z] denotes the integer part of the number . This inequality implies that
there are [ := [(1 + k)v] + 1 elements g1,...,g; € D such that

l

1o = cigill < (k)" (2.9)

i=1

Now we use the assumption that D is a A-quasiorthogonal dictionary. We find
M < N = M elements ¢; € D, j=1,...,M, satisfying the properties (1.5) and
(1.6). Denote by u an orthogonal projection of f, onto Xps = span(e1,...pa) and
set v := f, —u. The property (1.5) and the inequality (2.9) imply

o]l < (kv)™7,
and, therefore, by (2.8) we have
[l = £ = lloll* > [I£ 171 = (CKT)72).

Making use of property (1.6) we get

> ) = N> N2y
sup ({7, 9)| 2 max [Fy, ¢5)l = max, [(w, ¢5)| 2 N7l

Hence,
1foall < ML = Hlull®/N < [P = (1= (C) )AL + k)r] + 1) 7).

It is clear that taking a small enough x > 0 and a sufficiently large C' we can make
for v > v(r, A)

(1= (Cx) )M+ 8] + 1)) =y > 2r.

With the C as chosen we get a sequence {a, } 22 satisfying the hypotheses of Lemma
2.1 with A =C?, a=2r, ~>a. Applying Lemma 2.1 we obtain

[ fall = a/2 < C(r,M)n™", n=1,2

9 PR 9

which completes the proof of Theorem 1.1. B

The above proof of Theorem 1.1 gives a slightly more general result, with a
A-quasiorthogonal dictionary replaced by an asymptoticaly A-quasiorthogonal dic-
tionary. We formulate the corresponding definition and statements.
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Definition 2.1. We say D is an asymptotically \-quasiorthogonal dictionary if for
any n € N and any g; € D, 1 =1,...,n, there exists a collection p; € D, j =
l,...,M, M < N(n), with the properties:

limsup N(n)/n = X;

n— o0

9i € Xy :=span(p1,...,0Mm); (1.5a)

and for any f € Xy we have

max ; n —1/2 . .ba
max [(£,05)] 2 N(m) ™| ] (1.62)

Theorem 2.1. Let a given dictionary D be asymptotically A-quastorthogonal and
let 0 <r < (2X\)7! be a real number. Then for any f such that

om(f,D)<m™, m=1,2,...,
we have
lf — Gun(f,D)|| < Cr,A)m™, m=12,....

In the proof of this theorem we use the following Lemma 2.2 instead of Lemma
2.1.

Lemma 2.2. Let four positive numbers a < v <1, A>1, U € N be given and
let a sequence of positive numbers 1 > a1 > ay > ... satisfy the condition: if for
somev €N, v >U we have

a, > Av—“

then
a1 < a, (1 —7/v).

Then there exists B = B(A,a,v,U) such that for alln =1,2,... we have

a, < Bn™“.

We proceed now to a discussion of A-quasiorthogonal dictionaries.

Proposition 2.1. Let a system {¢1,...,pn} and its linear span Xy satisfy (1.6).
If M = N and dim Xy = N, then {@;}IL, is an orthonormal system.

Proof. Our proof is by contradiction. The system {¢; }évzl is normalized and we as-
sume that it is not orthogonal. Consider a system {v;}7_; biorthogonal to {y;}X,

(pirvj) = dij, 1<4,j<N.
Our assumption implies that {vj}?f:l is also not orthogonal. Consider
uj:=vj/||vll, 7i=1,2,...N,

10



and form a vector
N

ye = N1/ Zri(t)ui:

=1
where the r,(t) are the Rademacher functions. Then for all j = 1,2,..., N and
t € [0,1] we have
[(yes )| = N2 [(uz, 7)) < N™H2 (2.10)

and N
lyell> = N7 " Cus,us) + N7 ri()r () (wi, ug) =
i=1 i#j
=14+2N"" > ()t (ui,ug).
1<i<j<N

From this we get

1
/ lwelltde =1+ 482 3 (s, u) 2 > 1.
0

1<i<j<N

This inequality implies that for some t* we have ||y~ || > 1 and by (2.10) for this ¢t*
we get forall 1 <j <N

[(yer o) < N2 e |
which contradicts (1.6).

Definition 2.2. For given p,y > 1 a dictionary D is called (p,~)-semistable if for
any g; € D, 1=1,...,n, there exist elements h, € D, j=1,...,M < un, such
that

gi € span{hy,..., hp}

and for any cy,...,cy we have
M M 1/2
IS eihll = 422 (2 ) . (2.11)
i=1 i=1

Proposition 2.2. A (u,~)-semistable dictionary D is py-quasiorthogonal.

Proof. 1t is clear from (2.11) that {hy,...,ha} are linearly independent. Let
Y1,...,¥n be the biorthogonal system to {hi,...,hpr}. We shall derive from
(2.11) that for any ai,...,ap we have

M M 1/2
ISl <2 (L) (2.12)
7=1 7j=1

Indeed, using the representation

g=">_c;i(9)h;

M
i=1

11



and (2.11) we get

M M M
1> ajp;l = ”Shlgl<z ajj,g) = sup Y _ajci(g) <
j=1 =L j=1

llgll <1 5=

M

M 1/2
< sup Z aje; =4/ (Z a?) .

l(exsmmenn)lISy2/2 =4 j=1

Take any f € span{hy,...,hp} =span{t)y,...,¢¥p}. Let

f=aj()¢;

=1

Then
<f? hj> = aj(f)

The inequality (2.12) implies

max [ay(£)| 2 ()T 2 (rum) 72 £

The proof of Proposition 2.2 is complete. H

We give now two concrete examples of asymptotically A-quasiorthogonal dictio-
naries.

Example 2.1. The dictionary x := {f = |J|"?xs, J C [0,1)} where x; is
the characteristic function of an interval J is an asymptotically 2-quasiorthogonal
dictionary.

Proof. The statement of this example follows from Remark 1.1 and from the known
simple Lemma 2.3.

Lemma 2.3. For any system of intervals J; C [0,1), i = 1,...,n, there exists
a system of disjoint intervals J& C [0,1), i=1,...,2n+1, [0,1) = U?Z‘ll'ljfl,
such that each J; can be represented as a union of some Jj‘-i.

Proof. Our proof is by induction. Let n = 1 and J; = [a,b). Take J& = [0,a), J¢ =
[a,b), and J¢ = [b,1). Assume now that the statement is true for n — 1. Consider
n intervals Jy,...,J,_1,J,. Let de =[aj,aj+1), Jj=1,...,2n—1 be the disjoint
system of intervals corresponding to Jp,...,J,—1 and let J,, = [a,b). Then for at
most two intervals Jg and Jld we have a € J,;l and b € Jld. If £ =1 we split Jg into
three intervals [ag,a),[a,b), and [b,ary1). If k # | we split each JZ and J? into
two intervals [ag,a), [a,ars+1) and [a;,b),[b,a;+1). In both cases the total number
of intervals is 2n + 1. W

Another corollary of Lemma 2.3 can be formulated as follows.

12



Example 2.2. The dictionary P(r) that consists of functions of the form f =
pxJ, |fll =1, where p is an algebraic polynomial of degree r — 1 and xj is the
characteristic function of an interval J, 1s asymptotically 2r-quasiorthogonal.

Theorems 1.1 and 2.1 work for small smoothness » < (2A)~!. It is known (see

[DT1], Theorem 4.1) that there are dictionaries which have the saturation property
for the Pure Greedy Algorithm. Namely, there is a dictionary D such that

sup ||f = Gm(£, D)/II ]| = CmH/2.
FEXL(D)

We shall prove that the dictionary x from Example 2.1 does not have the saturation
property.

Theorem 2.2. For any f € ¥,(x) we have

1 m/2
I = G0l < (1= 55 ) W

Proof. We prove a variant of Theorem 2.2 for functions of the form
f=3 o, ULLi=00,1), gs:=J" s, (2.13)
Jj=1

where the I1,..., I, are disjoint.

Lemma 2.4. For any f of the form (2.13) we have

1f = G f, )|l < (1= 1/0)™72| 1.

Proof. We begin with the following lemma.

Lemma 2.5. Let I' = [a,b) and I? = [b,d) be two adjacent intervals. Assume that
a function f is integrable on I' and equals a constant ¢ on I2. Then we have the

inequality (gr := |I|_1/2XI)
(£, 90)] < max(|(f, gr)], [{f, grrur)|) (2.14)

for any J = [a,y), b <y < d. Moreover, if the right hand side in (2.14) is
nonzero we have a strict inequality in (2.14) for all b <y < d.

Proof. Denote

A:= [ f(z)dz.
Jt

Then we have
y
(f,90)=1J|7?(A+ / cdz) = (II'| +y — b) (A + c(y — b)),
b

13



hence

P
<f,9J>:(Q_:—%, <y <d,
where P = A —cband Q = |I'| —b. Let z = (Q +y)1/2. Then
P
Gy = (P4 e = Q) = (P Q)+ 0 = F(3),

In the cases P —cQ =0, c¢#0or P—cQ # 0, ¢ =0 the statement is trivial.
It remains to consider the case P —cQ #0, ¢ #0. Assume P —c@ <0, ¢>0.
Then

P—cQ
F'(z) = — 0
(z) = +c>
and the statement is true. Assume P —cQ >0, ¢ > 0. Then
P
F(z) =2 3CQ >0, 2>0.
z

It follows that F' (Z) > 0 is a convex function and the statement is also true. B
We use this lemma to prove one more lemma.

Lemma 2.6. For each function f of the form (2.18) the maxy |[(f,gs)| is attained
on an interval J* of the form J* = Ué-:kfj.

Proof. The function
y
F(z,y):=(y — :c)_l/2/ fydt, 0<z<y<l1l;, F(z,z)=0, 0<uz<I,

is continuous on Y := {(z,y) : 0 < x <y < 1} for any f of the form (2.13). This
implies the existence of J* such that

(£, 97-)

= max|(£,9,)] (215)

Clearly, |(f,gs-)| > 0 if f is nontrivial. We complete the proof by contradiction.
Assume J* = [a,t) and, for instance, ¢ is an interior point of Iy = [b,d). Apply
Lemma 2.5 with I' = [a,b),I? = [b,d),J = J*. We get strict inequality which
contradicts (2.15). Hence, ¢ is an endpoint of one of the intervals I;. The same
argument proves that a is also an endpoint of one of the intervals ;. This comletes
the proof of Lemma 2.6. B

Lemma 2.6 implies that for f of the form (2.13) all R;(f) (see (1.4)) are also of
the form (2.13). Next, for f of the form (2.13) we have

max|(f,g;)| > max|(f,g1,)| = n || f].
Consequently,
IR (DI* < (1= 1/n)[Rn—a (N* < -+ < (1= 1/0)"|I£]1%,

which completes the proof of Lemma 2.4. R

The statement of Theorem 2.2 follows from Lemma 2.4 and Lemma 2.3.
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3. AN EXAMPLE FOR THE n-GREEDY ALGORITHM

We consider in this section a generalization of the Pure Greedy Algorithm. Take
a fixed number n € N and define the basic step of the n-Greedy Algorithm as
follows. Find an n-term polynomial

n

pn(f) ::pn(f,’D):Zcigi, giED, 7::17.”7717

n=1

such that (we assume its existence)

If = ()l = on(f, D).

Denote

G"(f)=G"(f,D):=pu(f),  R"(f):=R"(},D):= [ —pn(f)

n-Greedy Algorithm. We define Rj(f) := Ry(f,D) := f and Gg(f) := 0.
Then, for each m > 1, we inductively define
Gon(f) s = Gu(f, D) = Gt () + G (Rp 1 ()
Ry (f) =Ry (f,D) = f = G (f) = R*(Ry,_1(f)).

It is clear that a 1-Greedy Algorithm is a Pure Greedy Algorithm.
For a general dictionary D, and for any 0 < 7 < 1, we define the class of functions

(3.1)

AZ(D,M):={feH: f= chwk, wy € D, |A| < oo and Z lek|” < M7},
keA kEA

and we define A, (D, M) as the closure (in H) of A2(D, M). Furthermore, we define
A, (D) as the union of the classes A.(D, M) over all M > 0. For f € A, (D), we
define the “quasinorm”

. ()
as the smallest M such that f € A, (D, M).

We prove in this section that the n-Greedy Algorithm, like the Pure Greedy
Algorithm has a saturation property.

Theorem 3.1. For any orthonormal basis {¢y } 72, there exists an element g such
that for the dictionary D = gU{ ¢y } 72, thereis an element f which has the property:
forany0<7<1

1F = G DI/ flanpy = Clr)n™H T (m +2) 742,

Proof. Let n > 2 be given. Define

2n oo
g :=An"1/? Z v +1/3 Z (k(k+ 1))~ 2y,
k=1 k=3n

15



with

54n
Then
lgl> = 24 + 1/(27n) = 1.
Take
3n—1 6n—1
[i=AnT 2N 0 +2/3 ) (k(k+ 1) 2.

1. First step. We prove that for the dictionary D = g U {¢r }3>, we have

3n—1

GM(f,D)=u:=g+An""? 3" o
k=2n+1

First of all, it is easy to check that f —wu is orthogonal to g and ¢, k=1,...,3n—
1, and

= 1 1
2
— e ]_ = .
17 = /9k2_3n k(k+1)  2n
We shall prove that
1
W(f, D)2 > —

and that the only approximant which provides equality in this estimate is u.
1). Assume that g is not among the approximating elements. Then for & =
{¢r}r2, we have

on(f,®)* = A%(2n — 1)/n + (4/9)(1/6n) > T

2). Assume g is among approximating elements; then we should estimate

§ :=inf o,_1(f — ag, ).

Denote -
gs =Y _(k(k+ 1) .
k=s
We have
2n 3n—1
f—ag=(1—a)An"1/? Z op+ An~1/? Z or+(2—a)(g3n — g6n)/3 — agsn/3.
k=1 k=2n+1

If |1 —a| > 1 then

1

On_1(f —ag,®)* > (1 —a)?A? > T

16



It remains to consider 0 < a < 2. In this case the n — 1 largest in absolute value
coefficients of f — ag are those of ¢, k=2n+1,...,3n — 1. We have

On_1(f —ag,®)? = 2(1 —a)*A% + ((2 — a)® + a®)/(54n). (3.2)

It is clear that the right hand side of (3.2) is greater than or equal to 1/(27n)
for all a, and equals 1/(27n) only for a = 1. This implies that the best n-term
approximant to f with regards to D is unique and coincides with u. This concludes
the first step.

After the first step we get

f1:=R"(f) = (93n — 296n) /3.

2. General step. We prove now the following lemma.
Lemma 3.1. Consider

oo

hs := 1/3Zek(k(k +1) Y20, e =41, s> 3n.
k=s
We have
on(hs, D)* = 1/(9(s + 1)),
and the best n-term approximant with regards to D is unique and equal to

s+n—1
vn=1/3 Y en(k(k+1))7 20y
k=s

Proof. 1t is easy to verify that
lhs = vall* = 1/(9(s +n)),

and that v, is the unique best n-term approximant with regard to ®. We prove
now that for each a we have

0n—1(hs — ag, <I>)2 > 1/(9(s + n)).

We use the representation

2n s—1
he —ag = —aAn™'?Y " pop —a/3 > (k(k+1))7 4

+1/3) (ex — a)(k(k + 1))y

k=s
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Let us assume that an (n — 1)-term approximant to hs — ag with regards to @
consists of p, 0 < u < n—1, elements with indices £ > s and n — 1 — u, with indices
k < s. Then for the error e(a, i) of this approximation we get

e(a, 1)? = aA%(n + -+ 1)/ + a(1/(3n) — 1/5)/9 + (1 = [a])2/(9(s + ). (3.3)
Taking into account that

iréf On_1(hs — ag, ®)? = 0<;i1<1€1—1 irife(a,,u)2

we conclude that we need to prove the corresponding lower estimate for the right
hand side of (3.3) for all 4 and a. We have

e(a,n)* = a®/3+ (1= lal)?/(9(s + ) = a®/3 + (1 —al)?/(9(s + n = 1)). (3.4)
We use now the following simple relation: for b,c¢ > 0 we have

b
inf(a% + (1 — a)%c) = > fc = c(1+¢/b)~". (3.5)
Specifying b=1/3 and ¢ = 1/(9(s +n — 1)) we get for all @ and p
e(a,)? > (9(s + 1) — 6)~1 > (9(s + )",

Lemma 3.1 is proved. W

Applying Lemma 3.1 to the second step and to the following steps we obtain
that

Rn(f)=1/3 >, exlk(k+1))" e
k=3n+n(m—1)
and
1B, (N)]I* = 1/(9n(m + 2)).
This relation and the estimate || f|| < C imply (1.7) from Section 1.
In order to complete the proof of Theorem 3.1 it remains to note that

1 fla. o) < C(r)nt/771/2,

4. SOME EXAMPLES OF HIGHLY REDUNDANT DICTIONARIES

In Sections 2 and 3 we studied dictionaries which differ only slighly from an
orthonormal dictionary. It is clear that if Dy C D5 then for any f we have

O'm(f, DQ) S O'm(f, Dl)
However, the example of Section 3 shows that even a slight perturbation of an
orthonormal dictionary can result in a dramatic change of efficiency of the corre-
sponding greedy type algorithm.

In this section we consider some dictionaries that are far from orthogonal dic-
tionaries. In order to help the reader we formulate several statements on approxi-
mation in R™ which are corollaries of the corresponding results in [DT2]. We shall
use these results later in this section.

Let B3 denote the unit Euclidean ball in R™. For a dictionary D and a set
F C R™ we define

Om(F, D) i= sup o (f,D);  Gru(F, D) = sup |f — Gon(f, D).
fer fEF
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Theorem 4.1. For any D in R™ with |D| = N we have
Om(BY, D) > CN mm, m<n/2

See [DT2], Corollary 2.2.

Theorem 4.2. For any N there exists a system D, |D| = N, such that
Om(BY, D) < min(1, (2(NY/™ —1)7h)™),

See [DT2], Theorem 3.1. Consider the system
Vi={g=y/llyll, y=wi,---,yn) #(0,...,0), y;=-1,0,1, j=1,...,n}
Theorem 4.3. We have

om(By,V) < nl/237m,

See [DT2], Theorem 4.1.

Theorem 4.4. We have the estimate

1 m/2
n < _ .

See [DT2], Theorem 7.1.
Theorem 4.5. For any m < 3(1 +Inn)/16 we have
Gm(BI,V) > 1/2.

See [DT2], Theorem 7.2.

In this section we are going to discuss some applications of the results about m-
term approximation in R” to approximation of functions. For simplicity of notation
we consider approximation of functions of a single variable. Denote by 7 (n) the
set of real trigonometric polynomials

te) =) (ar(t)er(@) + br(t)si(@))

where ¢ (x) := coskx, sp(z):=sinkxfork=1,2,... andco(x) :=1/2, so(x) =
0. We set up a one-to-one correspondence between 7 (n) and R*"*1. Define
T, : R+l — T(n) by

To(Yo,---,Y2n) = Z(ygka(fL’) + yor—15k()),

where the term y_jso(z) disappears because so(z) = 0. We keep this term for
notational convenience. Considering the standard Lo-norm in 7(n)

1 271'
113 = e, o= — / ()P da
™ Jo

we get by Parseval’s Identity
1T (W)l 2. = 1yl

The above standard construction allows us to reformulate the [y results in R27+1
as the corresponding Lo results in 7 (n). For example, Theorem 4.2 takes the form
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Theorem 4.6. For any N there exists a system D,|D| = N, of trigonometric
polynomials in T (n) such that for any t € T(n) we have

Om(t, D)y < min(L, (2N 1)=1)m) g,

Let us take an arbitrary increasing sequence {n;}3>, of natural numbers and

consider the sequence Ny = 42"+T1 [ =1 2 .... Denote by Q(n;) a system with
|Q(nk)| = Ni which is provided by Theorem 4.6. Then we have for any t € T (ny)
Om(t, Q)2 < (2/3)" Il = 1,2,.... (4.1

Consider the following system in Lo

Q 1= UpZ; Q(ny).
It turns out that this system is good for approximation of functions in Lo regardless
of their smoothness.

Proposition 4.1. For each function f € Ly and any € > 0 there exists g € Q such
that

If = (f, 90902 < (2/3 + &)l £l

Proof. Denote by S,, the orthogonal projector onto T(n), i.e. S,(f) is the n-th
Fourier sum of f. Find k such that

1f = Sni (Fllo < €ll £l (4.2)
By (4.1) with m = 1 we find g € Q(ng) such that
150, (F) = (Snic (), 9)gll2 < 2/3]1Sn, (f)l2- (4.3)

Approximate now f by (f, g)g. Denoting U, (f) := f — S,(f) we get
1f = (s agllz =[S0 (F) = (Sn (), 9)9 + Un, (f)ll2 <

15n, (f) = (Sni (), 9)gll2 + 1Un, (Hll2 < (2/3 + )l ]2,
which proves Proposition 4.1. l

We say that a system D admits a Greedy type g-fast, 0 < ¢ < 1, algorithm if for
each f € Ly we can find g € D such that

1f =, 9)gll2 < allfl|2-

Proposition 4.1 shows that for any ¢ > 0 the system Q admits the Greedy type
(2/3 + €)-fast algorithm. In particular, this implies

om(f, Q)2 < (2/3)™([f]2-

Let us consider now one special simply defined system in Ls. Denote by 7V the
set of all trigonometric polynomials ¢, ||t = 1, whose non-zero Fourier coefficients
are equal in absolute value. The restriction of this system onto 7 (n) will be denoted
TV(n). It is easy to see that the system 7)V(n) coincides with T,,(V) with V
defined for R27*!, Recall that }V was defined in the beginning of this section and
its cardinality (in R?"+1) is 327+1 1. Note that the above described system is not
as big as the system Q is. We prove some results for 7V which are qualitatively
different from those for Q.
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Proposition 4.2. For any 0 < g < 1 the system TV does not admit a Greedy type
q-fast algorithm.

Proof. The statement of Proposition 4.2 can be derived from the following example
which was constructed in the proof of Theorem 7.2 in [DT2]. Fix n and consider

where z = (21,...,2,) is defined as follows 2 := 1,z := k'/2 — (k — 1)'/2 k =
2,3,...,n. Then

n n 1
o1 = 1 SO0 = (= )Y 2 145 () =

and for each [ < n,

which implies that for each g € TV we have

[(fr9)l <1,

Therefore, for any g € TV we have

17 = (£, 9l = 1715 = (£,9)* = (1 = 4/(1 +Inn))[|F]3-

Taking n such that 1 —4/(1 +1Inn) > q completes the proof. W

We study the efficiency of TV for classes of smooth functions. Define HJ, r >0,
as the class of functions f € L, which allow a representation

f@)=> tu(x), t€T(2°), |2 <27, s=1,2,....

Theorem 4.7. There exist two absolute positive constants A1 and As such that
4 (r)e_Alm <om(Hy, TV)2 < Cs (r)e_Azpm,

where p := min(r, 1/2).

Proof. Let us begin with the lower estimate. It is clear that for f € 7(n) we have

om(f, TV)2 = omlf, TV(n)):.
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Next, the set of trigonometric polynomials ¢t € TV(n) satisfying ||t < (2n)~" is
embedded into HJ. Denote by 7 (n)s the unit Lo-ball in 7(n). For a given m take
n = m and use Theorem 4.1 for R?"*!, This gives

Om(H3, TV)2 2 0m(T(m)2, TV(m))2(2m) ™" = (2m) "0, (B, V) 2

C(Qm)—r?)—(Zm—{—l)m/(m—i—l) > O (r)e_Alm.

We proceed to the upper estimate. For a fixed n of the form n = 2! we represent

f in the form f = S,,(f) + U.(f) and get from the definition of the class Hj

U ()2 < Z 277 < C(r)27",
s=I+1

and

1S (H)ll2 < [ fll2 < C(r).
We approximate S, (f) using Theorem 4.3. We get

Om(Sn(f), TV(n))s < C(r)(2n +1)1/237™,

Selecting n such that

n~" x nl/?3—m

we obtaln

Om(HE, TV)g < Cy(r)3~mm/(rH1/2) < Oy (r)e=AzPm,
Theorem 4.2 is proved. W

Let us discuss the efficiency of the Pure Greedy Algorithm with respect to the
system TV. We prove first that this algorithm is defined correctly, namely, we
prove the existence theorem.

Theorem 4.8. For any f € Lo there exists a function g € TV such that

(f.9) = sup. (£, 9)|-

geT
Proof. Let

Z YorCr(T) + Yort15k(T)).
k=0

The assumption f € Ly implies

o0

>yl =115 < oo

=0

Let {z }72 ; denote the decreasing rearrangement of {|y;|}72,. It is easy to see that
the problem of finding sup,c7, |(f, g)| is equivalent to the following: find

n
sup n=1/2 E 2.
™ k=1
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We prove the existence of a solution to this last problem for z := {z,}32, € lo. It
is sufficient to prove that

. —-1/2 _
T a3 2 =0 (1.4
k=1
Indeed, we have
OGRS G DI e £l (4.5)
1<k<nl/2 1<k<nl/2

and

nT2NT < () )Y (4.6)

nl/2<k<n k>nl/2
The relations (4.5) and (4.6) under assumption z € I imply (4.4). O

Theorem 4.9. There exist two absolute positive constants Az and A4 such that
Cy(r)e™AP™ < G (HE, TV)3 < Cy(r)eAsrm)*?
where p:= min(r,1/2).
Proof. We begin with the lower estimate. Let us use Theorem 4.5. We have
Gm(H3, TV)2 > (2n) "G (T (n)2, TV(n))2 = (2n) "G (B3, V). (4.7)

Define n as the smallest integer satisfying the inequality m < 3(1+1In(2n+1))/16.
Then, for this n using Theorem 4.5 we get

Gn(B3" V) > 1/2

and by (4.7)
G (H5 , TV)s > (2n)77/2 > Cs(r)e 4™,

This gives the lower estimate for small . The case r > 1/2 follows from Theorem
4.7.

We prove now the upper estimate. Using Theorem 4.4 we establish the following
lemma.

Lemma 4.1. Let C, denote a constant such that for f we have
1Un(F)ll2 < Cron™".

Denote L(n) := 1 4 In(2n + 1). Then for each such function f with ||f|2 >
(2L(n))Y/2Cn~" we can find a g € TV such that

R e L

Proof. Represent f = S,,(f)+U,(f) and find by Theorem 4.4 g € TV(n) such that
1S (£) = (Sn(f), 9)gll3 < (1= 1/L{n)ISa(F)I]3- (4.8)
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Then

17 = (£,9)91 = 1Sa(F) = (Sa(1), )3 + ITA(DIE < (49)
(1= /LTI + @E0) A1 < (1= 57

Lemma 4.1 is proved now. W

We need now the following general property of the system 7V. For any set
Y C Z we denote by Sy the orthogonal projector onto the subspace of trigonometric
polynomials with frequencies in Y.

Lemma 4.2. For any set Y C Z and any f € Ly we have
1Sy (f = G, TYV)llz < ISy (f)ll2-

Proof. We prove this lemma by contradiction. Denote h := G(f,TV) and assume
that for some Y we have

1Sy (F = R)ll2 > [ISy ()]l
Let X :=7\Y. Then we have
17 = Sx(W)I* = 1Sx(F = W) + 1Sy (NI < (4.10)
1Sx (f = B)II* + 1Sy (f = B)II* = IIf — hlI*.
Next, Sx(h) has the form ag with some g € TV. Therefore (4.10) contradicts the
following minimizing property of h :

—hl = inf — .
If —hll = ot IIF —ag]l

This completes the proof of Lemma 4.2. B

Proof of Theorem 4.9 (continuation). For a given m find n satisfying

(1 — %)m = L(n)n™2".

fe:=f—Gu(f, TV), k=1,...,m.
Using the assumption f € H3 we get
[Un(F)ll2 < Crn™".
If || fl2 < (2L(n))1/20r,1n_’” then we have
1F = G £, TVl < | fll2 < (2L(n))' 2 Crn ™.
o > (2L(n »n~ " then we apply Lemma 4.1 and get
If || fll > (2L(n))"/2Crn = th ly L dg

1 1/2
a0 < (1-370) 14l

Applying Lemma 4.2 we get
[Un(f)ll2 < Un(f)]2 < Con™"

Continuing this process we obtain

Denote

. . - 1 /2 1/2, —r —A4(rm)l/2
|f—Gm(f, TV)|2 < C(r)min{{ 1 72[1(”) ,(2L(n))=n""} < Cy(r)e .

Theorem 4.9 is proved. B
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