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Non-linearity versus linearity in ridge approximation

K.I. Oskolkov

Abstract

The goal is to compare free (non-linear), equispaced ridge and algebraic polynomial approx-
imations RE[f], RW[f], En[f] of individual functions f(x) in the norm of £3(IB?), B? — the
unit disc |x| < 1 on the plane R*. By definition

RELS = nf F = Rl RS = min 10~ R, E3U)= min (17 = P

PeP3_,

Here, WX denotes the set of all N-term linear combinations of planar wave functions R(x) =
SV Wi(x - 8;) of arbitrary profiles W;(z), = € R! and directions {8;}; Wit — the subset
of W corresponding to N equispaced directions, and PZ_, := Span {z§z}};1/<cn. One has
RELf] < RS < Nl

The central question is: when RE[f] = o (R3[f]), N — o0, i. e. when non-linear approx-
imation R is more efficient than linear R9? It is proved that this is the case for harmonic
functions: Ve > 0 Je. > 0 such that if Af(x) =0, |x| < 1, f € £*(IB?), then

RE[F) < eo (RV[] exp(~N7) + Riaoa[f]) -

On the other hand, RE[f] > IRSLIf]. Thus, for f = fham, RE[f] is “almost square times
better” than Ry} f]. However, these ultra-convergence rates are achieved at the expense of
collapse of wave vectors.

On the contrary, non-linearity in R does not bring any essential gain in approximation

orders, say, for all radial functions. If f(x) = f(|x|), then &n[f] > RYLS] \/>52N and
R?{;[f] 2 SUP.sq (1_|_5) R??+E) [f] .

These problems are elaborated via Fourier — Chebyshev analysis in IB? and arising duality be-

tween ridge approximation and optimization of quadrature formulas, in the sense of Kolmogorov
— Nikol’skii [1], on classes of trigonometric polynomials.



1 Introduction

We consider here a special case of the general problem of ridge approximation. First of all, we restrict
ourselves to the case of (complex valued) functions of two real variables f(x) = f(x1,x3), supported
in the unit disc B® := {x : [x| := /27 + 22 < 1} on the real Euclidean plane IR?. Further, we

assume that f(x) € £2(IB*), and focus on the approximation problem exclusively in the norm of the

Hilbert space £2(IB?),

), 283 = ([ 1) alax))

where p(dx) := % denotes the normalized Lebesgue measure on 1B,

Let us introduce some other notations. x -y will denote the usual inner product of vectors
x,y € IR* S' - the unit circle |x| = 1; 8 = 8(¥)) := (cos ¥, sin¥) , 9 € [0,27) — polar parametrization
of 1. Further, for N = 1,2, ..., we will apply the vector notations U= 9,1V e IRY for N element
sets of directional angles; 8; := (cos ¥, sind;), 6 = 5(15)) = {6},

Let us consider the following sets W(J), Wi, W of ridge functions — N-terms linear combina-
tions of planar waves:

W) = {R(X)ZZWj(x ej)},ﬁe RY: W .= U WD),
Wyt = {R(X)ziwj(x 0;) ﬂj:%‘j,j:(),...,N—l}.

In the above definitions, W;(z), = € IR! are single-variate functions (profiles of waves). Clearly, in
the definition of W(J) we can confine the components ¥/, of ¥ to the interval [0, 7), and consider only
non-degenerate J, i. e. the case when ¥, are pairwise non-congruent modr.

Thus, W(J), W Wi consist of N-term linear combinations of planar waves of arbitrary
profiles; W(J) corresponds to a fixed set of directional angles Je IRY:; WE — the widest collection

of all functions of such type, Wx! — the particular case of W}@ with N equispaced wave vectors.

Our goal is to study, for a fixed function f(x) € £L2(IB?), the extremal problems R(J), R, Red
associated with the following quantities:

RIf, 0] == if ||f—R, LX(BY)|, J € RY; RE[f]:= inf |f— R, L} (B?)],
ReW(7) ReW}
RRU] = min, [If = R, £2(B7)].



Obviously, RE[f] = inf_px RLf, 9] < REf)-

Of particular interest is to clarify structural (geometric, differential, etc.) conditions on the given
f(x) when freedom in selection of wave vectors {8;}1 in the problem R brings an essential advantage
in approximation rates over those associated with R4 Quantitatively, this advantage is expressed
by order relations RE[f] = o(R3W[f]), N — co. A partial answer is given below in theorem 3 (see
also corollary 1) regarding two important types of functions: radials and harmonics.

A very essential difference between the problems R" and R®? cosists in non-linearity of R™. The
latter is associated with a complete freedom in the choice of wave vectors {8;}V, that are allowed
to be selected optimally for a given function f(x). On the contrary, for each fixed J € R" the
problem R|[f, J] is linear and the solution is provided by the orthogonal projection in £?(IB*) onto
the corresponding subspace ,CQ(IBQ)Q?, cf. also theorem 4 below.

Further, non-ezxistence and non-uniqueness of the element of best ridge approximation are quite
typical for the problem RY, if N > 2. This can be seen from the following.

1) Ify > 1, W(x), |x| <1 - asmooth single variate function and f(x,9) := (%)j_l W(x-80), then

for each fixed ¥ one has Rir[f] = 0. This follows from consideration of the angular derivative as limit
of divided differences.

This simple observation directs to a natural completion of W(J) and WY by the following sets
of collapsed ridge functions:

Wa(d) = { Ro) = 3 (% () i 0))

7 v=1

:ZN]:N ) J:{ﬁ]}
J

I=17;

(obviously, the class WN(J) is non-trivial only if dimd < N). Respectively, the extremal problem
RY can be “sliced” as follows:

Rylf,9] = i_ﬂf(g)Hf(X)—R(X)H; Runlf] == inf Ry[f.0); RE[f)= min Ruwnlf).

REWY JeRrM LSM<N
A particular case is approximation by completely collapsed ridge functions:

RN[f] < RS, 9] = inf

, (1
{W; (95)}5\7:1

~—

0-3 () w0 exw

which is in a sense the direct counterpart of equispaced ridge approximation.
2) Denote, respectively, Py := Span {a"}r<n and P} := Span {zfab}rti<n the subspaces of al-
gebraic polynomials of degree N in one and two real variables. If the components 9; of ¥ € RY
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are pairwise non-congruent modr, then (cf. e. g. [2] and theorem 1 below) every polynomial
P(x) € P3_, can be represented as a linear combination of planar wave polynomials of degree N —1

—

X) = g: Pi(x-8;), Pj(z) € Py, or Pi_,C W(J), R[P,¥] = 0. (2)

Thus, the element of best ridge approximation is not unique for all algebraic polynomials. Further,
the classical quantities — best algebraic polynomial approximations

Ex[f]== min |f— P LB

PeP3_,

majorize ridge approximations for every non-degenerate J e RY

RIS, 0] < ExLS). (3)

The solution of the problem of ridge approximation of the given function f(x) depends upon the
Chebyshev orthogonal momenta a,(f,V) generated by Fourier analysis in IB*:

an(f V) = /182 F(X)un(x-0) p(dx), uy(x):= sin (n\;l—%a;ccosxj n=20,1,.... (4)

By means of the latter, the problem Ry(f) is split into an infinite series of Kolmogorov — Nikol’skii
type problems, cf. [1], concerning optimal quadrature formulas for recovery of linear functionals

Fu( D] = /0% an(f, )T (V) p(d9), n=0,1,....

In the case of a general function f(x) € £*(IB*), momenta a,(f,?) are trigonometric polynomials
of n-th order, satisfying a,(f,9 + 7) = (=1)"a,(f,?). Let us denote 7= the whole subspace of
trigonometric polynomials possessing this property, i. e. 7.F := Span {eim§}|m|§n(2); here and below

we use the notation |m| < n(2) for the set of integers m with |m| < nand m =n (mod 2). Further,

denote p(dy) := 42 the normalized Lebesgue measure on S', ||T',£3_ || := (fo% |T(19)|2,u(d19)) > and
let
BT = {T € Tx o I LL N < 1), BPY) = {P(=) € P |[P(e”), £

A quadrature formula O'(J, W)[T'] with the nodes = {91 € RN and weights @ := {w;} € CN
is a point-values functional

<1}

|

—

N
AT =3



and the following quantities are typical for Kolmogorov — Nikol’skii setting, cf. [1] of the problem on
optimization of quadrature formulas for recovery of linear functionals:

Q,[a, 9] := inf  sup
TECY peB(TE)

/0277 a(f,NT () p(dd) — o(J,@)T)|, T e RY;

€ - T ] o . -
Qixlal = Qula,d), 0, = 5 Qlylal:= inf Q[a, 1) (5)
’ N ’ JeRN
In the above, a = a(1}) is a fixed trigonometric polynomial, a € T 7.

Theorem 1 Let f(x) € L*(IB?), J € RY where the coordinates V; are pairwise non-congruent
modw. Then

o0

RIf. 7] = ij)v (n 4+ 1) (Qulan() )", REIS) = EJZN (n 4+ 1) (Qula(N. )" (6)
In particular,
Ry = Ji (n+ 1) (Qxlan()]) (7)
and -
Pio CWR. RILI) < &) (8)

Like in free ridge approximation, in Kolmogorov — Nikol’skii problem we should admit collapsed
quadrature formulas, involving linear combinations of point values of linear differential operators of
total degree < N — 1. A particular case is represented by completely collapsed quadrature formulas
o (P, 9)[T] = P ( ) T(V), P € Px_,. A proper version of the quantities Q,|a, J] answering this

case 1S

4
i

Y

[ alt 0T ) ulde) = P 0T

col [a, 9] := inf sup
PEPN_ 1 TeB(TE)

and according to (6) free ridge approximations can be estimated from above as follows:

- 2

RE(] < RELS) aﬂ S (1) (Qfan( ). 9) (9)

n=N

Momenta a,(f,?), cf. (4), are especially simple for radial or harmonic functions in IB?, i. e.
when f(x) = f(|x]|) or, respectively, Af(x) = 0, |x| < 1 (in the sequel, we will apply the self
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explanatory notations f = fiaa, f = fharm in these cases). For f = fiaq the n-th momentum is
a constant, a,(f,¥) = «, (and all while for f = fham it is a monomial of the highest frequency,
an(f,0) = Bne™ 4+ ~,e7 (cf. lemma 1 below)

It is clear from theorem 1 what special cases of Kolmogorov — Nikol’skii problems should be
solved. In the case of f = f..q, we need to solve the problem concerning QZ?]t\,[l] — optimal recovery
of the averages [0™ T(¥) u(dd) of T' € T (the problem is non-trivial only for even n, n > N). For
f = fharm, we need the recovery of [3™ T'(¥)) (ﬂemﬁ + 76‘““9) ((dd), i. e. linear combinations of the
senior Fourier coefficients T'(£n) := [27 T(d)eXi? u(dd).

Seemingly, the problems concerning QZ?]t\,[l] and sz]t\,[ are of a quite analogous nature
simply because all coefficients of polynomials in IB(7,*) possess “equal rights”. Moreover, the problem
concerning recovery of T(:I:n) can be also reformulated, cf. (50) below, as that of complex polynomials
P(z) € B(P}) in the center = = 0 of the disc |z| < 1 via their values P(z;) on the circumference
St={z:|z| =1}

e:l:inﬁ]

QP[] = QP 1, IB(PY)] := inf sup
N N (P.) {z37 €8, {w;}Y PeB(PL)

. (10)

P(0) - Z_: w; P(z;)

Thus, the following conjectures are plausible:
1) optimal nodal points J= {9;}Y should be “uniformly distributed”;
2) if the nodal deficiency is essential, i. e. the ratio % is small, then it is impossible to re-
cover Fourier coefficients of all polynomials in IB(Z,F) with a small error: neither of the quantities
QZ?]tV[l], QZ?]tV[eiinﬁ] can be small.

However, these conjectures fail to be true in the part concerning QZ%’]tV[eiinﬁ] (see Theorem 2
below). Recovery of the senior Fourier coefficient (or the value P(0) of algebraic polynomials P(z) €
B(PL), ¢f. (10)) with a small global error on the class B(T,*) is possible even if the sampling number

N is much smaller than n, and it is rather the ratio % that governs this effect.

Theorem 2 Let n, N be positive integers, n even, n > 2N. Then

ﬁ (1 = nQiVl) < Q1] < ¢2 (1 - nzin) : (11)

Furthermore, the following relations hold true forn > N > 5

2 . .
et < QPy[e* ] < Q;‘:}V[eimﬁ,ﬂ] < min (1, Zne_%) . (12)



The meaning of the next statement is the following.
1) Solutions of the problem R (equispaced ridge approximation) for f = fr.a and f = fhaum are
qualitatively and quantitatively the same, and in essence coincide with &.
2) For f = fiaq, freedom in the choice of directions, in particular, the effect of collapse is not
associated with any essential gain in approximation orders of R" compared with R or &.
3) On the contrary, for f = flam free ridge approximation R¥ is “almost square times better” than
R, due to the effect of collapse of wave vectors.

Theorem 3 The following relations hold true

(Exqn[f])? 2 e
JQZ 4qN_1 ; ggQN[f]SRN[f]SgQN[f]v [ = frad;

q=1

\/TgN-I-l[f] < R [f]SgN[f]v f:fharm; (13)

RY[f] > sup 52M ] > sup
M>N M>N

qf]v f:frad; (14)
e el = REUT < RY1/ < min (v2M e Elf] + SMH[f]) . N>5 = fram- (15)

Corollary 1 If f = fiaq then

Rfr . )
|2 o0 3y e U1 2 2 R

If f = fuarm then

(i) ¥e > 0 Fe. > 02 RE[f] < co (RV[flexp(=N°) + Ry [f]);
(i) 36 > 0 Enaa[f] = o(En[f]) = RY[f] = o (RYD);
(iii) Ja > 0: RY[f] = O(N™) = Ve > 0: RY[f] = O(N7***), N — .



2 Proofs

2.1 Chebyshev — Fourier analysis in £%(IB?)

For a given non-negative integer n, let D, (?) denote the Dirichlet kernel for the subspace 7,*:

’ ' 1)v
Da)i= Y e Sl DY
jm|<n(2) sin v
Obviously,
2
T) =T+ D)) = [ T(@)Dulo = ) plai), T €TE (16)
Further, let as above un(x) denote the n-th Chebyshev polynomial of the second kind, i. e. u,(z) =
D, (arccosz) = %7 lz] < 1.
Chebyshev — Fourier analysis in £2(IB?) consists in the orthogonal expansion
£2(IB2) 2T >
760 “ED [T 0+ Dl £ 0)un(x - 0) ) (), (17)
n=0

cf. [2] = [4]. For each fixed 8 € S', the corresponding planar wave Chebyshev polynomial u,(x - 8)
is orthogonal in £2(IB%) to all polynomials of degree < n — 1:

[, wnlx-0)P(x) u(dx) =0, VP(x) € PL,. (18)

As mentioned above, the ortogonal momenta, or Fourier — Chebyshev coefficients a,(f, V), are trigono-
metric polynomials a,,(f) € T,*. The Parceval identity is given by

Furthermore, if {a,(9)} .

n=0

an(f)? ’C’gr

e =3 o

2 %é(n N 1)/0% lan( £, 0)[2 do. (19)

is a sequence of trigonometric polynomials satisfying the conditions

o0

a, € T*, d (n+1)

n=0

5 12
an, L5 | < oo,

then (Plancherel’s theorem) there exists a function f(x) € £2(IB?), unique up to a set of Lebesgue
measure 0, such that a,(f,9) =a,(¥), n=0,1, ....
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Orthogonal projection Proj y[f](x) in £L2(IB?) of a function f(x) € L£2(IB®) onto the subspace of
algebraic polynomials of degree N — 1 is given by the partial sum of first N terms of the expansion

(17),

Proj n[f](x) = /027T (Z__: (n+ Da,(f, V)ua(x - 0)) w(dd), N=1,2,...,
and in particular
Enlfl= J ;V(n + D) flan(f)s L3 (20)

2.2 Momenta of radial, harmonic and planar wave functions
Lemma 1 1) If f(x) = g(|x|?), where g(x) € £L*(0,1) and g(z) “on S0l Gulu(x) is the Fourier —
Legendre expansion of g(x), then

az(f) = 0; @mﬂzy%%f,uzmlw”' (21)

2) If firp) = f(()) +30 (f(—n)e_“w + f(n)e“w) , 0<r<1isthe standard representation
of a harmonic function f = fuam € L2(IB*) in the polar coordinates x = rg, then

Py 4 fn)et

ao(f) = f(0), au(f.0)= i Con=1,2,.... (22)
3) Let w(z) == 2V1—2a?, |o| <1, W(x) € L2(-1,1) and W(x) fecty o Waun(z) — the

Fourier — Chebyshev expansion of W, ¢ € St — a fived unit vector. Then W (x - ) € L*(IB*) and

a, (W(x-9),9) = W, D0 — ) = W, sin (n 4+ 1)(¥ — ¢)

- EEmyI Rt 2 (23)

n=1

Proof. For the proof of (21), see e.g. [5]. Let us also note the following relations between Legendre
and Chebyshev polynomials of the second kind:

2 L)

2
/0 u2u+1(X ) 0) lu(dﬁ) = 07 /0 UZU(X ) 0) /’L(dﬁ) \/TT? V= 07 17 s



For the proof of claim 2), let us note that the terms pE(x) := r™e*™¥ are harmonic algebraic
polynomials, pE (x) € P2. By (18), [g2 un(x - 0)pE(x) u(dx) = 0 for all m < n. The same relations
are valid for m > n. Indeed, for each fixed |x| = r > 0, u,(x-0) = u,(r cos (¥ — ¢)) is a trigonometric
polynomial in ¢, of degree n, so that [ u,(r cos (¥ — ¢))e*™¥ dp = 0, if m > n. Thus, for the
proof of (22) we need to consider only the case m = n.

Let T,,(x) := cos(narccosx), || < 1 denote the n-th Chebyshev polynomial of the first kind.
We have ug(x) = To(x), wuu(z) = 2 0<m<n(2) Tn(z) for n > 1, and T,(z) = 2" 'a" 4 ¢(2),
where ¢(z) € P!_,. Thus u,(2) = 2" 12" + ¢1(2), qi(z) € P:_, and for fixed n > 1, r > 0 and
9, up(rcos (¥ — @) = 2%(rcos (¥ — )" + t(e9) = 2r" cosn(V — @) + t; (') where t, 1, € TE,.

Consequently, fo% un(r cos (¥ — c,o))eim@ (de) = preEind o0

[ i)t =2 [ (|

whence the relations (22) follow. Let us also note that for f = flam € £3(IB*) !

0 r 2

e S R

e = 3 el
Further, for a fixed vector X, u,(x - 8) is a trigonometric polynomial in ¥, and u,(x - 8) € T,~.

Thus, by (16)

2T

. . 1
r”eimwun(r cos (¥ — ¢)) ,u(dc,o)) dr = 2eT? / 2t
0

21 n "
Dl — oYy (x - 8) p(dd) = - (x - ),
/0 m—— (0 — @)un(x - 0) p(dd) n+1U(X ®)
and (23) follow from (17).

2.3 Proof of theorem 1
Now let us consider a ridge function R(x) =Y, W;(x-8;) € £*(IB*). Then the momenta of R(x)

are linear combinations of shifted Dirichlet kernels:

1 X
> WinDu(¥ =), (24)
71=1

n+ 1<

an(R, V) =

where W;,, denotes the n-th Fourier — Chebyshev coefficient of the function W;(z) € £3(—1,1), cf.
(23). Let us upply vector notations:

—

2 N SR al
W= Wi 0o € OF, (WP i= 30 Wl UV =37 UV
7=1 =1

'Note that the condition f(x) € £2(IB?) does not guarantee the existence of the boundary values f(8).
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let also D, (19) denote the N x N symmetric matrix {D, (J;—1;)}, k=1, and D;(J) = Dn(ﬁ)—Dn(O)Z’ =
Dn(g) — (n + 1)Z, where 7 is the N-th identity matrix; z* - the conjugate of a complex number z.

Lemma 2 Let n be a positive integer, N — a natural number, J = ;1Y € IRY, where v, are
pairwise distinct modr. Further, let a(¥) be a fived polynomial of the class T, a(¥) := {a(d;)}Y.
Then:

—

1) Q,la, Y] = min

weCN

a( Z_: 9;), L2(IB%)]] . (25)

2) Denote @ = {w;} the vector of optimal weights, or, which is the same, the minimizer of the
extremal problem on the right of (25). Then @ satisfies the following system of N linear equations:

N

Z D,(0p —9;)=a(¥y), k=1,....N, or D,(0)i=a(). (26)

3) rank Dn(g) dim Span {D,,(J — ¥, )}] , =min(N,n+1). (27)
1) Qua,dl=0,n<N-1; Qua,d]=1/|la, 2|2 — & @), n > N, (28)

where W is the vector of optimal weights.

—

5) sup || D ()] = C(V) < o0, (29)

i. €., the [?+— [*-norm of the matrix D;(J) is uniformly bounded in n.

Proof. First of all,

= sup
TeB(TE)

N
=2 wiDn(V =)
7=1

/0% a(0)T(0) p(dd) = 3 w,T()

This relation is a corollary of (16):

[ e @) plan = 3wt = [ (aw) =3 0D - zm) T(0) ().

and the resonance case of Cauchy inequality. Thus, (25) follows from the definition of Q,|a, J]

11



Next, (26) follows from (25), because
21 21
/0 Do(0 = 9,)Du(9 — 03) pu(dd) = Do(9; — 93), /0 a(9)Do (9 — O3) u(d9) = a(dy).

The system (26) is consistent for every polynomial a() € 7. Since dim7* = n + 1, by Lagrange
interpolation over ¢, from here we conclude that

—

rank D, (V) = dim{D, (V) : & € CV} = dim{a(¥) : a(¥) € T*} = min (N,n + 1).

Further, dim Span {D,, (v — 9 ) '\, =rank D, (J), because Dn(ﬁ) is the Gramm matrix of the system
{D.(¥ —9;)}L,, which Completes the proof of (27).

Since Span {D,, (¥ — ;) }¥ iy = = T=* for n < N — 1, the equalities Qn(a,ﬁ) =0, n <N —1 follow
from (27).
Remark. Linear independence of the system {D, (¢ — J;)}}L; for n > N — 1 and (27) is not a new
result, cf. e.g. [2].

The equality

2

(Qula, )] = min = lla, L2, — @ ()

weCN

a(¥) — Z_: w; D, (0 —4;), L2(IB?)

is a corollary of (26). Finally, the entries of the matrix D;(J) are majorized by max;zy | csc (9; — Uy)|,
which implies (29).

Theorem 1 follows from the Parceval identity (19), claim 3) of Lemma 1, (23) and the definition
of Q,[a,V]. Indeed, by (24) the n-th momentum of a ridge function R(x) = YL, Wj(x - ;) is a

linear combination of shifted Dirichlet kernels:

wan (0 =), wj,:= —, J=1,...,N. (30)

Therefore, the selection of optimal profiles W;(x) for a given f(x) € £3(IB*) and a non-degenerate

set of directional angles J = {ﬂj}év:l € IRY is performed in the following three steps.
Step 1. Find the point values of the Chebyshev momenta

Cl?”b(fvlgj):/ﬂ32 f(X)un(X'ej):u(dX)v jzlv"'va n=01,....

12



Step 2. For each fixed n = 0,1, ..., solve the system of N linear equations
N
N Du(¥; = 9 )wjn = an(fo0k), k=1,...,N.
=1

with respect to the unknown @, = {w]‘m};vzl. Note, that all these systems are cosistent. However,
the solution is not unique, if n < N — 2 (“low frequences”), and is unique for all n > N — 1 (“high
frequences”).
Step 3. Let

o0

Wiz):=>_ (n+ Dwjus(z), j=1,...,N.

n=0

Due to non-uniqueness on Step 2, optimal profiles W;(x) are always non-unique, if N > 2. However,
it is easy to see that these profiles are “unique up to low frequences” — in the orthogonal complement
P2 | = L3(IB*) © P%_, of the subspace of algebraic polynomials P%_, within £2(IB*). Thus,
the set of optimal profiles {W.(x)}Y = {W;(f, J,X,J) N i. e. the minimizer in the problem
Rn(f — Projn[f], J), is uniquelly defined.

In the next statement we apply the notation W(:L') = {W;(x)}¥ for a set of N univariate functions

and let
gM[W] = \IZ (gM[W](X : 0])])2 = i Vf/n|2, M = 1,2,...,

Theorem 4 Assume that the components ¥ OfJ e RY are pairwise distinet modw, and let R(x) =
Y, Wi(x-8;). Then

. 1 . .
En[W] = (1 10, (M)) EvlRl, M —oc: Ew[W]<CWEu[R, M>N—-1,  (31)

where the constant in Oy and C( _)) depend only upon J;

Further, the operator

—

Wyt f(x) = Wa(f) = {W;(f,2)}L, == argmin | f(x) — Y W;(x-6,), L}(IB)

=1

is well-defined, linear and bounded from L' P3%_, into /jw,N; where w(x) = %\/1 — % and

Loy = {Vm) = (Wi} Lo W L] = X0 W), £2(=1, D)l < oo} .

13



Proof. According to (20) and (30),

i < D, J 7 o o*

= 3 Ot DRy 22,7 = 3 2 7

n=M n=M n—l_l
O z D’(J):* o o* N O D’(J):* 2 *

2 n n

= n| n’ = - n ’ 2
> (|W e R Wn) (EnlW]) = 3 T2 W W, (32)
and making use of (29), we further have

< D) s | ) &L OO
n;; ni1 o Wa M+1;:4 M+1(5M[W])’

and the asymptotic formula in (31) follows. This also implies the estimate Eu[W] < C(J)EM[R] for
all sufficiently large M > MO(J). To prove that the same estimate is true for all remaining M, 1. e.
N-1<M«< MO(J), we note that, according to (27), for n > M > N — 1, all matrices Dn(g) are
strictly positive definite, and thus (cf. (32))

z " J):* 7 *
n2< /19 n( - ]
RN UACETTID SR A

M <n< Mo (¥9) M <n<Mo(¥)

>

The proof of claim 2) is analogous, and we omit the details.
Remark. If R(x) = Y2/, Wi(x - 8;), then obviously || R|| < 0L, [|[W;(x - 8;)||. It is also true that
if R(x) € £*(IB?), then all summands W;(x - 8;) are in £L*(IB*), too. However, it is easy to see that
for N > 2 it is impossible to estimate the norms of the W;(x - 8;) via that of R. Indeed, the set of
ridge functions of the class W(J) contains “kernels” of the type 0 = Zé\f:l Pi(x-80;), where {P;(x)}
are non-trivial collections of single variate polynomials of degree N — 2.

Thus, (31) is a correct form of inverse type estimates of the planar wave components W;(x - 8;)
via their sum R 2.

2.4  Equispaced quadrature formulas and ridge approximation

In this section, we consider equispaced quadrature formulas and prove the relations (13) of theorem
3 concerning equispaced ridge approximations of fi.q and fham.

Tt is an interesting open problem whether estimates of such type are true for the functional norms other than

L£2(IB?).

14



We will explicitly solve the series of optimization problems Q %[a], cf. also [2] and [6]. In this
Let us consider the spectral matriz, whose entries are Fourier coefficients of the Chebyshev mo-
menta a,(f,9) of the given function f(x) € £L2(IB%):

=i Micnm ) o @l = 3 awal)e™. (33)

Im|<n(2)
\/Z|m|<n

lla.(f), L3 ||. Optimization of quadrature formulas for recovery of f a(P)T () dd via equispaced
nodal data is dual to the following type of approximation of the vector a:

section, we consider only equispaced nodes v; =

al:

Fix n and denote & = &,(f) = (Gm,n)m|<n(z) the nth column of A

EWA] == min{|a —c|: ¢ = ¢, L= m(2N), [I],|m| < n(2)}; c(a,N) :=arg £y (a).
Geometrically, this problem is solved by orthogonal projection in [? of & onto the subspace of vectors

¢ whose coordinates ¢,,, |m| < n(2) are constant along arithmetical progressions mod2N':

1
~ §(myn, N)

Y an 5@%mN):[”;fﬂ+[2;[]+1 m| < n(2),  (34)

[I=m(2N)

( [x] is the integral part of € IR'). The operator Cx,, : &, +— c(&, N) diffracts the coordinates
of a,. It is easy to see that

cla,N)=a, n<N-1;, a—c(a,N)Lc(aN) (35)
Lemma 3 1) Let (c¢f. (34))

B(a,N,v) := > cm(a, N) ™,
(=N NTm|<n(2)

Then the set of optimal weights w(a,n, N) = {w; }} and the optimal error of the equisapced quadrature

are given by the relations

B(a, N, ;)
N

w]‘:

ci= 1 N Q% a, 0] = E8a) = /1Al — |e(a, N)J2. (36)

2) For f(x) € L*(IB?)

Rulf :J > (n+1) (e8a.))", (37)



and if f(x) €+ Pi_,, then the sel of optimal profiles (high frequences) W(:L') = {(Wi(2)}) =
arg mian(X) — Zé\f:l Wi(x - Gj)H is determined by

n4+1

W)= 3 Bl N0 ). (38)
n=N
Proof. It is not hard to see that
. 1 N
Z ™D, (D —9;) = Né(m,n, N)e™*; WZ B(a, N,v;) D, (¥ — ¥;) = a(Vy),
7=1 7=1

so that the equality @ = = é for the optimal weights follows from (26). The equality Q°[a, J]
EU[a] follows from (28) and (35) in an anlogous way, and we omit the details. Relations (37) and
(38) are corollaries of (6), (36) and (30).

Now we can finish the proof of the relations (13) in theorem 3.

According to (21), momenta a,( fraq) are constants, and ag,4+1(fraa) = 0. Thus, for even n

«
Amnza ;An: n 577N A 17 Bf) = ———=
amn =0, m#0; ap, =« (0,n,N) = [QN]—I— () 50,0, )
1 [LN} 2q
gdif _ anz(l—i): a, P12 g 7
(ETa)) = fou| 8(0,n, N) | |2[LN]+1 | |2q+1
n=2(¢gN+m),m=0,1,...,.N—1,¢=1,2,.... (39)

Let e, := (E.[f])?, wn := (n 4+ 1)|an(f)|* note that w, = 0 for odd n. Then, by (20) ey =
Yoo O, and according to (37) we have

e = i 2 o0 2 L
(RED =3 (n+1) (5“[ n]) -3 wnn[i
n=N n=N 2 [W] + 1
SRS o 2q o~ E2gN
n — — =9 7
= 2¢+1 n:zng ’ qZ:; 2q +1 (€2qN 52(‘1"'1)]\7) ; 142 — 1

whence (13) for fraq follows.

16



It is also easy to find the minimizer W (z) := arg min

Fraa = X0 Wx-85)|: il fraa = g(Ix[?)
and g(x) “en > o In ln() is the Fourier—Legendre expansion of ¢, then

ﬁg(:1,1)i°° 9 Ugy (T wlz :2\/ — 22
Wie) == NZ—%\/W(Z[%]—H) w(@), wl@) = vl—at

Further, according to (22),a,( fharm,?) = Be™" + ve. In this case, a(—n) = 3, a(n) =
v a(l) =0, |I] < n(2), 8(£n,n,N) = [£] +1,

(gdlf[ ])2_ (|6|2+|7| )m if n:qN—I_mv mzlva_l
e B+ |y — 22E i n=qN, g=1,2,...;
In particular, (Edlf[ n])2 > 2(18)* + [7]?) for n > N + 1. After these calculations, the estimates (13)
for RN\ fharm] are proved like it was done above for R\![ fraa]- We omit the details.

2.5 Proof of theorem 2

Recovery of integrals. Let us start from the lower estimate of the quantities Q°P*[1] in (11).

The idea is that linear combinations Zé\f:l w;Dy—1 (9 — ;) of a small number of shifted Dirichlet
kernels of high order are always fast oscillating, and thus cannot approximate slow polynomials (1),
say, = 1. Let us re-write such a linear combination as follows:

N (¥ — 9,
; % = F(9)sinnd — G(d) cos nd) = H (D) sin (nd — ®(9)), (40)
where
N w:cosndd N sinnd; G(0)
F(9) = = 4 G = 9 @) := arct
() Z;sm(ﬂ—ﬂj)’ () Z;sin(ﬁ—ﬂj)’ () M Ty
and H (Y \/F2 )+ G2%(9). Let us consider the following sets

E_={v: ¥ €]0,2x), sin(nd —®(W)) <0}, & :=1[0,2x)\E_,
Fri={p: p=nd = 0W), J €&}, G-:i={p:sing <0, p€l0,2mn)},

17



and prove that the following estimates hold for Lebesgue measures:

2rN  2xN
meas&y — 7| < —— = ——.
n n

(41)

“ slow” perturbation of the function nd if n is

essentially larger than V. Further, it is enough to prove just one estimate meas&_ > 7 — %, because
E+UE- =10,27), £, NE- =0, and the converse relations meas&y > 7 — @, measéE_ < 7w+ @
follow by symmetry.

Let N(t) denote the Banach indicatrix of the function ®(¢), i. e.

These estimates can be interpreted as that ®(¢) is a

Ny :=* {9 c0,2r): ®(W) =1}, |1 <

SR

By the definition of ®(), N(¢) equals the number of solutions ¢ € [0,2x) of the equation G(¥) =
(tant)H(¥). With a possible exception of one value of t, N(t) < 2N — 1, because a non-trivial
trigonometric polynomial of degree N — 1 cannot have more than 2N — 1 zeros on the period.
Consequently, the period can be represented as a union of M < 2N — 1 disjoint intervals UL, I,

so that ®(J) is monotone and absolutely continuous on each of I. Taking also into account that
|®(J)| < 7 we obtain:

meas Fy > nmeas& — M7m > nmeas & — 27N + 7.

On the other hand,

G-(Fr=0, G6_|JF: C (—g, 2rn + g) , measG_ +measF, < 27n+ 7w, measG_ =7n
so that meas F, < wn + #. Comparing these estimates we see that 7n + # > nmeas&, — 27N + 7,
or meas&, <71+ @ As mentioned above, this implies (41).

It follows that

I (1 =3 WD - zm) p(dd) = [ 11— H()sin (0 — D)) ()
- o= 1 2)

and since the lower bound on the right is independent from the selection of @ and 5, this completes
the proof of the lower estimate of Q°P*[1] in (11).
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The lower estimates of RY[fraa] in (14) follow from (7), lower estimates of QZ?]tV[l] in (11) and
the comparison result (13) of Ry fraa] and Exn|fraal:

o0 . 9 1 &= N
(Rfr rad ) Z:: 2m + 1 |a2m| ( QPT;:N ) 5 Z::N 2m + 1 |052m| (1 — E)
M-N & M- N

> su 2m + Dlag,,|* = su
b T 2, B Dleadl” = s T

(Exlfa)? = sup LN (Rearr )2

M>N  2M

Let us prove the upper estimates of QOPt [1] in (11) (the suggested method is not related with
ridge approximation problem because the nodes depend on n). Let p:= 5+ 1, l:=p—N, J; =

ﬂ;n) = %j, g =0, %1, ..., and consider the “incomplete” quadrature formula of rectangles, with the
nodes {d;}, 7 =1, ..., N and weights w; := %

The idea of such formula belongs to E.A. Rakhmanov (personal communication). Let us extend
this formula by adding [ extra nodes 9; := 7;—], J=N+1, N+2, ..., pu. Since

o
D, (9 — ;) Z Z i2m(9=9;) _ Z Q2im

1 1 1
1 = || <1 fi=t

the extended (complete) formula of rectangles is exact for all polynomials in 7. Thus

1 1 ~
1—=> D,(90—9;) =~ Z
H 7=1 'u =N+
Further, we have
/JI . /JI .. .
Z Dn(lg _ 19]) — Z e—22m19 Z 622]19m — Z e—22m19 Ule—1(19m),
J=N+1 |m|<p—1 J=N+1 [m|<p—1
where wu,, = u,,; are unimodular complex factors, i. e. |u,,| = 1, so that
. 2
Z Dn(ﬁ_ﬂj)v E%w = Z Dl 1( =2 Z Dl 1 D%—l(o)
J=N+1 [m|<u—1

2T
— o/ / D2 (9)dd — 12 = 2ul — I2.
™ JO
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It follows that

I

> Du(¥—1y), L] <

j=N+1

o 1

T
n -+ 2

which completes the proof of the upper estimate in (11).

Collapsed quadratures and ridge functions. Now let us pass to optimization of collapsed

quadratures and ridge functions, cf. (1) and (9).

Lemma 4 1) Let Cl(lg) = Z|m|§n(2) &m imd Ti Then

enlael= min |37

1 i — P(m)e=imo?. (42)
PEPY i\l i)

In particular, for ¢ = 0 the problem of optimal collapsed quadrature formula is equivalent to the least
squares discrete algebraic approximation of the data sequence {Gp, }m|<n(2)-

col ‘vla,0] = min S — P(m)|*. (43)

1
PePy_, Im|<n(2)

2) Let {W](l')}é\le |z| <1 be an arbitrary set of sufficiently smooth single variate functions, W;(x) =
520 o Winun () — the Fourier — Chebyshev expansion of the function Wi(x). Then

) N Qj_l . _ 1 ) eim (=)
(Z () Wi ﬂ) > P(m) (1)

ntlice

where P(x) = Zé\f:l W it
3) Let f(x) € L2(IB?) and a,(f,?) = > m|<n(2) Amn ()™ be the Chebyshev momenta of f. Then

o0

R31,0) = J D) i 3 final) = Pl (45)

Poof. 1) Fix polynomials P € P!_, and T'€ 7*. Then

P(E) 1= [T 1 (52) D= dutan

de
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/0% T(9)a(9) p(dd) — P (ﬁ

de

Jre= [ 10 (aw) -z P<m>em<§-w>) )
o ud . i (9— 2
[ T an - P () 160 =l F P, g3

Im|<n(2)

sup
TeB(TE)

Y

whence (42) follows by Parceval identity and minimization in P € P} _,.
2) Let us apply termwise differentiation in the angular variable ¢ to the expansion

W)= [ (3 WD = phuntx-0)) u(a),

n=0

Then

(%)H Wi(x - @) = /0% (Z W, (x - 0) (éi) D, (¥ —@)) p(dd)

2 °0
= [ X Wiutx-0) ( S it @) (),
n=0

Im|<n(2)

whence (44) follows by addition in j.
3) (45)is an immediadte corollary of (43) and (9).

Lemma 5 For each set of N points 7 = {z;}¥, |z;| = 1 and each natural number m there exists a
polynomial P(z) = Pz(z) satisfying
2N

P(z)ePly, PO)=1, P(z;)=0,j=1,...,N; max|P(z)] <emn. (46)

|z|<1

In particular, for n > N and fized complex numbers 3, ~

N

QN[ = QR L B(PY] 2 e, QU [Be™ 4™ ™) 2 /|8 4 [y, (4T)

Lemma 6 Let n > N and 3, 7 be fived complex numbers. Then®

ol [Be™ 4 ye=™ 0] = min W P(-n)P 4+ X [Pm)P+|y— P02, (48)

|m[<n(2)

t . . . .
ople i”“9] remains open. In particular, it seems

Opt [ :I:int?] — Qcoﬁv[eiinﬂ]
n, :

3The problem concerning the structure of “minimizer” in Q

interesting to clarify when the collapsed nodes are exactly optlmal i.e QF
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and further

%C:}V[ﬂemﬁ 4+ ve~" 0] < /|B)2 + |7]? min (1, Zne_%), n>N>5. (49)

Proof of lemma 5. Let us make use of the known solution of the following problem posed by G.
Halasz. Find

K = min max|p(z)], where P10 .= {p(z) € PL p(0) =1, p(1) =0}
pep(10) [2[<1

and the extremal polynomial for which the min is attained. The exact solution was found in [8]:

m+1 o . .
Vi = (sec m) , and it is interesting to note that a properly scaled Chebyshev polynomial of
the first kind is extremal. For our purpose, a simplified version, namely, the estimate «,, < 1 + %
is sufficient. The latter was proved by H.L. Motgomery (see [7], Ch. 5). Let us take P(z) :=

H;V:l p(zz7"), where p(z) € PI? is the mth Haldsz’ extremal polynomial. Then obviously P(z) €
N 2
Pla, P0) =1, P(z) =0, j =1,....N; maxpzi [P(2)] < (5)V < (14 2)7 < e, which
proves (46).
A polynomial T(J) € B(Z*) can be represented as T'(¥) = e~ P(c*?), P € B(P), and

respectively

2 . N N . R
[T wldo) = Y wiT(0) = PO) = Y (e ) Plzy), 2= 0 (50)
0 7=1 7=1
whence the equalities QZ?]tV[eiinﬁ] = Q%W'[1,IB(P!)] and QN [eX ] = QF'[1,IB(P})] easily follow.
The lower estimates in (47) follow from (46). Indeed, let m := [%] and for a given set of
nodal points Z = {z;}I¥, |z;] = 1 consider the polynomial II(z) := 6_%Pz(2) where Pz(z) sat-

isfies (??). Then II € PLy C P T(z;) = 0 and 1T € B(PL), because |II(z)] < 1, |2|] < 1.

Consequently, for each quadrature with the nodes on the set Z and arbitrary weights we have

11(0) = =N w;ll(z;) = 11(0) > e~ > 6_#, n > N, which completes the proof of the estimate
UL IB(PY] > e Further, the lower estimate for QZ%’]tV[ﬂeinﬁ + ye~"?] follows by splitting

polynomials T'(¥) € T.F into parts T (V) := 2 0<m<n(2) T(m)emﬁ, T_(¥) :=T() — T+ (¥) and sub-

sequent reduction to the lower estimate of Q%" [1, B (77%)] We omit the details.

Proof of lemma6. First of all, (48) is a particular case of (43). Further, let Ty(x) = cos (M arccos x),
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[—1,1] denote the Chebyshev polynomials of the first kind, M = N —1 or M = N — 2, and

n, . Ty (1 i %) ’ n,

= (=18
2

T+ (DY
2

xvﬂf}/) = Pn,N—l(x)‘|‘ PmN_Q(l').

These polynomials are in PL,_,, and since P, p1(1) = 1, Poy(—1) = (=1)™, we see that P, y(—n, 3,7) =
B, Pun(n,B,7v) =~. For |m| < n — 2 we have ‘TM ( + %) %) < 1, so that (49) follows from the

estimates
-1 .
S 1Pa(m)P € S < d(n - 1)V,
jml<n(2) T4 (1+2)
4(N -2 _ 2N
Yo APun(m, B,7)P < 2(n — D)(IB + 9[P)e” virT < 2n(|B)2 + [y[P)e v, N > 5.
|m[<n(2)

In the above, we made use of the well-known estimates of Chebyshev polynomials Ths(x) for = > 1:

(z+ Va2 =DM 4 (x — :1;2—1)M>l (
2 2

Tav(x) = \/F) leXp (ZM Py 1)

Relations (47) and (49) imply the claim (12) of theorem 2. They also imply (15) of theorem 3.
Indeed, let 6, \/Wn DI? + |7 ()2, Then according to (7), (20) and (47) we have

N2

(REL)" 2 3 (04 1) (@0 4307 2 3 (41

> T8 (04 1)62 = 718 (Exalf])7

n=N?2

whence the lower estimate of RY [ fuarm] in (15) follows. Finally, for M > N > 5

(Rcol f7 ) Z n—l—l ( col [671 ind +7n —ind 0) < Z n—l—l 52 min (1 e~ \/—)
2N M sl 2N
e Z (n+ 1)&; + Z (n+1)8; < QMQ_V_M(5N[f])2‘|‘(5M+1[f])2-
n=N n=M+1

which finishes the proof of theorem 3.
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2.6 Comments

It is hard to indicate the primary source in literature of the general problem of ridge approxima-
tion. For the author, such a source was [3]. Problems of ridge approximation naturally appear in
applications, such as Radon transformations and local tomography [4], [2], and in geometry [9].

Recently, a considerable attention was tributed to constrained ridge approzimation, when restric-
tions of different kinds are imposed on the wave profiles. This includes a version of the so-called neural
networks approximations when the profiles W;(x) are assumed to be piecewise constant functions or
some more smooth splines, cf. e. g. [10].

It should be noted that a wide circle of problems remains open, concerning free and constrained
ridge approximation in functional metrics other than £?, in particular, uniform metric £>°. Very
promising and difficult seem to be generalizations to functions of more than two variables, see [11],
[12].

Estimates of free ridge approximation, in particular, comparison of RE[f] with Ex[f] and R f],
were discussed by D.L. Donoho and .M. Johnstone [6]. In [6], cf. p. 73, a conjecture was made that
equispaced wave vectors are best for fraa and fpam (for brevity, conjecture(eq) in the sequel) in the
problem R posed in the weighted space £2 (IR?*) with the Gaussian weight w(x) := eIl

RY [£.L3(RY)] := inf W/ (x)[2w0(x) dx.

Rewfr

The strong form of conjecture(eq) is that exact equalities RY, [f, ,CfU(IRQ)] =Ry [f, ,CfU(IRz)] hold
for all fraq and fharm.

A weaker version of conjecture(eq), concerning orders of ridge approximation of fiaq in the metric
L2(IB?), is confirmed by theorem 3 of the present paper (cf. (13) and (14), corollary 1 and [5]).

On the contrary, (15) implies that for fuam and approximation in the metric of £2(IB*) the
conjecture(eq) principally fails to be true.

(15) apparently represents a new effect in non-linear ridge approximation. The complete freedom
in the choice of N wave vectors does bring an essential gain in the orders of approximation. Harmonic
functions represent a wide set for which this effect takes place.

Upper bounds of RY(f) on Sobolev classes were considered by V.E. Maiorov [13], [12] and V.N.
Temlyakov [14]. In particular, in the recent preprint [12] Maiorov considers the upper bounds of free
ridge approximation on classes W{’d in the unit ball IBY, d > 2 of d-dimensional Euclidean space IR%:

dist (Wg’d, WN; £2(]Bd)) = sup Rg{;[f], Wzﬁd . {f(x) . max HDpf ,62 H < 1}

d p<r
few,
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As an improvement and generalization of earlier results of the works [14] and [13], dealing with the
case d = 2, the main result of [12] (Theorem 1) is the exact order estimate dist (Wg’d, W, ,CQ(IBd)) ~
N_#, N — oo.

Returning to the conjecture(eq), let us note that there are corresponding counterexamples to its’
strong version for f = fiaa, too ( cf. M.E. Davison and F.A. Grunbaum [2], p. 104). There exist
radial polynomials P(|x|?), deg P = 2, 3,... such that strict inequalities RT [P(|x|*)] < R5* [P(|x|?)]
hold in the weighted spaces £2(IB?), where w(x) = (1 — |x|*)}, x € IB? is a Gegenbauer weight. E.
g., in the exact solution of the extremal problem R [|X|4 — Ix/|% ,CQ(IBZ)], the angle between optimal
directions 84, 6, satisfies 5 — ¥}y = arccos \/g, i. e. 81, 8 are not mutually perpendicular, cf. [5].
In fact, this peculiarity is equivalent to the strict inequality Qip;[l] < Qy5[1] for optimal quadratures
with just two nodes for the class IB(7,%), or

L B(T)] < Q571 B(T)). (51)

Here IB(7,,) denotes the £3 -unit ball in the subspace 7,, of all trigonometric polynomials of degree
n. It is easy to see that QF'[1,1B(7,)] = Q¥'[1,B(Z55)] := QF'\[1].

Kolmogorov — Nikol’skii problem has a long history, cf. [1],[15]-[17]. Starting from the sixties, an
essential part of efforts was concentrated on the conjecture(eq) for quadrature formulas: equispaced
nodes and the formula of rectangles % Zé\f:l f (%ﬂ

on all periodic classes W (L5), 1 < p < oo. That this conjecture is right for p = co and all natural

) are optimal for recovery of integrals [3™ f(9)u(dV)

r >4 (low smootheness cases r = 1,2,3 had been solved earlier) was proved by V.P. Motornyi [16].
Subsequently A.A. Zhensykbaev [17] extended this result of Motornyi on all p € [1,00). For large
indices r of differentiability (in fact, for r > 4), one of the difficulties was in the existence of the
optimal quadrature formula, in particular, the proof that the optimal nodes do not collapse.

To find the limits for validity of the conjecture(eq), the author [18], [19] considered modifications

of the periodic classes W™ (L5 ):
d
Pl— ) f(9), LY
() s e

where P (%) is a fixed differential operator. It turned out that the solution qualitatively depends

on the spectrum of P. In particular, for classes of the type ||f”(J) + w?f(1), L5
differential operators) the conjecture(eq) fails to be true, at least for some small initial values of V.

<1,

| <1 (oscillatory

|

Relation (51) provides another counter-example, for the class IB(73).
Lower bounds for the quantities Q%'[1,1B(7,,)] and their multivariate analogs were considered by
V.N. Temlyakov [20]. Basing on results of B.S. Kashin [21] (cf. also [22]), it was proved in [20] that
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if N <(1—¢&)n, where ¢ > 0 then Q¥'[1,1B(7,,)] are bounded below, i. e. Q¥'[1,1B(7,)] > ¢. > 0.
Using the latter result, it was established in [5] that Ve > 0, Je. > 0: RE(fraa) > &1 4)N (frad).
(11) and (14) represent more explicit versions of these results.

Preliminary upper estimates of the righthand side of (48) based on Chebyshev polynomials T ()
appeared in discussions with my colleagues at USC P. Petrushev, B. Popov and O. Trifonov. A
subsequent improvement of the type (49) was later communicated to the author by L.I. Sharapudinov.
Recently, using properties of discrete Chebyshev polynomials, Sharapudinov [23] proved that the
condition % — o0 18 necessary and sufficient for

<[] IB(P!] = min Ju — P(0))? + an P2(m) — 0.

PePl, font
(In view of this result, it seems likely that the factor v/2n on the right of (49) can be substituted by
a constant.) That the condition in — 00 is necessary, follows also from the lower estimate (47) of
errors of quadrature formulas with free nodes.
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