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Let
B? = {(z,y) eR*: 2 +y* <1} (1)

denote the unit disc on the plane and

1 sin(m+1)arccost
VT V112 ’

m=20,1,...,t € [-1,1], are the Chebyshev polynomials of the second kind. For an arbi-
trary sequence of real phases {¢,}oo_,, we get on IB? the corresponding discrete sequence of
Chebyshev ridge polynomials

O e R US| I

These systems are very useful tool in the theory of approximation of functions by feed—forward
neural networks [1], [2]. It is known [2] that for an arbitrary sequence of real phases {om}oo_,
the system (3) is a complete orthonormal system in L?(IB?). We consider convergence problem
to zero for Fourier coefficients (0 <k <m+1, m=0,1,...)

U (t) ==

(2)

k k
A (fy Ky o) == /182 flz,y) un, (xcos <m7:1 + g0m> + y sin <m7—l7i1 + g0m>> dedy  (4)

of a function f € LP(IB*) with respect to the systems (3). The partial LP-integral moduli of
continuity of a function f € LP(IB?) are defined as follows

B =

a6y s ([ e+ ) = S dsdy) 5)

|h|<é
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and

S

wa(8: f), = sup ( /IBWBQ(Q NCAEDE f(x,y)|pd:cdy> . (6)

Ih|<d

where

B>(1,h) := {(x,y) €R*: (x +h,y) € B*}, B(2,h):={(x,y) €R*: (x,y+h) € B*}.
(7)

In the present article we shall prove the following theorems.

Theorem 1 Let {¢,,}55_, be an arbitrary sequence of real numbers and f € LP(IB?), p > 3.
Then the ridge Chebyshev —Fourier coefficients of f tend to zero:
Jim | max |am(f, K, om)| = 0. (8)
Theorem 2 There exists a function g € L2 (IB?) such that
1\3
w1(039)5 = O ((E) ) (6 04); wa(dig); =0, (5 (0,1)) (9)
5
and for each sequence {pm}oo_y the following inequality holds true
limsup max |am(g,k, pm)] 2 C1 > 0, (10)

where Cy is an absolute constant.
The next statement follows from Theorem 2.

Corollary 1 There exists a function g € L%(IBQ) that satisfies (9) and for each sequence
{om}oe_y Fourier series of g with respect to the system (3) diverges in L%(]B2) )

Proof of the Corollary. First we prove that form =0,1, ..., k=0, 1, ... m, and for each
sequence {¢n,}o°_, we have

/ M o) ysin (=5 4 dody >
U | X COs | —— m sin [ —— m xdy >
B2 m—+1 v yst m—+1 ¥ y
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Indeed, according to (1) and (2)

/ U, | T CcOos ki%— + ysin ﬂ—l— dxd
B2 | m+ 1 Fm Y m+1 Fm Y

2 o
= /182 U () |ddy = ﬁ /_1 | sin (m + 1) arccos x| dx

:%/W | sin (m + 1)9| sin ¥dv >—/ sin ( 1)0 sin ) do

%

2\/_/ (1 —cos2(m+1)9)(1 — cos20) di =

Consequently for the function g from Theorem 2 we get

(g, k ) km . L us kr n
am (g, k, ©m) Uy | Tcos | —— m sin | —— m
g v m—+1 14 y m—+1 v

>
> Oy Orgr}gagﬁlam(g, k, om)l

max
0<k<m

wlw

for each sequence {p,,}°_,and m =0, 1, ..., where C, is an absolute positive constant. Now
the Corollary follows from (10).
Proof of Theorem 1 . First we note that for each e € (0,1) there exists a constant B, such
that

/182 [t (2) > dady < B, m=0,1,.... (12)

Indeed

1 3—€ 1 2
3—e¢ : 3—e / 2
/ ) |Um($)| dxdy = <—\/_> /_1 | sSin (m + 1) arccos x| ( 1—=z ) dx

/5 | sin (m 4 1)9>~¢ (sin®) " do

3—e T
—4 <i> <(m+1)3_6 e /+ g +axteat [Toge dﬁ)
0 T

m—+1



Now let p > % and % + % = 1. Then using Helder’s inequality and (12) we obtain that for an
arbitrary f from LP(IB?) the following inequality holds true:

e fan(f ko)l < Il Nl m=0.1, ..
For a given positive § we can find a function h = hs € L?*(IB*) such that
If Al < o
Consequently (cf.(12))

< —
22X [an (f, K om)| < N = hllp llumlle + max |am(h, b om)l

< O40)+0(1) as m — o0
Theorem 1 is proved. The next statement is essential in the proof of Theorem 2.

Lemma 1 For each m, m > my, there exists a function ¢,_1(x) of one variable, defined on
[-1,1]  such that the function Qu_1(x,y) defined by

Qm-1(7,y) = gm_1(z) for (z,y) € IB? (13)

satisfies the following conditions:

o 0% a1 (Qm-1,k, )| = Cy (logm)s  forallreal ¢, (14)
HQm—lH% < Cy, (15)

C5(m?8)3 (logm)~5 0<d< 2
wi(0; Qm-1)3 < wm-1(6) := { Qgim f0>r (gimé for 00 < 3 (16)
wa(0;Qm-1)s = 0 forall & € (0,1), (17)

where C3 , Cy ,mq , Cs are positive absolute constants and

k k
A (fy ky @) = /182 flz,y) um (:Ecos (% + go) + ysin (TL + go)) dx dy. (18)
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Proof of the Lemma. Consider the functions f,gm)(x), 1 <z<1, k=12 ...

m) k% for x € [cos @, cos 2’“7”} ,
fi () = .
0 otherwise on [—1, 1]
and let
m2
Qm—l(x) Z fkm

(logm
Now introduce the function @Q,,_(x,y) defined on the unit disc B

Qm-1(,y) = gm-1(x) for (z,y) € B

First we prove that for m > m((]l)
[@m-lls < Ci,

for some absolute constant m{". Indeed (cf.(19), (20), (21))

1
L, 1Quos(ay)idedy =2 [ ()|} VI = %da
-1

[vm)] s 2n , m3
=2 Z / (2l+1)7'r |Qm 1( )|2 V91— r?dy = 210gm it
s Wm0+ ) 20+1
logm = B3 m m m
3 [vm]
1 2 1 4 1
= m Z—sin(H_ )Wsmism(l_l_ )
logm = 3 2m 2m
o vl g
< - < (s for m > m(()l),
logm = |

vml S
Z _3/ (2l+1)7r 1 —a2?dx

where m(()l), Cs, Cg are absolute positive constants. Now we prove that for m > mo the

following inequality is true

W=

max |am—1(Qm-1,k, p)| > Cs (logm)

0<k<m

for all real

¥

(23)



where C5 and m((f)

L2 ([-1,1]), w(t)=2V1—+¢2, te[-1,1], then for the function

P(z,y) := F(z) (z,y) € B

we have

am (P, k, @) =

m—+ 1

where k=0, 1, ... m, ¢ € (—00,0) and

. 1
F(m) =2 / F(t)un(t)V/1 — £dt .
~1
Further we show that for some absolute positive constant C';
|G-y (m = 1)| > Cr(logm)s.

According to (19), (20), (26) we get

1
Gm1y(m — 1) 1= 2 /_ 1 G ()t ()T — £2dt

m2 [vVm] 1
22— ¥ / FI (Y (D)VT = L2t
k=1 71

(logm)$
2 [vm] 1 cos 2k

m m .
= QW ]; =) /COS (arsr), SiILTRATCCOS tdt
9 [vm] 1 (2k+1)7
22(1"”7)2 3 p/ " sinmd sin9dy
ogm)s3  p—1 Tﬂ

> Cyr(logm)s

where C; and Cy are positive absolute constants. Let ¢y be such that ¢y = ¢

are absolute positive constants. Indeed, it is known [2] that if F' €

(24)

(25)

(26)

(27)

(mod )

and 0 < ¢y < 7. Now we prove that there exists an integer k1 = k1(po) with the properties

6

k 2
U1 (cos(i—l—goo))'Z—m and 0<k <m-—1.
m T

(28)



Consider the following cases: let first 0 < g < 5. In this case we take k; := 0. We see
that then (cf.(2))

k’ T sinmarccos COS
() s
m [sin o)

20

If now 7~ < ¢ < - then we choose k; = m — 1. It is clear that then

o 3 ) o (5 )
o (o (2 ) = ()

[sinm (£ = o)l _ 2
= - > —m.
| sin (ﬁ - 900>| T
Now it remains only the case 7 < ¢g < 7. Let ky = ko(wo) be the integer such that
kom ko+ 1)m
L+goo<7r§<°m) ©o (29)

It is clear that in this case (cf.(29), (30))

]{7071' ™ (k}o + 1)7T

— < 1m—¢y < m—— and > 7T —@y >0,
m m

and consequently,

k
0 <ky<m-—1 and 0<7T—<£+(,00>§£. (30)
m m
Now we have two subcases:
0< LN (31)
7"' —_ —_— _—
m ol = 2m
and "
i<w—<£+s@o>§1 (32)
2m m



Let
ki := ko in the first subcase and k; := kg + 1 in the second subcase. (33)

It is clear that in both cases(cf.(30))
0<k <m—1.

In the first subcase we have (cf.(2), (33), (31))

o)) o2

o M = = TR

And at last for the second subcase we get (cf.(13), (33), (32))

s (s (54 0)) = s (o (22 )

e (e (22 o) | - e 2,

The inequality (28) and consequently the inequality (23) are proved. now we will estimate
w1(0; Qm—1):. Taking account of the fact that for k =1, 2, . .. [vm],

3

2% +1 % + 2 4 9
cos PEFDT  CEADT oy T WIS 2
m m 2m 2m m2

we get for [h| < 25 (cf.(19), (20), (21))

m— hy) — Qmi(z,y)|2 dedy < |h
/]BZHIBQ(l,h)@ 1@+ 1Y) = Qo (2,9)]2 dedy < | |1

2 [vm] 1 2
Z k2 = Clo|h|

and for |h| > 2 we have (cf.(22))

< Cy |h|

logm gm’

o

3 2
/IBQQ]BQ(M) |Qm-1(z +h,y) — Qm-1(7,y)|2 dedy < (2||Qm_1H%) < Oy,



for some absolute Cy, Cyp and Cyy. From (19), (20), (21) we see that the Lemma is established
completely.
Proof of Theorem 2 . We define an increasing sequence of positive integers {m,;}2, by
induction. Let m; = mgy + 1 where mg is the number from the Lemma. Now let numbers
my, My ... my_y be already defined. Introduce the functions defined on B? and [-1,1] corre-
spondingly

-1 1
Al—l(xv y) = - 1 ka—l(‘rv y) ) (34)
i=1 (logmy)s
and
-1 1
Bl—l(x) = ka—l(x)v (35)

where @, —1(2,y) and g, —1(x) are functions from the Lemma corresponding to the number
my,. It is clear that (cf.(24), (19), (20)) 4;_1(z,y) € L*(B?), Bi_1(z) € L*([~1,1]) and (cf.
(24), (25), (26)) A

|am-1(Ai-1, k, )| < 7[Bi1(m —1)|, for all real p.

It is clear that )
lim |Bi—1(m —1)| = 0.

. From the last equation we conclude that there is the number N;_; such that for all m > N;_;

. Cy
B - = 36
Bialm—1)] < 5 (30)
where (3 is the constant from the Lemma. Now we define m; so that the following relations
are satisfied:

my >y, my > Ny, (37)

i1 ! (38)
(logmy)s — 141’

2(logmy) "3 < (logmy_1)73, (39)

and

s

4
3 3
my > 9 m_y

] 40
logm; — logm;_4 (40)



Thus we have constructed the infinite increasing sequence of integers {m;};°,. Consider the
function

1 ka 1($ y) (41)

=3

1 logmk)
defined on IB%. It is obvious that (cf.(41), (22), ( 9))
<% o

71 < 00. (42)

gilz
lglls (log )}

Let {¢m }°_, be an arbitrary sequence of real numbers. According to (34), (41) we get for each
k=0,1,...m—1,1=1,2, ...,

—1(9s s @r—1) = Q-1 (Ai_1, Ky Gy—1) + G- 1 (Qy—1 (108 M) 73, Ky Py
+ aml—l(Ela k; Spml—l)a
where - )
Ez,y) = Y ———71 Qme1(z,y). (43)
k=i (logmy)3
According to (25), (34), (35), (36), (26), (37) for each k =0,1,... m;y — 1,1 =1,2, ... the
following inequality holds true

C
|aml_1(Al_17 kv Pmy— )l < 23

On the other hand, it follows from (39), (15), (38) and (43) that for each k =0, 1, ..., m; — 1,
[=1,2, ..., we have

(44)

R 1
(B K om )| = O - 0( ) | = o0, 15
|CL 1 1( l Pmy 1)| <k:§l£1 (logmk)§) Z—I—l as &Y ( )

Now it is easy to see that (cf. (45), (44)) foreach k=10,1, ... m;y—1,1=1, 2, ..., we get

_1
|aml—1(le—1(logml) 3, kv Spmz—l)| < |aml_1(g7 kv (pml—l)|
Ham, -1 (A1, ky @my-1)| + [m—1 (B, Ky 0my—1) < am—1(9, Ky @my—1)]

Cs
2 2 +O<Z+1> <0<£}m 1|aml (g>k7730ml_1)|
+%+O< ! ) as | — oo

2 I+1

10



and therefore according to the Lemma (cf.(14))

|amz 1(97]{7 Om;— 1)| Z ma |aml 1(le 1(10gml) %a k? Spmz—l)l

0<k< 0<k<
Cs 1 Cs
5 O<l+1>_03 5 o(l) as [ — o0

We see now that the relation (10) of theorem 2 is established. it is obvious from (13), (41) and
the Lemma that the function g(z,y) is in fact a function of one variable and consequently the
second equation in (17) is true. It remains only to estimate w;(6; g) . Let for a given § > 0 the

integer o = [,(d) be such that

2
— <0 < —-.
ml0+1 mlo
i From (16), (41), (40), (39) we see that
o0 b
3 Win,—1(0) < C503
;’ Xz: logmk 1 w-1(9) i ,; log my,
4
> 1 2 1
+2C5 - < 205 83 +4C; - < Chp—
k=tor1 (logmy)s log my, (logmyy1)3 log 5
1 1
‘I'Olgil:O 1 asd — 0+.
(log %) ’ (log %) ’

Theorem 2 is now proven.
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