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Abstract� We suggest a three step strategy to find a good basis (dictionary) for
nonlinear m-term approximation. The first step consists of solving an optimization
problem for a given function class F , when we optimize over a collection D of bases
(dictionaries). The second step is devoted to finding a universal basis (dictionary)
Du ∈ D for a given pair (F , D ) of collections: F of function classes and D of bases
(dictionaries). The third step deals with constructing a theoretical algorithm that
realizes near best m-term approximation with regard to Du for function classes from
F .

We work this strategy out in the model case of anisotropic function classes and
the set of orthogonal bases. The results are positive. We construct a natural tensor-
product-wavelet type basis and prove that it is universal. Moreover, we prove that
greedy algorithm realizes near best m-term approximation with regard to this basis
for all anisotropic function classes.

1. Introduction

In this paper we discuss in the model case of anisotropic function classes a
general approach of how to choose a good basis (dictionary) for approximation. This
approach consists of several steps. We concentrate here on nonlinear approximation
and compare realizations of this approach for linear and nonlinear approximations.
The first step in this approach is an optimization problem. In both cases (linear
and nonlinear) we begin with a function class F in a given Banach space X with a
norm ‖ · ‖ := ‖ · ‖X . A classical example of optimization problem in the linear case
is the problem of finding (estimating) the Kolmogorov width

dm(F, X) := inf
ϕ1,...,ϕm

sup
f∈F

inf
c1,...,cm

‖f −
m∑

j=1

cjϕj‖.

This concept allows us to choose among various Chebyshev methods (best ap-
proximation) having the same dimension of the approximating subspace the one
which has the best accuracy. The asymptotic behavior (in the sense of order) of
the sequence {dm(F, X)}∞m=1 is known for a number of function classes and Ba-
nach spaces. It turned out that in many cases, for instance, in the case F = W r

p

is a standard Sobolev class and X = Lp, the optimal (in the sense of order) m-
dimensional subspaces can be formed as subspaces spanned by m elements from one
orthogonal system. We describe this for the multivariate periodic Hölder-Nikol’skii
classes NHR

p . We define these classes in the following way. The class NHR
p ,

1This research was supported by the National Science Foundation Grant DMS 9622925, by
ONR Grant N00014-91-5-1076, and by DAAG55-98-10002
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R = (R1, . . . , Rd) and 1 ≤ p ≤ ∞, is the set of periodic functions f ∈ Lp([0, 2π]d)
such that for each lj = [Rj] + 1, j = 1, . . . , d, the following relations hold

(1.1) ‖f‖p ≤ 1, ‖∆lj ,j
t f‖p ≤ |t|Rj , j = 1, . . . , d,

where ∆l,j
t is the l-th difference with step t in the variable xj . In the case d = 1

NHR
p coincides with the standard Hölder class HR

p . It is known (see for instance
[T1]) that

(1.2) dm(NHR
p , Lp) � m−g(R), 1 ≤ p ≤ ∞,

where

g(R) := (
d∑

j=1

R−1
j )−1.

It is also known that the subspaces of trigonometric polynomials T (R, l) with fre-
quences k satisfying the inequalities

|kj| ≤ 2g(R)l/Rj , j = 1, . . . , d,

can be chosen to realize (1.2). In this case l is set to be the largest satisfying
dim T (R, l) ≤ m. We stress here that optimal (in the sense of order) subspaces
T (R, l) are different for different R and formed from the same (trigonometric)
system.

A nonlinear analog of the Kolmogorov m-width setting was discussed in [T2].
In [T2] we replace the Chebyshev method of best approximation from a linear
subspace of dimension m by best m-term approximation with regard to a given
orthogonal basis and optimize over all orthogonal bases. Thus in the nonlinear case
we formulate an optimization problem in a Banach space X for a pair of function
class F and collection D of bases (dictionaries) D:

σm(f,D)X := inf
gi∈D,ci,i=1,...,m

‖f −
m∑

i=1

cigi‖X ;

σm(F,D)X := sup
f∈F

σm(f,D)X ;

σm(F, D)X := inf
D∈D

σm(F,D)X .

In this paper we consider only the case D = O – the set of all orthogonal bases on
a given domain. In Section 3 we prove that

(1.3) σm(NHR
q , O)Lp � m−g(R)

for
1 < q < ∞, 2 ≤ p < ∞, g(R) > (1/q − 1/p)+.

It is important to remark that the basis Ud studied in [T2] realizes (1.3) for all
R (see the definition of Ud in Section 3). We introduce the following definition of
universal dictionary.
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Definition 1.1. Let two collections F of function classes and D of dictionaries be
given. We say that D ∈ D is universal for the pair (F , D) if there exists a constant
C which may depend only on F , D, and X such that for any F ∈ F we have

σm(F,D)X ≤ Cσm(F, D)X .

The second step in our approach is to look for a universal basis (dictionary)
for approximation. The mentioned above result on the basis Ud means that Ud is
universal for the pair (Fq([A, B]), O) and the space X = Lp([0, 2π]d) for A, B ∈ Zd

+

such that g(A) > (1/q − 1/p)+, 1 < q < ∞, 2 ≤ p < ∞, where

Fq([A, B]) := {NHR
q : 0 < Aj ≤ Rj ≤ Bj < ∞, j = 1, . . . , d}.

It is interesting to compare this result on universal basis in nonlinear approximation
with the corresponding result in the linear setting. We define the index κ(m,F , X)
of universality for a collection F with respect to the Kolmogorov width in X:

κ(m,F , X) := L(m,F , X)/m,

where L(m,F , X) is the smallest number among those L for which there is a system
of functions {ϕi}L

i=1 such that for each F ∈ F we have

sup
f∈F

inf
c1,...,cL

‖f −
L∑

i=1

ciϕi‖ ≤ dm(F, X).

It is proved in [T3] (see also [T1, Ch.3, S.5]) that for any A, B ∈ Z
d
+ such that

Bj > Aj , j = 1, . . . , d, we have

(1.4) κ(m,Fp([A, B]), Lp) � (log m)d−1, 1 < p < ∞.

The estimate (1.4) implies that there is no Chebyshev methods universal for a
nontrivial collection of anisotropic function classes. Thus, from the point of view
of existence of universal methods the nonlinear setting has an advantage over the
linear setting.

After two steps of realizing our approach in the nonlinear approximation we get a
universal dictionary Du for a collection of function classes F , say, Ud for Fq([A, B]).
This means that the dictionary Du is well desinged for best m-term approximation
of functions from function classes in the given collection. The third step is to find
an algorithm (theoretical first) to realize best (near best) m-term approximation
with regard to Du. It turned out that in the model case of Fq([A, B]) and the basis
Ud there is a simple algorithm which realizes near best m-term approximation
for classes NHR

q . This is thresholding or greedy type algorithm. We give the
definition of greedy algorithm for a general basis. Let Ψ := {ψk}∞k=1 be a basis for
X. Represent f ∈ X in the form

f =
∞∑

k=1

ck(f, Ψ)ψk.
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Then ‖ck(f, Ψ)ψk‖ → 0 as k → ∞. We enumerate the summands in the decreasing
order

‖ck1(f, Ψ)ψk1‖ ≥ ‖ck2(f, Ψ)ψk2‖ ≥ . . .

and define the m-th greedy approximant as

GX
m(f, Ψ) :=

m∑
i=1

cki(f, Ψ)ψki .

We prove in Sections 2 and 3 that (1.3) can be realized by greedy algorithm
G

Lp
m (f, Ud). Namely,

(1.5) sup
f∈NHR

q

‖f − GLp
m (f, Ud)‖Lp � m−g(R),

for
1 < q, p < ∞, g(R) > (1/q − 1/p)+.

In this paper we realize three steps of our approach in the model case of periodic
anisotropic function classes NHR

q . However, we present the results in sufficiently
general form to include wavelet type bases.

Section 4 is devoted to one more good property of the basis Ud. We prove there
that soft thresholding algorithm with regard to an unconditional basis is a mapping
from the Lipschitz class.

2. The upper estimates for anisotropic function classes

We consider in this section a basis Ψ := {ψI}I∈D enumerated by dyadic intervals
I of [0, 1]d, I = I1 × · · · × Id, Ij is a dyadic interval of [0, 1], j = 1, . . . , d, which
satisfies certain properties. Let Lp := Lp(Ω) with normalized Lebesgue measure
on Ω, |Ω| = 1. First of all we assume that for all 1 < q, p < ∞ and I ∈ D,
D := D([0, 1]d) is the set of all dyadic intervals of [0, 1]d, we have

(2.1) ‖ψI‖p � ‖ψI‖q|I|1/p−1/q,

with constants independent of I. This property can be easily checked for a given
basis.

Next, assume that for any s = (s1, . . . , sd) ∈ Zd, sj ≥ 0, j = 1, . . . , d, and any
{cI} we have for 1 < p < ∞

(2.2) ‖
∑

I∈Ds

cIψI‖p
p �

∑
I∈Ds

‖cIψI‖p
p,

where

Ds := {I = I1 × · · · × Id ∈ D : |Ij | = 2−sj , j = 1, . . . , d}.

This assumption allows us to estimate the Lp-norm of a dyadic block in terms of
Fourier coefficients.
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The third assumption is that Ψ is a basis satisfying the Littlewood-Paley in-
equality. This means the following. Let 1 < p < ∞ and f ∈ Lp has an expansion

f =
∑

I

fIψI .

We assume that

(2.3) lim
minj µj→∞

‖f −
∑

sj≤µj ,j=1,...,d

∑
I∈Ds

fIψI‖p = 0,

and

(2.4) ‖f‖p � ‖(
∑

s

|
∑

I∈Ds

fIψI |2)1/2‖p.

Let µ ∈ Zd, µj ≥ 0, j = 1, . . . , d. Denote by Ψ(µ) the subspace of polynomials of
the form

ψ =
∑

sj≤µj ,j=1,...,d

∑
I∈Ds

cIψI .

We begin studying approximative properties of Ψ satsfying (2.1)–(2.4) by two lem-
mas.

Lemma 2.1. Let 1 < q < p < ∞. Then for any f ∈ Ψ(µ) and h > 0 we have

(2.5) #{I : ‖fIψI‖p ≥ h} 	 ‖f‖q
qh

−q2(1−q/p)‖µ‖1 ,

with a constant independent of f , h, µ.

Proof. Denote

A(f, h) := {I : ‖fIψI‖p ≥ h}; N(f, h) := #A(f, h)

and
As(f, h) := A(f, h) ∩ Ds; Ns(f, h) := #As(f, h).

We estimate first Ns(f, h). Denote

δs(f) :=
∑

I∈Ds

fIψI .

By (2.2) and (2.1) we have

‖δs(f)‖q
q = ‖

∑
I∈Ds

fIψI‖q
q �

∑
I∈Ds

‖fIψI‖q
q ≥

∑
I∈As(f,h)

‖fIψI‖q
q �

∑
I∈As(f,h)

‖fIψI‖q
p2

(q/p−1)‖s‖1 ≥ hq2(q/p−1)‖s‖1Ns(f, h).

Thus,

(2.6) Ns(f, h) 	 ‖δs(f)‖q
qh

−q2(1−q/p)‖s‖1.

In order to derive the estimate (2.5) from (2.6) we need the following two inequalities

(2.7) (
∑

s

‖δs(f)‖pl
p )1/pl 	 ‖f‖p 	 (

∑
s

‖δs(f)‖pu
p )1/pu

with pl := max(2, p) and pu := min(2, p).
The relation (2.7) is a corollary of the Littlewood-Paley inequalities (2.4) and

the following inequalities.
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Lemma 2.2. For any finite collection {fs} of functions in Lp, 1 ≤ p ≤ ∞ ,we
have

(
∑

s

‖fs‖pl
p )1/pl ≤ ‖(

∑
s

|fs|2)1/2‖p ≤ (
∑

s

‖fs‖pu
p )1/pu .

Proof. We prove first the upper estimate. For p = ∞ it is obvious. Let 2 ≤ p < ∞,
then

‖(
∑

s

|fs|2)1/2‖p = ‖
∑

s

|fs|2‖1/2
p/2 ≤

(
∑

s

‖|fs|2‖p/2)1/2 = (
∑

s

‖fs‖2
p)

1/2.

Let now 1 ≤ p ≤ 2. Then

‖(
∑

s

|fs|2)1/2‖p = (
∫

Ω

(
∑

s

|fs|2)p/2)1/p ≤

(
∫

Ω

∑
s

|fs|p)1/p = (
∑

s

‖fs‖p
p)

1/p.

We proceed now to the lower estimate. Again for p = ∞ it is obvious. Let 2 ≤ p <
∞. Then we have

‖(
∑

s

|fs|2)1/2‖p ≥ ‖(
∑

s

|fs|p)1/p‖p = (
∑

s

‖fs‖p
p)

1/p.

For 1 ≤ p ≤ 2 we have

‖{‖fs‖p}‖l2 = ‖{
∫

Ω

|fs|p}‖1/p
l2/p

≤

(
∫

Ω

‖{|fs|p}‖l2/p
)1/p = ‖(

∑
s

|fs|2)1/2‖p.

Lemma 2.2 is now proved.

We return to the proof of Lemma 2.1. Using (2.6) and (2.7) we get in the case
q < 2

N(f, h) =
∑
s≤µ

Ns(f, h) =
∑
s≤µ

Ns(f, h)2−(1−q/p)‖s‖12(1−q/p)‖s‖1 ≤

(
∑
s≤µ

(Ns(f, h)2−(1−q/p)‖s‖1)ql/q)q/ql(
∑
s≤µ

2(1−q/p)‖s‖1(1−q/ql)
−1

)1−q/ql 	

h−q(
∑
s≤µ

‖δs(f)‖ql
q )q/ql2(1−q/p)‖µ‖1 	 h−q‖f‖q

q2
(1−q/p)‖µ‖1 .

In the case 2 ≤ q < ∞ we get similarly

N(f, h) ≤ (
∑
s≤µ

Ns(f, h)2−(1−q/p)‖s‖1)2(1−q/p)‖µ‖1 	
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h−q(
∑
s≤µ

‖δs(f)‖q
q)2

(1−q/p)‖µ‖1 	 h−q‖f‖q
q2

(1−q/p)‖µ‖1 .

This completes the proof of Lemma 2.1.

Denote by T p
h the thresholding mapping:

T p
h (f) :=

∑
I:‖fIψI‖p≥h

fIψI .

Lemma 2.3. Let 1 < q < p < ∞. Then for each f ∈ Ψ(µ) we have

‖f − T p
h (f)‖p 	 h1−q/p(‖f‖q2(1/q−1/p)‖µ‖1)q/p.

Proof. We estimate first ‖δs(f − T p
h (f))‖p. We have

‖δs(f − T p
h (f))‖p

p 	
∑

I∈Ds\As(f,h)

‖fIψI‖p
p ≤ hp−q

∑
I∈Ds

‖fIψI‖q
p 	

hp−q
∑

I∈Ds

‖fIψI‖q
q2

(1−q/p)‖s‖1 	 hp−q‖δs(f)‖q
q2

(1−q/p)‖s‖1.

Therefore,

(2.8) ‖δs(f − T p
h (f))‖p 	 h1−q/p(‖δs(f)‖q2(1/q−1/p)‖s‖1)q/p.

Next, using the Hölder inequality with a parameter pql

puq we get from (2.7) and (2.8)
that

‖f − T p
h (f)‖p 	 (

∑
s≤µ

‖δs(f − T p
h (f))‖pu

p )1/pu 	

h1−q/p(
∑
s≤µ

‖δs(f)‖qpu/p
q 2(1/q−1/p)‖s‖1qpu/p)1/pu 	

h1−q/p(
∑
s≤µ

‖δs(f)‖ql
q )q/(pql)(2(1/q−1/p)‖µ‖1)q/p 	

h1−q/p(‖f‖q2(1/q−1/p)‖µ‖1)q/p.

This completes the proof of Lemma 2.3.

Remark 2.1. Let h > 0 be given. Denote

A=(f, h) := {I : ‖fIψI‖p = h}.

Take any subset Y ⊆ A=(f, h) and denote

T p
h,Y (f) :=

∑
I∈A(f,h)\Y

fIψI .
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It is not difficult to see that Lemma 2.3 holds with T p
h replaced by T p

h,Y with any
Y ⊆ A=(f, h) and the constant in the estimate does not depend on Y .

We define now a function class. Let R = (R1, . . . , Rd), Rj > 0, j = 1, . . . , d, and
as above

g(R) := (
d∑

j=1

R−1
j )−1.

For natural numbers l denote

Ψ(R, l) := Ψ(µ), µj = [g(R)l/Rj], j = 1, . . . , d.

We define the class HR
q (Ψ) as the set of functions f ∈ Lq representable in the form

f =
∞∑

l=1

tl, tl ∈ Ψ(R, l), ‖tl‖q ≤ 2−g(R)l.

Theorem 2.1. Let 1 < q, p < ∞ and g(R) > (1/q − 1/p)+. Then for Ψ satisfying
(2.1)–(2.4) we have

sup
f∈HR

q (Ψ)

‖f − GLp
m (f, Ψ)‖p 	 m−g(R).

Proof. We need some simple properties of the Fourier series of functions in HR
q (Ψ).

Denote
S(f, R, l) :=

∑
sj≤[g(R)l/Rj ],j=1,...,d

δs(f);

fR,l := S(f, R, l + 1) − S(f, R, l).

It is easy to derive from the definition of HR
q (Ψ) that

(2.9) ‖f − S(f, R, l)‖q 	 2−g(R)l and ‖fR,l‖q 	 2−g(R)l.

We consider first the case q < p. Take h > 0 and specify n such that

2−(n+1)(g(R)+1/p) < h ≤ 2−n(g(R)+1/p).

Then for a function f ∈ HR
q (Ψ) by (2.9) and Lemma 2.1 we get

(2.10) #{I : ‖fIψI‖p ≥ h} 	

2n + h−q
∑
l≥n

2−g(R)lq+(1−q/p)l 	 2n.

We estimate now the Lp-norm of

fh := f − T p
h (f).
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We have

(2.11) ‖fh‖p ≤ ‖S(fh, R, n)‖p +
∑
l≥n

‖S(fh, R, l + 1) − S(fh, R, l)‖p.

By (2.9) and Lemma 2.3 we get

(2.12) ‖S(fh, R, l + 1) − S(fh, R, l)‖p 	 h1−q/p2(−g(R)l+(1/q−1/p)l)q/p.

For S(fh, R, n) we have

(2.13) ‖S(fh, R, n)‖p ≤
∑

sj≤[g(R)n/Rj ],j=1,...,d

‖δs(fh)‖p 	

∑
sj≤[g(R)n/Rj ],j=1,...,d

h2‖s‖1/p 	 h2n/p.

Combining (2.12) and (2.13) we get from (2.11)

(2.14) ‖fh‖p 	 2−g(R)n.

Taking into account (2.10) and Remark 2.1 we get from here the estimate in The-
orem 2.1 for q < p. It is clear it implies the general case 1 < q, p < ∞.

3. Approximation of anisotropic Hölder-Nikol’skii classes

We study here m-term approximation in the Lp-norm of functions from classes
NHR

q with regard to the basis Ud := U × · · · × U .
We define the system U := {UI} in the univariate case. Denote

U+
n (x) :=

2n−1∑
k=0

eikx =
ei2nx − 1
eix − 1

, n = 0, 1, 2, . . . ;

U+
n,k(x) := ei2nxU+

n (x − 2πk2−n), k = 0, 1, . . . , 2n − 1;

U−
n,k(x) := e−i2nxU+

n (−x + 2πk2−n), k = 0, 1, . . . , 2n − 1.

It will be more convenient for us to normalize in L2 the system of functions
{U+

m,k, U−
n,k} and enumerate it by dyadic intervals. We write

UI(x) := 2−n/2U+
n,k(x) with I = [(k + 1/2)2−n, (k + 1)2−n)

and
UI(x) := 2−n/2U−

n,k(x) with I = [k2−n, (k + 1/2)2−n).

Denote

D+
n := {I : I = [(k + 1/2)2−n, (k + 1)2−n), k = 0, 1, . . . , 2n − 1}
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and
D−

n := {I : I = [k2−n, (k + 1/2)2−n), k = 0, 1, . . . , 2n − 1},

D0 := [0, 1), D := ∪n≥0(D+
n ∪ D−

n ) ∪ D0.

It is easy to check that for any I, J ∈ D, I 
= J we have

〈UI , UJ〉 = (2π)−1

∫ 2π

0

UI(x)ŪJ(x)dx = 0,

and
‖UI‖2

2 = 1.

We use the notations for f ∈ L1

fI := 〈f, UI〉 = (2π)−1

∫ 2π

0

f(x)ŪI(x)dx; f̂(k) := (2π)−1

∫ 2π

0

f(x)e−ikxdx

and

δ+
s (f) :=

2s+1−1∑
k=2s

f̂(k)eikx; δ−s (f) :=
−2s∑

k=−2s+1+1

f̂(k)eikx; δ0(f) := f̂(0).

Then for each s and f ∈ L1 we have

δ+
s (f) =

∑
I∈D+

s

fIUI ; δ−s (f) =
∑

I∈D−
s

fIUI ; δ0(f) = f[0,1).

Moreover, the following important for us analog of Marcinkiewicz theorem holds

(3.1) ‖δ+
s (f)‖p

p �
∑

I∈D+
s

‖fIUI‖p
p; ‖δ−s (f)‖p

p �
∑

I∈D−
s

‖fIUI‖p
p

for 1 < p < ∞ with constants depending only on p. We note that (3.1) and
boundedness of operators δ+

s , δ−s as operators from Lp into Lp, 1 < p < ∞, imply

‖δ+
s (f) + δ−s (f)‖p

p �
∑

I∈D+
s ∪D−

s

‖fIUI‖p
p,

that is the property (2.2) from Section 2.
We remark that

(3.2) ‖UI‖p � |I|1/p−1/2, 1 < p ≤ ∞,

which implies for any 1 < q, p < ∞

(3.3) ‖UI‖p � ‖UI‖q|I|1/p−1/q.
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This relation gives the property (2.1) from Section 2. In the multivariate case of
x = (x1, . . . , xd) we define the system Ud as the tensor product of the univariate
systems U . Let I = I1 × · · · × Id, Ij ∈ D, j = 1, . . . , d, then

UI(x) :=
d∏

j=1

UIj (xj).

For s = (s1, . . . , sd) and ε = (ε1, . . . , εd), εj = + or −, denote

Dε
s := {I : I = I1 × · · · × Id, Ij ∈ Dεj

sj
, j = 1, . . . , d}.

It is easy to see that (3.2) and (3.3) are also true in the multivariate case. It is not
difficult to derive from (3.1) that for any ε we have

‖δε
s(f)‖p

p �
∑

I∈Dε
s

‖fIUI‖p
p,

and

(3.4) ‖
∑

ε

δε
s(f)‖p

p �
∑

I∈∪εDε
s

‖fIUI‖p
p, 1 < p < ∞,

with constants depending only on p and d. Here we denote

δε
s(f) :=

∑
k∈ρ(s,ε)

f̂(k)ei(k,x)

where
ρ(s, ε) := ε1[2s1 , 2s1+1 − 1) × · · · × εd[2sd , 2sd+1 − 1).

The convergence

(3.5) lim
minj µj→∞

‖f −
∑

sj≤µj ,j=1,...,d

∑
ε

δε
s(f)‖p = 0, 1 < p < ∞,

and the Littlewood-Paley inequalities

(3.6) ‖f‖p � ‖(
∑

s

|
∑

ε

δε
s(f)|2)1/2‖p

are well-known. Thus Ud satisfies the properties (2.1)–(2.4) from Section 2.
Denote for given R and n

ER
n (f)p := inf

t∈T (R,n)
‖f − t‖p.

It is known (see [T1], Ch.2, S3) that for f ∈ NHR
q we have

(3.7) ER
n (f)q 	 2−g(R)n.

This implies that for some C > 0 we have

NHR
q ⊂ HR

q (Ud)C := {f : f/C ∈ HR
q (Ud)}.

Therefore Theorem 2.1 gives.
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Theorem 3.1. Let 1 < q, p < ∞; then for R such that g(R) > (1/q − 1/p)+ we
have

sup
f∈NHR

q

‖f − GLp
m (f, Ud)‖p 	 m−g(R).

We discuss now a question of what other systems Ψ satisfying (2.1)–(2.4) are
also good for approximating the classes NHR

q . The following lemma combined
with Theorem 2.1 gives a sufficient condition.

Lemma 3.1. Let R = (R1, . . . , Rd) ∈ Zd
+ and 1 ≤ q ≤ ∞ be given and A be a

number such that A > Rj, j = 1, . . . , d. Assume that a basis Φ := {φI}I∈D([0,1])

of functions on a single variable has the following approximative property. For any
0 < r < A we have

En(Hr
q , Φ)q := sup

f∈Hr
q

inf
cI

‖f −
∑

|I|≥2−n

cIφI‖q 	 2−rn.

Then for Φd := Φ × · · · × Φ we have

ER
n (NHR

q , Φd)q := sup
f∈NHR

q

inf
cI

‖f −
∑

|Ij |≥2−ng(R)/Rj ,j=1,...,d

cIφI‖q 	 2−g(R)n

and for smoe constant C
NHR

q ⊂ HR
q (Φ)C.

Proof. We get from (3.7) that each f ∈ NHR
q has a representation

(3.8) f =
∞∑

l=1

tl; tl ∈ T (R, l); ‖tl‖q 	 2−g(R)l.

We study first the multivariate analogs of approximation of functions on a single
variable. Fix 1 ≤ j ≤ d and define

En,j(f, Φ)q := inf
cI(xj)

‖f(x) −
∑

|I|≥2−n

cI(xj)φI(xj)‖q,

where xj := (x1, . . . , xj−1, xj+1, . . . , xd).
For any trigonometric polynomial t ∈ T (R, l) we can estimate En,j(t, Φ)q using

the following two arguments. The first one is trivial

(3.9) En,j(t, Φ)q ≤ ‖t‖q.

The second one uses the Bernstein inequality: for any xj we have

(3.10) ‖Dr
xj

t(·, xj)‖q ≤ C‖t(·, xj)‖q2rg(R)l/Rj ,

where the Lq-norm is taken only in the variable xj . The inequlity (3.10) implies
that for any xj we have

t(·, xj) ∈ Hr
q C′2rg(R)l/Rj‖t(·, xj)‖q
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and, therefore, for 0 < r < A we get by our assumption that

(3.11) En,j(t, Φ)q 	 2r(g(R)l/Rj−n)‖t‖q.

We take now f ∈ NHR
q and prove that

En,j(f, Φ)q 	 2−nRj .

We choose a number r such that Rj < r < A and use the representation (3.8).
Applying (3.11) for l ≤ L := nRj/g(R) and (3.9) for l > L we obtain

(3.12) En,j(f, Φ)q 	
∑
l≤L

2−rn2g(R)(r/Rj−1)l +
∑
l>L

2−g(R)l 	 2−nRj .

We use now the following inequality

(3.13) ER
n (f, Φd)q ≤ C(p, d)

d∑
j=1

Eg(R)n/Rj ,j(f, Φ)q,

which is an analog of Bernstein’s theorem (see [B] and also [P], [Ti], [T4]). We prove
here Theorem 3.2 that is a more general inequality than (3.13). The inequality
(3.13) combined with (3.12) implies for f ∈ NHR

q that

ER
n (f, Φd)q 	 2−g(R)n.

This completes the proof of Lemma 3.1.
We prove now an analog of the Bernstein theorem mentioned above. Let X be

a Banach space and let Ψ be a basis for X. For a given set G of indeces denote

EG(f)X := inf
ci,i∈G

‖f −
∑
i∈G

ciψi‖X .

Consider a projector SG which maps a function f ∈ X to

SG(f) :=
∑
i∈G

ci(f)ψi where f =
∑

i

ci(f)ψi.

If G is finite then the operator SG is a bounded operator from X onto

XG := span{ψi}i∈G.

In the case of infinite G we define

XG := span{ψi}i∈G

and assume that G is such that the operator SG is a bounded operator from X
onto XG. In the case of unconditional basis Ψ the operator SG is bounded for all
G with the norm bound independent of G.



14 V.N.TEMLYAKOV

Theorem 3.2. Let two sets G1 and G2 of indeces be such that

(3.14) ‖SGj‖X→X ≤ B, j = 1, 2.

Denote G := G1 ∩ G2. Then for any f ∈ X we have

EG(f)X ≤ 1
2
(B + 1)2(EG1(f)X + EG2(f)X).

Proof. We estimate ‖f − SG(f)‖X . Let us represent

SG(f) = SG1(f) − SG1\G2(f)

and estimate

(3.15) ‖f − SG(f)‖X ≤ ‖f − SG1(f)‖X + ‖SG1\G2(f)‖X .

By the assumption (3.14) we get

(3.16) ‖f − SG1(f)‖X ≤ (B + 1)EG1(f)X .

Next, we have

(3.17) ‖SG1\G2(f)‖X ≤ B(B + 1)EG2(f)X .

Combining (3.16) and (3.17) we obtain from (3.15)

(3.18) ‖f − SG(f)‖X ≤ (B + 1)(EG1(f)X + BEG2(f)X).

Changing the roles of G1 and G2 we get in the same way

(3.19) ‖f − SG(f)‖X ≤ (B + 1)(BEG1(f)X + EG2(f)X).

Adding (3.18) and (3.19) we get the required inequality.

We prove now the lower estimates in best m-term approximation. These proofs
are similar to the corresponding ones from [T2, S.4].

Theorem 3.3. Let 1 < q, p < ∞. Then for R such that g(R) > (1/q − 1/p)+ we
have

σm(NHR
q , Ud)p � m−g(R).

Proof. We need a concept of the entropy numbers. For a bounded set F in a Banach
space X we denote for integer m

εm(F, X) := inf{ε : ∃f1, . . . , f2m ∈ X : F ⊂ ∪2m

j=1(fj + εB(X))},

where B(X) is the unit ball of Banach space X and fj + εB(X) is the ball of radius
ε with the center at fj .
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In this proof we use the following estimates

(3.20) εm(NHR
q , Lp) � m−g(R), 1 ≤ q, p,≤ ∞, g(R) > (1/q − 1/p)+.

These estimates should be considered known and can be derived, for instance, from
the finite demensional results (see [S]) by standard arguments of descritization. The
estimates (3.20) will be used in the general method which roughly speaking states
that m-term approximations with regard to any reasonable basis are bounded from
below by the entropy numbers. We formulate now one result from [T5] (see Th.4
with b = 0).

Assume a system Ψ := {ψj}∞j=1 of elements in X satisfies the condition:
(VP) There exist three positive constants Ai, i = 1, 2, 3, and a sequence {nk}∞k=1,

nk+1 ≤ A1nk, k = 1, 2, . . . , such that there is a sequence of the de la Vallée-Poussin
type operators Vk with the properties

Vk(ψj) = λk,jψj , λk,j = 1 for j = 1, . . . , nk; λk,j = 0 for j > A2nk,

(3.21) ‖Vk‖X→X ≤ A3, k = 1, 2, . . . .

Theorem 3.4. Assume that for some a > 0 we have

εm(F, X) ≥ C1m
−a, m = 2, 3 . . . .

Then if a system Ψ satisfies the condition (VP) and also satisfies the following
condition

(3.22) En(F, Ψ) := sup
f∈F

inf
c1,...,cn

‖f −
n∑

j=1

cjψj‖X ≤ C2n
−a, n = 1, 2, . . . ;

we have
σm(F, Ψ)X � m−a.

We use this theorem with Ψ = Ud and X = Lp. As a sequence of operators Vn

we take
Vn(f) :=

∑
|Ij |≥2−ng(R)/Rj ,j=1,...,d

fIUI =

∑
sj≤2ng(R)/Rj−1,j=1,...,d

∑
ε

δε
s(f).

It is well known that for any 1 < p < ∞

‖Vn‖Lp→Lp ≤ C(p, d).

The relation (3.22) follows from (3.7). Thus Theorem 3.3 follows from Theorem 3.4
and the estimates (3.20).
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Theorem 3.5. For any orthogonal basis Φ we have for R such that g(R) > (1/q−
1/p)+

σm(NHR
q , Φ)2 � m−g(R), 1 ≤ q ≤ ∞.

Proof. The proof of this theorem is similar to the univariate case (see [K]). We
shall not carry it out here and formulate only the key lemma of the proof (see [K,
Corollary 2]).

Lemma 3.2. There exists an absolute constant C0 > 0 such that for any orthonor-
mal basis Φ and any N-dimensional cube

BN(Ψ) := {
N∑

j=1

ajψj, |aj| ≤ 1, j = 1, . . . , N ;

Ψ := {ψj}N
j=1 an orthonormal system}

we have

σm(BN , Φ)2 ≥ 3
4
N1/2

if m ≤ C0N .

4. Soft thresholding is a Lipschitz mapping

In this section we assume that a basis Ψ = {ψk}∞k=1 is an unconditional normal-
ized (‖ψk‖ = 1, k = 1, 2, . . . ) basis for X.

Definition 4.1. A basis Ψ = {ψk}∞k=1 of a Banach space X is said to be uncon-
ditional if for every choice of signs θ = {θk}∞k=1, θk = 1 or −1, k = 1, 2, . . . , the
linear operator Mθ defined by

Mθ(
∞∑

k=1

akψk) =
∞∑

k=1

akθkψk

is a bouded operator from X into X.

The uniform boundedness principle implies that the unconditional constant

K := K(X, Ψ) := sup
θ

‖Mθ‖

is finite.
The following theorem is a well known fact about unconditional bases (see [LT],

p.19).



17

Theorem 4.1. Let Ψ be an unconditional basis for X. Then for every choice of
bounded scalars {λk}∞k=1, we have

‖
∞∑

k=1

λkakψk‖ ≤ 2K sup
k

|λk|‖
∞∑

k=1

akψk‖

(in the case of real Banach space X we can take K instead of 2K).

In numerical implementation of nonlinear m-term approximation one usually
prefers to employ the strategy known as thresholding (see [D, S.7.8]) instead of
greedy algorithm. We define and study here the soft thresholding. Let a real
function v(x) defined for x ≥ 0 satisfies the following relations

(4.1) v(x) =
{

1, for x ≥ 1
0, for 0 ≤ x ≤ 1/2,

(4.2) |v(x)| ≤ A, x ∈ [0, 1];

there is a constant CL such that for any x, y ∈ [0,∞) we have

(4.3) |v(x) − v(y)| ≤ CL|x− y|.

Let

f =
∞∑

k=1

ck(f)ψk.

We define a soft thresholding mapping Tε,v as follows. Take ε > 0 and set

Tε,v(f) :=
∑

k

v(|ck(f)|/ε)ck(f)ψk.

Theorem 4.1 implies that

(4.4) ‖Tε,v(f)‖ ≤ 2KA‖f‖.

We prove now that the mapping Tε,v satisfies the Lipschitz condition with a constant
independent of ε.

Theorem 4.2. For any ε and any functions f, g ∈ X we have

‖Tε,v(f) − Tε,v(g)‖ ≤ (3A + 2CL)2K‖f − g‖.

Proof. Let ε > 0 be fixed. We use for simplicity the following abbreviated notations:

vk(f) := v(|ck(f)|/ε), vk(g) := v(|ck(g)|/ε).

Then we have

(4.5) Tε,v(f) − Tε,v(g) =
∑

k

(ck(f)vk(f) − ck(g)vk(g))ψk =
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∑
k

(ck(f) − ck(g))vk(f)ψk +
∑

k

ck(g)(vk(f) − vk(g))ψk =: Σ1 + Σ2.

For the first sum we have by Theorem 4.1

(4.6) ‖Σ1‖ ≤ 2K‖{vk(f)}‖l∞‖f − g‖ ≤ 2KA‖f − g‖.

In order to estimate the second sum we introduce the set

Λ(g, ε) := {k : |ck(g)| ≥ ε}

and write

Σ2 =
∑

k∈Λ(g,ε)

ck(g)(vk(f) − vk(g))ψk +
∑

k/∈Λ(g,ε)

ck(g)(vk(f) − vk(g))ψk =: Σ′
2 + Σ′′

2 .

Let us estimate first Σ′′
2 . We have

|ck(g)(vk(f) − vk(g))| ≤ εCL||ck(f)| − |ck(g)||/ε ≤ CL|ck(f) − ck(g)|.

We get from here by Theorem 4.1

(4.7) ‖Σ′′
2‖ ≤ 2KCL‖f − g‖.

We proceed to estimating Σ′
2. Represent Σ′

2 in the form

Σ′
2 =

∑
k∈Λ(g,ε)∩Λ(f,ε)

ck(g)(vk(f) − vk(g))ψk+

∑
k∈Λ(g,ε)\Λ(f,ε)

ck(g)(vk(f) − vk(g))ψk =: Σ′
2,1 + Σ′

2,2.

For k in the first sum we have from the definition of v that vk(f) = vk(g) = 1 and
thus Σ′

2,1 = 0. Let us estimate now the following sum

Σ :=
∑

k∈Λ(g,ε)\Λ(f,ε)

ck(f)(vk(f) − vk(g))ψk.

Similarly to Σ′′
2 we get

(4.8) ‖Σ‖ ≤ 2KCL‖f − g‖.

Next, we have

(4.9) ‖Σ′
2−Σ‖ = ‖

∑
k∈Λ(g,ε)\Λ(f,ε)

(ck(g)−ck(f))(vk(f)−vk(g))ψk‖ ≤ 2K2A‖f−g‖.

Combining the estimates (4.5)–(4.9) we complete the proof of Theorem 4.2.
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Theorem 4.2 provides a way of constructing greedy type algorithms which have
the Lipschitz property. For instance one can use a soft thresholding algorithm with
regard to Ud to approximate functions from classes NHR

q and also from classes
MW r

q and MHr
q with bounded mixed derivative or difference (see [T2]). A problem

of constructing a continuous mapping in m-term approximation was discussed in
[Du]. The following remarks will be useful in this regard.

1). The system Ud is an unconditional basis for Lp, 1 < p < ∞. See [W] for
d = 1. The general case d > 1 follows from the case d = 1 by standard arguments
(see for instance [DKT]).

2). Denote by Tε the thresholding algorithm, i.e. Tε := Tε,u with u(x) = 1 for
x ≥ 1 and u(x) = 0 otherwise. Then by Theorem 4.1 we have

(4.10) ‖f − Tε,v(f)‖ ≤ 2KA‖f − Tε(f)‖.

Thus, if we have upper estimates for thresholding algorithm Tε (greedy algorithm)
then we can derive from them the corresponding upper estimates for soft thresh-
olding algorithm.

In [KT] we studied the concept of greedy basis, i.e. a basis Ψ such that for each
f ∈ X we have

‖f − Gm(f, Ψ)‖ ≤ Gσm(f, Ψ), m = 1, 2, . . . ,

with a constant G independent of f and m. Denote

m(f, ε) := #{k : |ck(f)| ≥ ε}.

Then (4.10) implies that if Ψ is a greedy basis we have for each f ∈ X

(4.11) ‖f − Tε,v(f)‖ ≤ G′σm(f,ε)(f, Ψ).

We note here that (4.11) implies that Ψ is a greedy basis. The proof of this state-
ment uses the arguments from [KT] and can be carried out as follows. We have
proved in [KT] (see Theorem 1) that Ψ is greedy iff Ψ is unconditional and demo-
cratic.

Definition 4.2. We say that a basis Ψ = {ψk}∞k=1 is a democratic basis if for any
two finite sets of indices P and Q with the same cardinality #P = #Q we have

(1.2) ‖
∑
k∈P

ψk‖ ≤ D‖
∑
k∈Q

ψk‖

with a constant D := D(X, Ψ) independent of P and Q.

Using the arguments from [KT] which were used to prove that greedy basis is
unconditional and democratic we prove that (4.11) implies that Ψ is unconditional
and democratic. It remains to apply Theorem 1 from [KT] to complete the proof.
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