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Abstract

Averaging lemmas deduce smoothess of velocity averages, such as

f@)= [ f@oydn, 2c R,
Q

from properties of f. A canonical example is that f is in the Sobolev space
W1/2(Ly(IRY)) whenever f and g(z,v) := v - Vo f(x,v) are in Ly(IR? x Q). The
present paper shows how techniques from Harmonic Analysis such as maximal func-
tions wavelet decompositions and interpolation can be used to prove L, versions of
the averaging lemma. For example, it is shown that f,g € Lp(le x 1) implies that
f is in the Besov space B;(Lp(le)), s := min(1/p,1/p’'). Examples are constructed
using wavelet decompositions to show that these averaging lemmas are sharp. A
deeper analysis of the averaging lemma is made near the endpoint p = 1.

AMS subject classification: 35160, 35165, 35B65, 46B70, 46B45, 42B25.
Key Words: averaging lemma, regularity, transport equations, Besov
spaces

1 Introduction

Averaging lemmas arise in the study of regularity of solutions to nonlinear transport equa-
tions. The present paper shows how techniques from Harmonic Analysis, such as wavelet
decompositions, maximal functions, and interpolation, can be used to prove averaging
lemmas and to establish their sharpness.

Let f(z,v) be a real valued function defined on IR? x Q where Q is a bounded domain
in IR?. In applications Q is a set of velocity vectors. Associated to f, we have the velocity
average

f(x) ::/f(:c,v) dv. (1.1)

By an averaging lemma, we shall mean a result which deduces smoothess for f from
assumptions about f and the function

g(z,v) :=v-V,f. (1.2)
*This work has been supported in part by the Office of Naval Research Contract N0014-91-J1343




Note that g(-,v) only gives information about the smoothness of f(-,v) in the direction
v. We shall restrict our attention to the nontrival case d > 2. The simplest version of an
averaging lemma is the following.

Theorem 1.1 If f,g € Ly(IR* x Q), d > 2, then f is in the Sobolev space W'/?(Ly(IR?))
and

||f||W2(L2(1Rd) <C [||f||L2(1Rde) + ||g||L2(1Rd><Q)} : (1-3)
where C' depends only on d and €.

This theorem is easily proved using Fourier transforms [9].
We are interested in generalizations of the averaging lemma in which the role of Lo
is replaced by L,, p # 2. We shall use the abbreviated notation B := B;(Lp(Rd)) for

this Besov space. Note that WY/2(Ly(IR%)) = By'*(Ly(IR%)). We shall prove the following
averaging lemma in §3.

Theorem 1.2 If f,g € L,(IR* xQ), d > 2, then f is in the Besov space Brin(/p /YY) gnd

171l gsecssorr < C (111, maxay + 190, (me o) - (1.4)
where C' depends only on d and €.

As noted above, the case p = 2 of this lemma was first proved by Golse, Lions,
Perthame, and Sentis [9] and is a quite elementary application of Fourier transforms. This
latter paper also proves that when f,g € L, then f is in each of the Besov spaces By,
0 < s <min(1/p,1/p'). Diperna, Lions, and Meyer [8] remark that the Theorem 1.2 holds
for p > 2 and also show for p < 2 that f,g € L,(IR* x Q) implies f € Bgl/p’(Lp(Bd)).

Later, Bezard [2] showed that in the case 1 < p < 2, the space B;/p’(Lp(Bd)) can be
replaced by the (smaller) potential space £/?'(L,(IR")). The conclusion in Theorem 1.2
is slightly stronger than Bezard’s result because B;/p'(Lp(]Rd)) is properly embedded in
LY? (L, (IR"%). The proofs of the previous authors for 1 < p < 2 is based on Littlewood-
Paley theory and in the case of Bezard on an analysis of the averaging lemma for p = 1
involving Hardy spaces.

One of the main points of the present paper is to show how Theorem 1.2 follows
immediate from the following facts about the real method of interpolation:

(Ly(RY), By*(Lo(RY))syp = By/P (Ly(RY), 1<p<2, (1.5)

and
(Loo(IRY), By*(La(IRY)))a/pp C BYP(Ly(IR?)), 2 <p < o0. (1.6)

The second of these interpolation theorems is a simple consequence of existing interpo-
lation results and covers the case 2 < p < 0o in Theorem 1.2. On the other hand, (1.5)
uses (simple) new ideas based on maximal functions in its proof. We feel that the new
technique will prove useful in other settings.

We should note that to derive Theorem 1.2 from the above interpolation theorems is
elementary and utilizes only the obvious result that f € L,(IR? x ) implies f € L,(IR%),
p = 1,00, together with the simple case p = 2 already noted above.

We shall also show that Theorem 1.2 is sharp in the following sense.
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Theorem 1.3 For each bounded domain Q C R* and each 1 <p < oo and g < p, there
is a function f with f,g € Ly,(IR*x ), d > 2, such that f is not in BP"/P1/P)(L,(IRY)).

In the case 1 < p < 2, Lions [10] has shown the weaker result that for each s > 1/p’
there exists f,g € L, for which f is not in B;. He has also formulated some negative
results in the case 2 < p < oo but not in the above form.

We shall also go into a deeper analysis of the averaging lemma near the endpoint
p = 1. We show that if Q is bounded away from 0, then, whenever f,g € Li(IR* x Q),
the wavelet coefficients of f are in weak-f;. Note that for a function in L, it is generally
not true that its wavelet coefficients are in weak-¢;. We want to stress however that the
proof of Theorem 1.2 does not require this weak-¢; theorem.

Our main vehicle for analyzing the averaging operation is wavelet decompositions.
Wavelets give simpler characterizations of Besov spaces (in terms of wavelet coefficients)
than those from the Littlewood-Paley decompositions.

We have restricted our attention in this paper to a specific setting for averaging lem-
mas. Many variants are possible such as replacing v by a more general function a(v) in
v - V,f or taking a weighted average over IR? in place of the average over Q. The tech-
niques put forward in this paper can be applied to these variants as well. However, we feel
that the main point of this paper is to understand how certain elements from Harmonic
Analysis can be used in the analysis of averaging lemmas. Therefore, we do not strive to
give the most general results but rather to illustrate these simple techniques and to show
how they give sharp results.

An outline of this paper is as follows. In §2, we introduce the known results on wavelet
decompositions and their characterization of Besov spaces that we shall need in this paper.
In §3, we prove Theorem 1.2. In §4, we prove Theorem 1.3. The final section is devoted
to the weak-¢; result.

2 Besov spaces and wavelets

In this section, we introduce wavelet decompositions and explain how they characterize the
classical smoothness spaces. General references for the material in this section are Meyer
[11] and Daubechies[4]. Let E’ denote the set of vertices of the cube [0, 1]¢ and E denote
the set of nonzero vertices. Let ¢ be a univariate continuously differentiable wavelet
function with compact support which is obtained from the scaling function ¢. Examples
of such wavelets and scaling functions were given by Daubechies [3]. We could also use
biorthogonal wavelets or even noncompactly supported wavelets but at the expense of
technical complications. We shall use the notation ¢° := ¢ and ¢! := 1. For each e € E’,
we define the multivariate wavelets

we(xl,...,xd) = @bel(xl)---zﬁed(xd). (21)

Let D denote the set of dyadic cubes in R? and let D; denote those dyadic cubes
which have sidelength 277 and D, := U;>¢D;. For any dyadic cube I = 277(k + [0, 1]%)
in D, and any e € E’, we define the wavelet

vi(e) =y (2z — k). (2.2)
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which is a wavelet scaled to I. Notice that these functions are normalized in L.

To simplify the notation that follows, we introduce the indexing set A which consists
of all pairs (I,e) with I € D, and e € E (e € E' if [ € Dy). We also let A; := AND;,
§ > 0. For any locally integrable function h on IR?, we define its wavelet coefficients

as(h) = (h,yS), (I,e) € A. (2.3)

Moreover, we let
ar(h) = Yeerr |az(h)], I € Dy, '
ZeEE |a?(h)|’ Ie Dja J Z L.

These wavelet coefficients are normalized for L, (IR%).

There are times when we shall need normalizations of the wavelet functions and coef-
ficients for L,(IR*). We define

(2.4)

Wiy =I5, (Le) € A (2.5)
and
ag (k) = 177 a5(Rh),  arp(h) = 1|77 ar(h). (2.6)
Each function A which is locally integrable on IR? has the wavelet expansion
h= Y ap,(h)v],. (2.7)
(I,e)eA

The functions appearing in (2.7) form a complete orthonormal system for Lo(IR?).

Let s > 0,0 < ¢,p < oo . The Besov space B;(Lp(]Rd)) is usually defined by means
of moduli of smoothness or Fourier transforms. It is a smoothness space with s giving
the order of smoothness (analogous to the number of derivatives), p giving the space in
which smoothness is to be measured (namely L,(IR%)), and ¢ giving a finer distinction of
these spaces which is important in many applications. We refer the reader to any of the
standard treatments of Besov spaces ([6], [11],[12],[1]).

There are equivalent characterizations of Besov spaces in terms of wavelet coefficients.
We shall use these as our definition of the Besov spaces. Given s > 0, let » > s and let
¢ and ¥ be in C" and let ¢ have r vanishing moments. For 1 < p < 00, 0 < s < r,
0 < ¢ < 00, we define the Besov space B;(Lp(]Rd)) by means of the (quasi-)norm

o o /p\ /4
(Zj—o 27 (ZIE'D]- aI,p(h)p)q p) ) 0 < g < oo,

SUp;0 29* (Lrep, arp(h)?) g = oo,

||h||Bg(Lp(Rd)) =

We note, but shall not use, the fact that the smoothness condition on 1 assumed for (2.8)
can actually be weakened to only requiring that ¢» € B51¢(L,) for some € > 0.
In going further, we shall use the abbreviated notation

B; = Bi(L,(R%), s>0,1<p< oo0. (2.9)

In the special case that ¢ = xjo1), the wavelet ¢ is the Haar function and %7 is
supported on [ for each I € D, e € E’. The Haar function is not completely sufficient for
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our purposes (it barely misses characterising the Besov spaces of interest to us), because
of its lack of smoothness. However, it does provide one direction of the characterization
in (2.8).

Remark 2.1 If a function h is in the Besov space B;(Lp(]Rd)), 0<s<1,0<gq,p<oo,
then its Haar coefficients a$(h) satisfy

1/q

o q/p
Z 9Jsq (Z al,p(h)p) < C||h||Bg(Lp(Rd)) (2.10)
§=0

IEDj

with C' depending only on s and d.

This follows from well-known results on approximation by piecewise constant functions.

For example, let P; denote the orthogonal projector which maps f into the piecewise

constant function P;f which takes the value f; := ﬁ J f on each dyadic cube I in D;.
T

Then, it is well-known and easy to prove that
If = Pifllz,mey < Clflpa (r,men2 (2.11)

holds for all f € B2 (L,(IR%)), 0 < a < 1. Obviously, the left side in (2.11) can be
replaced by [|P;f — Pj-1fl|,(ge)- This latter expression is simply the £, norm of the L,
normalized Haar coefficients from the dyadic level j. This gives Remark 2.1 in the case
q = oo. Choosing a; < s < ay and interpolating between B2 (L,(IR%)) and B (L,(IR%))
gives the Remark 2.1 forall0 < s < 1,0 < g < o0.

We can always assume that the scaling function ¢ and the wavelet ¢/ are supported
on [0,¢] with ¢ an odd natural number. Then, when I € D;, I = 279(k + [0,1]%), the
functions 9§, e € E', are all supported on

I:=279(k+10,0%). (2.12)

The overlapping support causes technical difficulties which can be overcome with the
following lemma (see Lemma 4.3 in [5]).

Lemma 2.2 There exist disjoint sets of dyadic cubes 'y, ..., T
() D = UL, T,
(ii)) T, NTp =0, n#m,
(iii) if I, J € Ty, either I C J or J C I orint(I) Nint(J) = 0.

with v = v(d), such that

Y

3 An interpolation theorem.

In this section, we shall prove the interpolation results (1.5) and (1.6). Given a pair of
quasi-normed linear spaces X,Y which are continuously embedded in a Hausdorff space
X, the K-functional for this pair is defined by

K(f.4) = K(£6X.Y) = inf (follx+tlilly, ¢ >0 (31)
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The real interpolation space (X,Y)g,, 0 <0 <1, 0 < g < 00, consists of all f € X such

that
1/q

<(j)‘[t_0K(f, t)]q %) ’ 0< q < o9, (32)
SuP;>q t_eK(f’ t)a q = o0,

is finite. The expression in (3.2) defines the (quasi-)norm for this space.

The fundamental interpolation theorem for the #, ¢ spaces is the following. If U is a
linear operator which boundedly maps Xy to X; and Yy to Y, then, for each 0 < 6 < 1,
and 0 < ¢ < oo, U also boundedly maps (X, Yp)s,, into (Xi,Y1)s, and we have

1 £l (xx ), ==

||Uf||(X1,Y1)9,q < C||f||(X07YO)6,q (33)

for every f € (Xo, Y0)o,4-

The real interpolation spaces have been characterized for many pairs (X,Y"). We shall
need such characterizations only for certain sequence spaces and we restrict the following
discussion to the cases we need. Let w be a weight function defined on (I,e) € A and
consider the spaces £,(w) consisting of all sequences (cf)(se)ca for which

1/p
€ Ia i ) )
1) reyenlle,w) = { (Serepea wl( e))|cfe| ) 0<p<oo (3.4)
sup(r,e)ea w((Z, €))lefl, p = oo,

is finite. We shall only be concerned with weights w of the form w(([,e)) := |I|*, s € RR.
If wo((I,e)) = |I]*° and wy((L,e)) = |I|** are two weights of this form and 0 < § < 1
and 0 < pg,p1 < oo, then (see [1], p.119 )

(Lpo (wo), Lpy (w1))e,p = £p(we), (3.5)

where 1 1.0 8
— s s
== +—, we(I) =], sp=(1—0)p=>+6p—. (3.6)
b Po y4i Po b1
It is also possible in the above interpolation results to replace the ¢, spaces by Lorentz
spaces. We shall only need this in the case of the weak-¢;(w) spaces which correspond to

the Lorentz space {1 »(w). The quasi-norm on weak-¢;(w) is given by

(D aerealler ww) = supesoew{(l,e) € Az || > e} =€ 3, |I].  (3.7)

(Le):[e§|>e
In the case s = 0 and w((/,e)) = 1, for all (I,e), we refer to the space weak-¢;(w) as
simply weak-¢;. If w((I,e)) = |I|® for some s € IR, then (see [1], p.113)
(61,00 (w), £2(w))g,p = £p(w) (3.8)
where 1 1-0 0
P ubt (3.9)

Note that the weight w in (3.9) is not varying.
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We shall prove (1.5) and (1.6) by using wavelet sequences. If a function h € L;(IRY),
we can estimate its L; normalized wavelet coefficients by

a5(h)| < Co [ Ih, (3.10)

where [ is as defined in (2.12). It follows that the sequence of coefficients (a$(h))(s.e)ea,
are in ¢, for each j = 0,1,.... However the combined sequence (af(h)).e)jca does not
have this property. In fact, simple examples show that this latter sequence need not even

be in weak-f;. The following lemma shows that a substitute for the weak-f; property
holds.

Lemma 3.1 For any s > 1, and w((I,e)) := |I|*, there exists a constant Cs > 0 such
that for each h € Li(IR%), we have

€ > w((I,e)) = e > 11]° < Cullhllpy (mey, € >0, (3.11)

(L,e):lag (R)|>€lI]® (1,e):|ag (h)|>€l1]®

Proof: From (3.10), for any (I,e) € A,

as(h) < Co/|h| dz =: b (h) =: by(h), (3.12)

where the equalities serve to define b5(h) and br(h). We fix € > 0 and let A := {([,e) €
A : bj(h) > €|I]°}. For each m, let A, := {(I,e) € A : I € I';,,}, where the I, are the
sets of Lemma 2.2 which partition D. It is enough to show that

e >, I < Clhlly, ey (3.13)
(I,e)eAm

We fix m and prove (3.13). We say a cube I € A, is maximal if I is not contained in
any other cube J with (J,e) € A,, for some e. We next show that for any maximal cube
I, we have

e Y |F< C/|h|. (3.14)
(J,e)EAm,JCT 7
Indeed, for k > 0, there are at most £92%92¢ indices (J,e) such that |I| = 2*¢|J| and
therefore
S < (2043 2ME| 1) < O] < Cethp = Ce ! / I, (3.15)
I

(J,e)EAm,JCI k=0

where the next to last inequality is the criterion for membership in A,, and the last

inequality is (3.12). This completes the proof of (3.14). We now add the inequalities

(3.14) and use the fact that the maximal cubes are disjoint to arrive at (3.13). This

completes the proof of the theorem. O
We can now prove our main interpolation theorem.



Theorem 3.2 We have the following relations between interpolation spaces and Besov

spaces on IR%:
(L1, By?)aywp = BYY, 1 <p <2 (3.16)

and
(Looy By*)ajpp C BY?, 2 < p < 0. (3.17)

Moreover, the norm for the interpolation space on the left side of (3.16) is equivalent to
the norm of the Besov space on the right side. Likewise, the norm of the Besov space on
the right side of (3.17) is less than a fized multiple of the norm of the interpolation space
on the left side.

Proof: We first prove (3.16). Let w((I,e)) := |I|*, s := = and let ¢§(h) := |I|~*aj(h)
with a$(h) the L, normalized wavelet coefficients of h given by (2.3). We consider the
linear operator U which maps A into (c7(h)),e)ca. Lemma 3.1 gives that U boundedly
maps L; into weak-£;(w). The definition of the Besov space B21/ 2 gives that U boundedly
maps this Besov space into {s(w). By (3.3), we have that U boundedly maps (L, B;/Q)g’p
into ¢,(w) when 6 satisfies 1—1) =124+ % ie 6 =2/p. From the definition (2.8) of the
Besov spaces, we have

Cll(ci(h))reyealle ) = hll g/ (3.18)

This gives that the interpolation space on the left of (3.16) is embedded in the Besov
space on the right and

ll gy < Cllkll g, pors (3.19)

2/
We can reverse this embedding as follows. We consider the operator V' which maps
a given sequence d = (d7)(1,c)ea to the function V(d) = 5/ .yea d7¥7,. Then V' bound-

edly maps ¢; into L; and f3(w;) into By'* when wy((L,e)) = |I|*d$1. Thus, defining
d+1 p

wy((I,e)) :=|I|” ¢+ and using (3.5), we obtain that V maps £,(w,) into (Ll,le/2)2/p:,p
and

Vall,, i), < Clldllew,) < ClIVA gy (3.20)

The set of functions Vd, d € ¢,(w,) equals B;/p' and therefore we have reversed the
inequality (3.19). This completes the proof of (3.16).

The proof of the embedding (3.17) is similar to the proof of (3.19) except that we use
(3.5) in place of (3.8). O

4 Proof of Theorem 1.2

In this section, we show how Theorem 1.2 can be proved by using the interpolation results
of the previous section. Throughout this section, Q C IR? is a bounded set. We introduce
below a linear operator T" and examine its mapping properties. From these mapping
properties we easily deduce the averaging lemma.

For any function F' € L;(IR* x Q) + Lo (IR* x Q), the differential equation

fH+v-V,f=F (4.1)



has a solution

which is also in L; (IR x Q) 4+ Leo(IR* x Q). Note that if F € L,(IR* x Q), 1 < p < oo
then so is f and

1|z, mec) S NF |, (rexa)- (4.3)

Also, we have

||U : sz”L,,(fRde) = ||F - f“Lp(RdXQ) < 2||F||Lp(Bd><Q)' (4-4)

We define the linear operator 7' by

(TF)(@) = f(z) = [ f(a,v)dv, (4.5)

Q

where f is given by (4.2). For each 1 < p < oo, we have

T sy = Wl < s ey < (meos(@) gy,
4.6
where the last inequality is (4.3)
Let us consider more closely the action of 7' on Ly(IR* x Q). If F € Ly(IR* x Q) then
from Theorem 1.1 (i.e. the case p = 2 of the averaging lemma), we have

||TF||1321/2 <C (Hf”Lg(Rde) + ||U : sz||L2(Rde)) < C||F||L2(1Rdxﬂ) (4-7)

where the last inequality uses (4.3) and (4.4). In other words, T is a bounded mapping
from Ly(IR* x Q) into the Besov space B2

In summary, we have shown that 7' boundedly maps L,(IR*x) to L,(IR*), 1 < p < oo,
and boundedly maps Lo (IR? x Q) into B;/ ?. It follows that for 1 < p < 0o, we have

||TF||B;nin(1/p,1/p'> < CNF ||, mixay F € Lpy(IRY x Q). (4.8)

For example, the case 1 < p < 2 follows from Theorem 3.2 and the fact that (L;(IR* x
Q), Ly(R* x Q)g/p p = Ly(IR* x Q).

Proof of Theorem 1.2: If f € L,(IR* x Q) and g := v-V,f € L,(IR* x Q), then
the function F := f + g is also in L,(IR* x Q). The differential equation (4.1) with this
choice of right side F has f as its unique solution. Thus TF = f and the theorem follows
from (4.8).

5 The sharpness of Theorem 1.2.

In this section, we prove Theorem 1.3 in the case 2 < p < co. Similar techniques (which
we do not give) will also prove the case 1 < p < 2 (see [12]).



Let Q C IR? be an arbitrary but fixed bounded domain. It follows that there is a
constant M > 0 such that
| <M, veQ. (5.1)

By rotating € if necessary, we can, without loss of generality, assume that Qs := QN {v =
(v1,...,vq) ¢ v; >0, i =1,...d} satisfies meas(2s) # 0 for some § > 0.
We shall use the piecewise linear function of one variable which satisfies

u+d+1, —d—1<u<—d,
F(u):=1¢ 1, —d <u<d, (5.2)
—u+d+1, d<u<d+1,

and is zero otherwise.
We shall build the function f called for in Theorem 1.3 as a sum of functions f; which
we now describe. Let

I =9k —1)d, 27"+ 9(k - 1)d)?, k=1,2,...,
be the family of dyadic cubes centered at z* = (z%,...,z%), where
b =271 19k —-1)d, i=1,...,d.
JFrom F we construct the family of multivariate functions
Fy(z) := F(@1)X[ 6,.8(%2) - X80 (Ta), 0 = 27"Vd,

Note that Fj is one on the ball of radius 27%+/d centered at the origin. For v € Qs let
Fi(-,v) denote the function whose graph is obtained from that of Fj(-), by a shift of the
origin to z* and then a rotation of the x; axis to the v axis (There are many such rotations
and the analysis that follows holds for any of them). Then, Fj(-,v) is one on the ball of
radius 2 *v/d centered at x*.

In this section, we use the notation v, := Hj_, for the following L, normalized
multivariate Haar function with support I,

Yi(z) = 287 H (252, — 9d(k — 1)2F)x (2825 — 9d(k — 1)2%) ... x(2%x4 — 9d(k — 1)2%).

Note that for all v € Qs, Fi(-,v) = 1 on the support of .
We denote by H, the hyperplane which is orthogonal to v and passes through the
origin and denote by P, the projector onto H,. For a multivariate function h, we let

[ h be the line integral of h along the line L(P,z), which consists of all points in IR?
L(Pyx)
which project onto P,x.
For each k£ > 1, let

Fk(x,v)sgn( f ¢k)7 vE QJ:
fr(z,v) = L(Pyz) (5.3)
0, v e \ Qs.
Given any sequence (3 := () of positive real numbers from ¢, we define
f('av) = f(a Uaﬁ) = Z 2k(d_1)/pﬁkfk('7 U). (54)

k=1
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As usual, g is defined via
g =7 - me (55)

In this construction every sequence 3 € ¢, generates a corresponding function f(-, ().
The smoothness of f is governed by the behavior of 3. We investigate this relation closer
and show how different requirements, imposed on £3, lead to different regularity of f. We
will need the following lemma.

Lemma 5.1 Let Qs, I and i be defined as above. Then, for every v € Qs and k > 1,
we can find a set W (v, k) C P,I, C H, with the properties:

(a) measq_1 (W (v, k)) > c27*d=1),

(b) for every v € Qs and w € W (v, k) we have

| / ¢k| > cgfk(lfd/p’),
L(w)

with the constant ¢ > 0 depending only on § and Q.

Proof: We shall prove a result similar to (a) and (b) for the unit cube. Then, the Lemma
follows by dilating and translating. Let @ := [0, 1]¢ and Hy be the following Haar function
supported on ()

[, 0<z1<1/2, 0<z<1, i=2,....4d
HO(“’)_{—L 1/2<z; <1, 0<z;<1, i=2,....d (5.6)
Let Wi={ze@: 1/2<z,<3/4, 0<z;<3/4,i=2,...,d—1, 24 = 0}. For each
veQsand x € W, x+tv € Q if and only if ¢t > 0 and

This means that if v € Q5, z € W, and z +tv € Q) then Hy(z 4 tv) = —1. Note that (5.7)

holds for
: 1 —w;
0<t<mini—, g4 .
U;

Since for z € W and v € Qs

we have (5.7) for 0 < ¢ < z7. Hence for each z € W the line segment L(P,z) N Q has
length > 76, because |v| > 6. Now, let W (v) be the projection (by P,) of W onto
H,. Then, measqs—1(W(v)) > ¢ measqg—1 (W) with ¢ depending only on § and M, because

0 <wv;<M,i=1,...,d. This shows property (a) for ). Also, for w € W (v),

5
— > _
| / H| / L=
L{w) L{w)

which verifies (b). O
The following theorem implies Theorem 1.3.
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Theorem 5.2 Let Q C IR? be a fized bounded domain. For every sequence € ly,
2 < p < 0o, the functions f and g, defined in (5.4) and (5.5) are in L,(IR* x Q) and the
velocity average f is in B;/p(Lp(Rd)). If Bet,\ly, q<p, then f & B(}/p(Lp(Rd)).

Proof: We start with a direct calculation of the L, norm of f. We use the fact that for
each fixed v € Q5 the supports of fi(.,v) are disjoint since the points z* are sufficiently
separated from each other. This gives

||f||p (R7x9) //|fxv|pdxdv—22kd 1Bp//|fka:v|pd:vdv

Qs R Qs R?

Since [ f (-, v) || (me)y < 1, we have that for every v € (s,

/ | fr(,v)|P dz < meas(supp fi(-,v)) < C27Fd1), (5.8)

Rd

Therefore, we derive

||f||p (Rixq) < Cmeas(Qs) Zﬁk < 00, (5.9)
k=1

and hence f € L,(IR* x Q).
We next prove that g is also in L,(R* x Q). For each fixed v € Qj, (-,v) =
|v|Dy(f(+,v)), where D,(f(-,v)) := % - V. f is the derivative of f in direction 7. Thus,

19185 oy = [ [OPIDAS NI gy A < € 2405 [ 1D (i 0)IE e d
Qs k=1 Qs

Now, for each v € s, we have || D, (fi(-,v))ll; (rey < 1, and D, (fi(-,v)) = 0 outside of
the support of fi(-,v). Therefore, as in (5.8), we get that [|Dy(fi (-, 0))II} ey < C2k(d=1),

This result and the previous estimate for || g||’£p (RixQ lead to

)

o0

||g||p (mixq) < Cmeas (Qs) Z (5.10)

Therefore, by Theorem 1.2, f € B;/ P(L,(IR%)) and the first part of the theorem is proved.

Going further, we consider only sequences 3 € £,. We shall show that f & BY/?(L,(IR%)),
g < p, whenever (3, used in the definition of f, is not an element of ¢,. For this purpose,
we calculate az,_,(f) (see (2.6)) which is the sum of the L, normalized Haar coefficients of
f for I;. One of the Haar functions that appears in the sum defining a;, , is gotten from
the inner product of f with 1, which is the same as the inner product of 2+@-1/Pg, f,
with 1. Therefore, using the definition (5.3) of fi, we obtain

lanp(Dl =1 [ [ 2K VPG fi(, v)ii(z) dedv]

vEQNs €I
=| [ 2rd-D/rg [ / fk%] dwdv|.
v, weP, I, |L(Pyz)
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By construction, fy = 1 or f = —1 along the line segment L(P,z) N I, where the sign of
fr is determined by the sign of [ ;. Therefore we have

L(Pyx)
anp (= [ 2055 [ [l dudv.
vEQs wEPy I L(Pyx)

Now, we use Lemma 5.1 and derive that

laz (/)] =2C [ 2k(d*l)/1"51c2*’“2kd/p'77”“‘3@5‘(1/1/(11 k))dv

vEQS

> Cmeas(§Qs) By 20 d-1)/po—kokd/p'o=k(d=1) — O3 27/P,

Hence, we get

(Y larg(DP)? > Jar, ()] = CB27H7,

I1€Dy
and then

S (Y Jar(F)P)?) q>02m
k=0 I€Dy,

For every 3 € {,, but not in /;, the right handside is infinite and hence the definition (2.8)
shows that f & BL/?(L,(IR%)). This proves the theorem. O

6 Weak /; estimates

In the proof of Theorem 1.2, we have not used any special properties of averaging near
L;. We have only used the fact that f € L;(IR* x 2) implies that f is in L;(/R?). In this
section, we want to show that the condition f,g € Li(IR* x Q) gives extra information
about f. We first consider domains § which satisfy

Qc{veR*: 0<M<|v| <M}, (6.1)

for some positive numbers 0 < M < M.
To a function h € Ly (IR?) we associate the sequence of wavelet coefficients

A= Ah) := (ar(h))rep+,

where a; is defined by (2.4). As we have remarked earlier, for a general function h €
Li(IR?) and for any j > 0, the wavelet coefficients (a;(h))rep, are in ¢;. However the
combined sequence A(h) is not in ¢; and in fact is not even in weak-¢;. We shall show
however that when f,g € Li(IR* x Q) then \(f) is in weak-;.

The main new ingredient in the weak-¢; estimate for wavelet coefficients is given in the
following lemma. For its formulation, we need to introduce some notation. For any cube
Q, we let £(Q) denote its side length. Given a vector v and a cube @, we denote by I(v)
the smallest (finite) cylinder which contains ) and has axis passing through the center of
@ and in the direction v . We recall our notation I for the support cube associated to I
(see (2.12)) and P, for the projector along v (see the paragraph preceding (5.3)). Given
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a dyadic cube I, the cube I_itogether with some of its translates form a tiling of RY. We
let I" denote the union of I with all of the neighboring cubes of I in this tiling. Each
neighboring cube can be written as J for some dyadic cube J with |J| = |I|. Therefore,

I'= U I (6.2)

with the number p of dyadic cubes in (6.2) depending only on d. We note that I(v) C I’
for all v € Q.

Lemma 6.1 Let Q be any bounded domain in R and f,g € Li(IR*x Q). Then for every
I and J € D, for which J C I, we have

//|f:1:v|d:1:dv<C’ //<|fxv|+€ )|(||)|> dzdv, (6.3)

where C' depends only on d and M .

Proof: We fix dyadic cubes I and J € D for which J C I: Note that J(v) C I(v) for all
v € Q. We fix v and consider any translate K := av + J(v) of J(v) which is contained

in I(v). For every v € @\ {(0,...,0)}, we can write g as g(-,v) = [v|D, f, with D, f the
directional derivative of f(-, ) in the direction - Tl . Then, for each z € J(v), we have
gi,v
el <li@rano+ [ 200, (6.4)
L(Pyz)

where P,z is the projection of z onto H, and L(P,z) is the line segment consisting of all
points in I(v) which project onto P,z. When we integrate (6.4) over J(v) we get

/|fxv|da;</|fxv|dx+0€ /|g.’£v . (6.5)

J(v)

There are C' % choices of a such that the sets K are disjoint. Therefore, by summing
the Corresponding inequalities (6.5), we obtain

/|fxv|da;</|f:vv|d:v+0€ /|g
I(v) I(v)

We have that J C J(v) and I(v) C I, for all v and therefore

[l

§/|fxv|dx</<|fxv|+0€()|(|v|v)|> dz. (6.6)

We integrate over v € ) and arrive at (6.3). O
We shall use the two auxiliary sequences

by == by (f —co//<|fxv|+€ )|( )|> dz dv. (6.7)
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and

by = bi(f —co//( o)+ 4D (TZ’|”)|> dz dv (6.8)

where the constant ¢ := 2¢ max(||q§||%oo(]R), ||;/J||%OO(IR)). It follows that

ar(f) < bi(f) < brlf). (6.9)

To prove that (a;(f))rep, is in weak-fy, it will be enough to estimate the number of
the elements in the set ~
A(f,e):={I € D" : by > €}.

For this purpose, we define a cube I € A(f,€) to be special if
by < 2ubr, (6.10)

where the constant u is defined by (6.2). We denote by A*(f,€) the collection of special
cubes in A(f,€). The following lemma gives an estimate for the cardinality of A(f,€) in
terms of special cubes.

Lemma 6.2 Let f and g € Li(IR* x Q). Then for every e > 0 we have

#ALO<C Y (log ), (6.11)

TeAs(f.e)
where C' depends only on d.

Proof: Let us observe that for every cube J € Dt we have

~ C C
b <o [ [ 150l +lg@ o)l dedv < (Sl moey + 19l o), (6:12)
Qg

because ¢(J) < C and |v| > M for v € (.
If J € A(f,€) is not a special cube, we have that

It follows from (6.13) that there is a cube J;, which is one of the cubes, participating in
J' (see (6.2)), such that 3 3
by, > 2by. (6.14)

If J; is a special cube, we stop. If not, we repeat the same procedure for J; and get
a cube Jy (Jo & {J, J;}) such that

512 > 21~)J1 > 2%,

where in the last inequality we use (6.14). This process will terminate after a finite number
of steps, because from (6.12) it follows that on the n-th step we have

C

M(Hf”Ll(Rded) + ||g||L1(JRd><Bd)) > BJn > 2"b;.
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Let I be the special cube which terminates this sequence, i.e. I = J, and
IN?[ > QnIN?J > 2.

Hence we have

b
n < log—. (6.15)
€

Therefore, every J € A(f,€) is contained in a ball with center, the center of a special cube
I =1I(J), and radius < Cnl(J) < CU(J) log with C' depending only on d. This gives

#A(fOSC Y (og )"

TeAs(f.€)

and the proof is completed. O
To each special cube I € A*(f,€) we associate an index m(I) := m(I, f,¢) as follows.
Let J be the smallest special cube in A(f,€), such that

JCI. (6.16)

Note that b, tends to 0 as |J| — 0 because f,g € L;(IR® x Q). Therefore, a smallest .J

does exist. We define | |1/d
I

Then, m([) is an integer which represents the difference between the dyadic level of I and
J. Recall that since J is a special cube, we have b; > € and 2ub; > b;.

Lemma 6.3 Let f,g € Li(IR* x Q). If I € A*(f,€) is a special cube, then
by > C2mDe, (6.17)
where C' is an absolute constant.

Proof: Let I € A°(f,¢e) and let J be the smallest special cube in A°(f,¢), such that
J C I. Then ¢(J)2™1) = ¢(I), and b; > e. We multiply this last inequality by 2™ and

obtain _
() = l9(z, v)| 1
— dzd 0(1)~—"—=dxd omDe,
K(J)COQ J/|f(3:,v)| T U+COQ/J/ (1) o] zdv > €

Now we use (6.3) of Lemma 6.1 and derive

C//l|f V)| + £( )|(|| ]dd +c//€

QI

d dv > 2mWe,

Since J C I C I', the above inequality gives

C’//[|fxv|+£ )|( )|] dedv > 2mWe,

2 [l
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But the cube I is special (see (6.10)) and therefore

br = 2y = 200 | [ l|f (2,0)] + DY (mv” dedv > C2"De,
QI

This proves the lemma. O
The next theorem gives us the weak-/; estimate.

Theorem 6.4 If f € Li(IR*xQ), g :=v-V,f € Li(IR* x Q) and Q satisfies assumption

(6.1), then A(f) is in weak-¢; and

C
M e = 57 5y + 19l mexen] (6.18)

where C s an absolute constant.

Proof: Given any € > 0, we need to show that

C
#Af2€) < 3 1F | ameny + 119l e (6.19)

Lemma 6.2 gives that

#A(f,6) < C (log )t =~ by,

and therefore

o = -1/2
#A(fe) <= > (—I> br. (6.20)
€ rens(fe) \ €
For each I € A*(f,¢), Lemma 6.3 gives
5 -1/2
(—I> < 2 D2, (6.21)
€
Also, for v € Q and I € D", we have
~ C
b < o7 [ [ U@ )l +lg(, o) i () dado. (6.22)
Q R4

When we combine (6.20), (6.21) and (6.22), we obtain

(0 < S [ (7o)l + lote,0) DK () dad,

Q R
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where
K(z):= Y 2 ™02 (z).
TeAs(f.e)
We will use Lemma 2.2 to show that K is bounded which will complete the proof. We
let I'(i, fe) := A°(f,e)NT;,i=1,...,v. Then, we can write

2l
K=> K,
i=1

where
Ki = Z 27m(1)/2X7a
1T (i, f,€)
and it is enough to show that each of the functions K; is bounded. In other words, we
need to show that for every z € IR?

> o2 < ¢ i=1,2,...,7, where I*(i, f,e,x) := {I € T*(i, f,e) : = €I}

Ier*(3,f,e,x)
(6.23)

To prove this inequality, we fix a point z for which the sum in (6.23) is not zero. We
make the following observations about the cubes appearing in this sum:

(i) There is a smallest cube I* € I'*(i,¢,x) (because f, g € Li(IR* x IRY)).

(ii) There is at most one I € D;, j > 0, in I'*(4, ¢, x) because of the defining property
of the sets T’;.

(iii) If I € I'™(i,€,2), then m(I) > m(I*) + ¢, where ¢ is the difference between the
dyadic level of I and I*.

It follows from (i-iii) that

Z 2—m([)/2 < iQ—n/Z < C,

Ier*(3,e,x) n=0

as desired. a
Notice that the smaller the M in (6.1), the bigger the constant < in (6.18). However,
one can allow M to go to zero if we restrict our attention only to certain wavelet coefficients
as the following result shows.
We fix an arbitrary n > 0 and consider domains €2 such that

Qc{veR': 27" <|v|<M'}, n>0. (6.24)
For f € Li(IR* x Q), let

M(f) = (ar(f))eps, with D = | D;.

jzn

Corollary 6.5 Let f € Li(R* x Q), g := v-Vof € Li(IR* x Q) where Q satisfies

assumption (6.24). Then, A\, (f) is in weak-¢; and

(Pl < C (1 loncaoxy + 190 iy

where C s an absolute constant.
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Proof: This can be proved by dilation or alternatively by repeating the proof of Theorem
6.4 and using the fact that for v € Q and I € D;, we have % <C. O
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