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Abstract

We introduce a modified Matching Pursuit al-
gorithm, called Fast Ridge Pursuit, to approx-
imate N-dimensional signals with M Gaussian
chirps at a computational cost O(M N) instead
of the expected O(MN?logN). At each iter-
ation of the pursuit, the best Gabor atom is
first selected, then its scale and chirp rate are
locally optimized so as to get a good chirp
atom. A ridge theorem of the Gaussian chirp
dictionary is proved, from which an estimate
of the locally optimal scale and chirp is built.
The procedure is restricted to a sub-dictionary
of local maxima of the Gaussian Gabor dic-
tionary, so as to accelerate further the pur-
suit. The efficiency and speed of the method
is demonstrated on a sound signal.

EDICS : 2-TTIFR

1 Introduction

There has been a considerable interest last decade
in developing analysis techniques to decompose non-
stationary signals into elementary components, called
atoms, that characterize their salient features. As
many signals display both oscillatory phenomena,
which time-frequency methods can extract, and tran-
sients or singularities, to which time-scale techniques
[9, 19, 4] are better adapted [15, 21, 23], adaptive de-
compositions were developed, using redundant fam-
ilies of atoms that can characterize independently
scale and frequency [7, 6, 31, 29].

Chirp atoms were introduced to deal with the non-
stationary behavior of the instantaneous frequency
of some signals [17]. Baraniuk and Jones [1] built
orthonormal bases and frames of such chirp atoms,
while Mann and Haykin [24] defined a “Chirplet
Transform”. Roughly speaking, this transform com-
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pares a signal x(¢) with each chirp atom

1 t—u i —w)+ < (t—u)?
$g< 5 )e(g(t )+5(t )) (1)

of a large family, the chirp dictionary DT, which is
an extension of the Gabor multiscale time-frequency
dictionary D [31] [29]. These atoms are characterized
by their scale s, time wu, frequency & and chirp rate
c. Their instantaneous frequency w(t) = € + c(t — u)
varies linearly with time.

In an orthonormal basis of chirp atoms [1], a given
signal can be efficiently decomposed into elementary
chirps. However the elementary atoms are somehow
too “rigid” for many applications, as their parame-
ters s, £ < 1/s and ¢ o< 1/s? are not independent
one from another. On the other hand, the chirplet
transform is very redundant and does not have this
intrinsic rigidity. It can thus provide with a large
variety of viewpoints to look at the signal, in order
to find meaningful structures in it. However its re-
dundancy is also its weakness : the collection D7 is
no longer a frame (hence there is no inverse chirplet
transform to reconstruct the signal) and the compu-
tational complexity of the chirplet transform is very
large.

Bultan [5] suggested to use the Matching Pursuit
algorithm of Mallat and Zhang [22] to decompose a
signal into elementary chirp atoms. He demonstrated
the interest of this technique, but its practical use
was limited by the large computational complexity
O(MN?log N) needed to get an M-term approxima-
tion of an N-sample signal. In order to limit the
complexity, Bultan suggested to reduce the size of
the dictionary by limiting the resolution of the chirp
rate.

In this work we show that it is possible to get rid of
such a limitation and get a low complexity O(M N)
by modifying the underlying “Matching Pursuit” al-
gorithm and using a Gaussian chirp dictionary. To
get such a low complexity we introduce a (substan-
tially) modified pursuit algorithm, by using some
ridge techniques and the local mazima of the Gabor
dictionary.

9(s,u,6,c) (t) =



The paper is organized as follows. In the next sec-
tion, we review the definition of the multiscale time-
frequency chirp dictionary Dt and show the numer-
ical complexity implied by its very large size. In
section 3 the definition and basic properties of the
Matching Pursuit are recalled. Section 4 is devoted
to the detailed study of the ridges of the Gaussian
multiscale Gabor dictionary for analytic signals. We
use those results to analyze the selection of the locally
optimal chirp atom. In section 5 we summarize the
Ridge Pursuit algorithm with the real-valued chirp
dictionary, and show how it can be further acceler-
ated with a sub-dictionary technique. Finally we an-
alyze in section 6 the numerical results obtained with
our new algorithm on an acoustic signal.

2 Multiscale Dictionary of
Time-frequency chirp atoms

Every chirp atom (1) is obtained from an elemen-
tary window g(t) by dilation, translation, frequency
and chirp modulation. It can thus be described with
its index (s,u,&,¢). The window ¢g(t) is localized
around 0 both in the time domain and the frequency
domain. As a result g(, ¢ ) is localized at time u
with a temporal dispersion proportional to its scale
s. The Wigner-Ville transform [12, 20] of a chirp
atom defines a quadratic time-frequency energy dis-
tribution. It is localized around the line of instanta-
neous frequency w = £ + ¢(t — u). Its dispersion is
proportional to 1/s in the w direction. A Gaussian
chirp atom is built from the unit Gaussian window
g(t) = 7 Y4e~t"/2 Such an atom is displayed on
figure 1 with its Wigner-Ville distribution.

Sampling the dictionary

The set {g(s.ue,0),(5,u,€) € RT x R x R} of chirp
atoms with chirp rate ¢ = 0 is exactly the multi-
scale Gabor dictionary [31, 22, 29]. The discrete Ga-
bor dictionary D is the collection of atoms g(s ..¢,0)
(dgnoted for short by 9(s,u,e)) such that (s,u,§) =
(@, na? Au, ka7 AE), j,n, k € Z, where Au and A&
are some constants. Watson and Gilholm [32] showed
that this sampling of the scale, time and frequency
parameters is uniform with respect to the natural
Riemannian metric of the continuous dictionary in-
duced by d(g+,,9v,) = 1 — [{g,,9+)|- The same
point of view leads to sampling the chirp rate as
¢ =1la"%Ac, | € 7Z. The discrete chirp dictionary

Dt is thus the family of atoms 9(s,u.¢,c) Such that

(s,u,&,¢) €Tt = {(aj,najAu,ka*jAf,lafszc),

Jin,k,l€Z}. (2)

As the set of atoms at a given scale j and chirp rate
l is a Weyl-Heisenberg frame, it can only span L*(R)
if Aux A¢ < 27 [10]. When Au x A¢ < 2w, D is
complete [22], thus DT D D is also complete.

Size of the discrete chirp dictionary

The size of the discrete chirp dictionary DV is a
function of the sampling steps a, Au, A and Ac.
When analyzing a discrete N point signal, one also
has to consider the limitations of the sampling rate
and the signal size. The scale a/ can thus only vary
between 1 and N, which makes a total of O(log N)
scales. At each scale, there are O(N) sampled values
of (u,§) € [0, N—1] x [—m, w]. Because of the Nyquist
condition, the instantaneous frequency is constrained
to £+ c(t —u) € [-m,7], Vt € [u—a’/2,u+d /2],
i.e. |c]a?/2 < 7w —|¢|. For given o/ and &, the chirp
rate ¢ can take O((m — |€])a?) values. On the av-
erage, at scale a/, it thus takes O(a?) distinct val-
ues. The total number of chirp atoms in the dis-
crete chirp dictionary Dt is thus of the order of

S8 O(N/a?) x O(a’) x O(a?) = O(N?).

3 Standard Matching Pursuit
with D+

The Matching Pursuit [22] is a greedy strategy to
decompose a signal = into a linear combination of
atoms chosen among a dictionary D = {g,,v € '},
i.e. a redundant family of unit vectors in a Hilbert
space H. It iteratively defines an mt_order residual
R™ 1z (starting with R%z = z) in the following way :

1. Compute |<Rm_1x,gy>|2 for all vy € T.

2. Select the best atom of the dictionary

(3)

— 2
g,ym :argglglz(|<Rm lxag'}’>| °

3. Compute the new residual by removing the com-
ponent along the selected atom

Rz =R™ 'z — (R '2,9..) Gym- (4)

After M iterations, one gets an M-term approxima-

tion zpy = z — RMz = M (R™ 2,9, ) G-

m=1
The energy is split among the selected components



as |lol” = S0, [(R™ 2,9, )" + | RM|*. The
Matching Pursuit is very similar to the Projection
Pursuit principle introduced in statistics by Huber
[14], which strong convergence limy/_o0 || RMz|| = 0
was proved by Jones [16] whenever the dictionary D
is complete, i.e. Span(D) = H.

With the chirp dictionary D+ and a N-point signal,
the computation of (Rm’lx,gﬁ ,9v € DT can be
done with O(N?log N) operations, using FFT-based
algorithms with appropriate windows [5, 32]. The
search for the “best” atom (3) costs O(N?), and the
update of the residual (4) only costs O(N), hence
the total complexity O(MN?log N) of M iterations
of pursuit with the chirp dictionary. Such a “brute
force” Chirp Matching Pursuit is thus limited to the
analysis of small signals, with only few iterations.

4 Ridge Pursuit

Because of the large size of DT, one cannot afford
to compute the correlation (R™ 'z, g(5 u¢,c)) Of the
residual with every atom of DT. As a consequence,
the choice of the “best” atom g, u,, em,c,) MUSt be
done in an approzimate way. In other words, one
needs to “guess” where a “good” chirp atom is lo-
cated, without scanning the whole dictionary.

One can notice that the chirp dictionary D7 is
only an extension of the Gabor dictionary D. As D
is complete, the set of inner products (Rmflx,gﬁ,
g € D contains all the information available about
R™lg. It is thus theoretically sufficient to compute
these inner products to select the best chirp atom.
We will actually show, with theorem 1, that the be-
havior of (Rmflx,gﬁ in the neighborhood of the
best Gabor atom contains enough information to se-
lect a “locally optimal” chirp atom. A “good” chirp
atom g(s, . um,tm,cm) 15 selected with a two-step pur-
suit. First, one selects the best Gabor atom

Gissoucoy = arg max (R 'z, gi,06)] . (5)

9(s,u,6) €D

Then one explores its neighborhood in DT, so as to
find a good chirp atom

B>

9(Sm s tm EmsCm)
arg max

(s, uk, €5, .c)

(6)

(R™ ', g(s,uz, e0) |

by selecting locally optimal chirp rate and scale pa-
rameters s,, and ¢,,. The time and frequency param-
eters u, and &, are kept constant.

One can see that after selecting the best Gabor
atom (5), the second step (6) implies an exhaustive

scanning of the neighborhood of this atom. How-
ever this scanning is still very costly. We replace
it by a fast estimation O(1) of s, and ¢, using
again theorem 1, which helps us extract the informa-
tion we need from the local behavior of (s, u,€,c) —
<Rm*1m,g(s7u7§7c)> in the neighborhood of the best
Gabor atom. We hereby define a Ridge Pursuit,
which complexity O(M N log® N) is identical to that
of the standard Matching Pursuit with the Gabor
dictionary D.

Ridges of the Gaussian chirp dictionary

From now on, we consider the model of analytic sig-
nal R 'z(t) = a(t)e’®® where the instantaneous
frequency £(t) = ¢'(t) and instantaneous chirp
c(t) = ¢"(t) are defined. Our results can be ex-
tended to the case of a superposition of finitely many
such analytic signals, provided a sufficient separation
of their instantaneous frequencies is granted.

The goal of the following ridge theorem (which
is proved in appendix A) is to show that, under
certain regularity conditions, the residual R™ 'z,
seen “through” a Gaussian chirp atom g, , ¢ ), looks
like another Gaussian chirp atom g.+,) € DT, i.e.

<Rm_11’,g(s,u,£,c)> ~ A(u)eiq)(u) <g’Y+(U)’g(Sv“757C)> :

Theorem 1 Let R™'z(t) = a(t)e’®®. Suppose
that ||al|, < 00, [|¢""]|, < o0 and ||| < oo, with
a(t) 2 _ loga(t). Let u a time where " (u) > 0, and
let g(s,u.e,c) @ Gaussian chirp atom. Then

ae'®

i Srrity (o)
(an/ﬂ)l/zl

<Rm_1m;g(s,u,£,c)> =

()2

ezal ((g,er(u), g(s,mgc))
te(s,1,€,0)) ()

where every function (a,a’,a", ¢, ¢, ¢") is evaluated
at u,
1

+ _
7w = (55
and |e(s,u, &, c)| is bounded by

! !
(0% (0%
u — a” , ¢I _ ¢II

o) ®

)
all

343
emaa(s,0) = ()12 <—K56“361/6

+4 llall o (K83)1/3€2(K513)2/3> 9)
a(u

with K 2 [l + 16"l and o} 2 [ [t g(t)dt.

The hypothesis «(u) > 0 simply corresponds to
a"(u)/a(u) < (a'(u)/a(u))® which is true for in-
stance when a”(u) < 0, i.e. on any concave part of



the amplitude a, such as the neighborhood of smooth
local maxima of a(u).

From this theorem, one can observe that if
3/2 3/2

(10)

la”|lo < la” ()] and [|¢"] < o (u)]

then €ma:(1/v/a"(u),u) < 1, so that the best chirp
atom at time w is close to g +(,). The locally optimal
parameters s, £, ¢ can thus be obtained by estimating
the index y*(u). Let us now study how much in-
formation the location of the best Gabor atom gives
about v+ (u).

Scale and frequency of the best Gabor atom

In the following we suppose that €., can be
neglected. As the best Gabor atom (5) is the
absolute maximum of |(R™ ™', g(..¢))| it is a local
maximum along s and €. If we additionally suppose
that o < 1, then the right hand side in (7) becomes
a(u)ed® <ei(¢’(U)(t—U)+</>”(U)(t—U)2/2)’g(s’u7£)>. As

the dictionary is Gaussian, the inner product that
appears in this approximant is the Fourier transform
9(5,0,0,¢" (w))(§ — ¢'(u)) of a Gaussian chirp atom,
which analytic expression is known [28]. For a given
u, its maximum (or ridge) along s and ¢ is located

at & = ¢'(u) and s = 1/4/]¢"(u)|. Thus one has
En ~ ¢ (ur,) and s7, & 1/3/[07 (ug)]-

Bounds on the error of these estimates can be found
in [13]. It is well known that the ridges of the wavelet
transform or of the windowed Fourier transform give
the instantaneous frequency [11, 20] : this result
shows that the ridges of the Gabor dictionary ad-
ditionally provide with the instantaneous chirp rate.
Now, it is sufficient that

(11)

||, < 8" (w)*? and 16"l < [¢" (u)]*
(12)

to get €maz(1/4/@"(u),u) < 1 and control the
location (11) of the best Gabor atom, which

gives information on the locally optimal chirp rate
lem|  ~  |#"(uk)] o~ (sf,)"2.  Unfortu-
nately the estimate &, = =+(s%) 2 is far from
the ideal one. First, because one has to deter-
mine its sign by computing the two inner products
<Rm_1x’g(s;(n7u:n7£;n’i(s:n)72)>. But also mainly be-
cause it is a very poor estimate when, as usual, the
scale s = 27 is coarsely quantized. Thus this estimate
is not sufficient to avoid the costly O(N?) “scanning”
of the possible chirp atoms g, u: ¢: c)-

Fast local estimation of the best chirp atom

The local behavior of & — (Rmflx,g(s;mu;mgﬁ in the
neighborhood of £}, conveys much more information
about the locally optimal chirp atom g.+(,) than the
location (s}, ur,, &) of the best Gabor atom does.
Indeed, if €4z (sk,, uk,) < 1, then from theorem 1,

<Rm71m>g(s;’n,u;'n,£)> ~ K <gy+(u*m);g(s;'n,u;n,£)> )
where K € C is some constant independent on &.
Using the analytic expression of the inner product
between two Gaussian chirp atoms [28], one can
get the following spectral estimation [25, 26] of the
parameters of g.+ (), which is proved in [13].

Proposition 1 If €pq.(s%,,uk,) < 1, then
<Rm_1x,g(s*m’u*m’§)> ~ Ae'® where ¢ — log A(€)
and & —  ®(&) are second order polynomials in &

with

e 3 (¢)
Plum) =~ og e + @@
and
o (0 1 _ —log A" ()
() + 32 = Wog A0 + (@ @)r” Y
Moreover the following bounds hold
@) < ) (15)
0> logA"(6) > (1) (16)

One can easily estimate (log A)"(£) and ®" () (which
are independent of £) using only the local behavior
of & — (Rmflx,g(s:mu;mg» around the best Gabor
atom. Then (15) and (16) are used to test the validity
of the approximation €,,,, < 1. Whenever the test is
negative, the Ridge Pursuit is conservative : it does
not try to find a better chirp atom than the best
Gabor atom, but instead keeps it as its “good chirp
atom” and steps forward to the next iteration. In
the case of a positive test, we will assume that the
model is valid. Thanks to (13) and (14), the estimates
of (logA)"(§) and ®"(§) provide with estimates of
@' (ur,) and o' (u},), i.e. an estimate of y*(u). This
estimate is now obtained without costly “scanning”.

The definition of the Ridge Pursuit will be
complete by showing how to efficiently estimate

(log A)"(£) and @"(§).

Numerical estimation by linear interpolation

In order to get as local an estimation as possible, we
estimate (log A)"(§) and ®"(¢) through a parabolic
interpolation. We use three Gaussian Gabor atoms



9e = Y(sr,ub Lr +eAE/ss)y € € {_170;+1}7 of the
discrete Gabor dictionary D, and their inner products
<Rm’1m,g€> = A.e®=. These inner products were
already computed for the selection of the best Gabor
atom.

The numerical parabolic interpolation of log A,
(resp. ®.), taking into account the frequency bin
size AE/sy,, leads to estimates

(ci>_1 — 23y + <i>1) <Z—¢2)2(17)

] A~,1f11 < S?n ) 2
og T Af)
As ®, is defined modulo 27, the estimate of ®"(¢) is
only defined modulo 27 (s, /A€)?. However, thanks
to condition (15), its only admissible value(s) lie
within the interval [—(s%,)%/2, +(s%,)?/2]. In order to
eliminate the ambiguity, it is necessary and sufficient
to impose that the length of this interval is strictly
less than 2w (s%, /AE)?, i.e. to choose A¢ < /27 in
the definition of D and Dt (see (2)). Thus s, and ¢,
are estimated at a cost O(1) from the inner products
<Rm_1x, g5>.

X

2"(¢)

(log 4)"(¢)

X

(18)

5 Fast Ridge Pursuit

For the analysis of real-valued signal, we do not make
use of complex-valued atoms (1) but of real-valued
ones. They are defined [22, 5] as
t—u
s

cos (§(t —u) + g(t —u)? + ¢)19)

I(s,u6,000) = K(s,u,s,c,mg(

with some normalizing constant K(; ¢ c.¢). Obvi-
ously g(s,u,¢,c,¢) lies in the two-dimensional subspace

V(s,u,g,c) = Span {g(s,u,.ﬁ,c);g(s,u,ﬁ,c)}a and

(20)

Sgp |<Rm_1mvg(s,u,§,C,¢)>| = HPV(sm,E,C)Rm_lx

where Py, denotes the orthogonal projector onto
the subspace V. We show in appendix B
that the right hand side of (20), as well as
the corresponding optimal phase &(s,u,&,¢) =
arg maxg |<Rm*1x,g(s7u7£7c7¢)>|, can be computed in
O(1) from <Rm_1x,g(s7u’§’6) .

Let us now summarize the Ridge Pursuit algorithm
with real-valued Gaussian chirp atoms, and compute
its numerical complexity. Each iteration is decom-
posed into a few steps.

Ridge Pursuit Algorithm

1. Compute <Rm’1m,g(s7u7£)> for each complex
Gaussian Gabor atom [O(N log” N)].

2. Compute HPV( E)Rm’lmH and select the loca-

tion (s%,,ux,,&x,) of the best real-valued Gaus-

sian Gabor atom [O(N log N)].

3. Estimate the locally optimal parameters s,, and
¢m Wwith a parabolic interpolation [O(1)].

4. Compute (R™ 'z, g(s, wr ¢ o), and  de-
termine the best real-valued chirp atom
I(sm i i remntom) 1V (s s, £ 00) [ON)] -

5. Update the residual [O(N)].

The overall complexity of one iteration of real-valued
Ridge Pursuit is O(N log? N), hence the total cost
O(MNlog? N) of M iterations. An accelerating
technique was introduced by Bergeaud and Mallat
[2, 3] for the Matching Pursuit analysis of images. It
can be used to get a Fast Ridge Pursuit algorithm.
The overall algorithm is described in full details in
[13], and we give here its main features. We use lo-
cal mazima of the Gabor dictionary D, that is Ga-
bor atoms g(,...¢) Where either u — [(z,g(s.ue))| or
&= |(%, 9(s,u,¢))| has alocal maximum. A number P
is fixed arbitrarily, and the following steps are done
iteratively.

Fast Ridge Pursuit Algorithm

1. Build a sub-dictionary D,,, of P local maxima of
the Gabor dictionary D.

2. For each atom in D,,, use the fast local estima-
tion procedure to get a good chirp atom. The
collection of these chirp atoms is a sub-dictionary
Dyt of the chirp dictionary DT.

3. Run a “normal” pursuit in D}, until it is empty.

By choosing P o« O(v/N log N), the overall complex-
ity becomes O(MN) [13].

6 Applications

The Ridge Pursuit and Fast Ridge Pursuit algorithms
were implemented using the Matching Pursuit Pack-
age of the LastWave program [18]. We used them
to analyze a sound recording with sung voice and
orchestra [8]. It is well known that a characteristic



of the sung voice is its vibrato [30], which the Ga-
bor Matching Pursuit was not likely to decompose
sparsely. The signal duration was approximately 2.5
seconds, at a sampling rate of 11,025 Hertz, so the
signal length was about N = 30000 samples. A Ga-
bor Matching Pursuit and a Fast Ridge Pursuit were
computed with M = 5000 iterations.

One needs first to realize how high the complexity
of a “brute force” Matching Pursuit with the chirp
dictionary would have been. With an (optimistic)
average of 100 MFlops to 1 GFlops for todays com-
puters, the 5000 x (30000)2 log, 30000 ~ 6 x 10! op-
erations would have required 6 x 10* to 6 x 10° seconds
of computation, that is between 16 and 160 hours of
computation. This must be compared to the 2.5 sec-
onds duration of the signal. On the other hand, the
Fast Ridge Pursuit was run on a consumer PC. It
only took 200 seconds to get the result.

Figure 2 displays the decrease, in decibels, of the
energy of the residual. It is faster with the Fast Ridge
Pursuit than with the standard Gabor Matching Pur-
suit. In order to get the same approximation quality,
one thus needs fewer chirp atoms than Gabor atoms.

One can compare on figure 3 the time-frequency
distributions [22, 5] associated to the Gabor Match-
ing Pursuit and Fast Ridge Pursuit decompositions
of the signal. The display is focused on a time-
frequency area wherein the vibrato occurs. The Ga-
bor Matching Pursuit decomposes the wibrato into
several constant-frequency atoms, located on the
“path” of the instantaneous frequency. On the con-
trary, the Fast Ridge Pursuit decomposes it into only
a few chirp atoms, whose instantaneous frequency is
alternatively increasing and decreasing.

7 Comments

We checked numerically that the fast estimate given
by proposition 1 fails for non-Gaussian windows (even
for B-spline windows, which in some sense are close
to Gaussian windows). Even if an analogous of the-
orem 1 can be derived for such windows, the lack of
analytic tools makes it difficult to derive an analo-
gous of the fast and simple estimation procedure. It
may be possible however to get fast estimates using
regression [27] instead of linear interpolation to fit
the local behavior of the spectrum around the best
Gabor atom.

We do not cover in this article the theoretical ques-
tion of the convergence of the Ridge Pursuit. One
should notice that the convergence is in general not
guaranteed by the fact that it is stepwise more greedy

(the chosen chirp atom grabs more energy than the
best Gabor atom) than the Gabor Matching Pursuit.

8 Conclusion

The Fast Ridge Pursuit algorithm iteratively decom-
poses an N-sample acoustic signal into M Gaus-
sian chirp atoms with a computational cost O(MN).
Thanks to its low computational complexity, the
sparse structured representation of signals that it pro-
vides can become the basis for the implementation of
a large variety of new processing tools.

Besides its evident use for signal compression, one
of its most interesting features is its ability to de-
compose a signal into superimposed structures with
different scale, frequency and chirp characteristics.
Thanks to this decomposition property, it is possible
to process separately the different parts (e.g. tran-
sients and steady parts) of a signal. Source separa-
tion can be achieved for sounds that have very differ-
ent “chirp behavior”, such as a singer (with a strong
vibrato) and an orchestra. Additionally, consider-
ing time-stretching or pitch-shifting applications, it is
possible to keep the fine structure of transients while
processing the harmonic part of a sound. Because
they respect the structure of the transients, and as
the chirp parameter enables them to fit more finely
the phase of the signal, such pitch shifting schemes
will generate less “pipe noise” than standard win-
dowed Fourier transform based techniques. Moreover
their implementation using the chirplet decomposi-
tion is straightforward.
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A Proof of the ridge theorem

In this appendix, we give a proof of theorem 1.

Building Taylor expansions of a(t) and ¢(t) near

t = u, one can find 0(t),02(t) € [u,u + t] such

that a(u +t) = a(u)e*‘)"(")t*CXT(u)ﬁ*%t3 and
o ¢II ¢/” 9 t

du+ 1) = p(u) + ¢ (u)t + 10> 4 LLW)y3 gy




changing variables, and using the definition of the Knowing that Vz € C, |e* — 1| < el*l —1 < |z] el*l we
Gaussian window g(t), we express <a:, g(s7u757c)> as can bound the second part with

5 3
a(we ™) e o / e 2 M s, )] + 160200
i [ meienan® g ©
(o o) +[o 20)]) g
I

Y(5,0,6—¢"c—¢m) (1)

B (—a (011 +i0" (02(1))) g < .
n3s3 " "
The integral can be rewritten as el (I [ ”oo)s3ag. (23)
< > We denote by K = |||, + [|¢""]|,, and get from
9(1/VaT,~a' /a'" 0,0 9(5,0.6=¢" ,c=¢") (22) and (23) that for all n > 0
re(suEe)  (21) et
mija_—1/2 +1/2 [ llall 4€77>
where the error term €(s, u, &, ¢) is le(s,u,€,0)l < (@) 5 ( a(u) 7
+o0 Ks303 k8 3
——=e'5 T ). 24
/ 90 Ve —a farr,0,0) (D) 9(s.0,6~ 9" e—9) (2) e ) 24
‘ (e%(70/”(91(t))+i¢'”(92(t))) _ 1) dt. Choosing 7 = K 1573 gives (9). To conclude the
proof, we rewrite the first term of (21) as
Let us now bound the error term, using again the gl el 48 (%)2
Pl

expression of the Gaussian window, and splitting the
integral with a parameter 7 : ,

. g(ﬁyt’/—ﬁ7¢l ¢// a ¢H) g(s,u7£7c) -
(s, u&,0)| < (o) Arm1 /2712

too 2 an " B Real-valued atoms
. e 2s2 2 (t+a /e )
o Let ¢ = (v — (9,7 77)/ (1 - (77,9,)") and
I Pt (0= (o7 5) /(1= I, 0,)°) o
V. = Span(g,,7y). One can check that {g;,q,} is
< (QMMAg/2gm12 the dual basis of {g,,g5}. Thus for all z € H

[+ Pya = (n.4)e+(n )T
[t|>ns [t|<ns 2

:2(l@9) — R(e, T (2,90)"))
7w 1@ 90)P

where $(z) denotes the real part of z € C. For z
real-valued and v = (s, u, &, ¢), the first equality can
be rewritten Py, & = (T, 0(sug.c0)) Y506 .c0)

€e)
with (2, 9(s,u6.c,0)) = \(x,Zm-

o (t+al fa"")? The value (G(s.ue.0)s 9(s,u.6,¢)) Can be computed up to
an arbitrary precision with a cost O(1), thanks to an
analytic expression [5] [28]. Once (z, g,) is known, so

The first part of the split integral is bounded by

_ 2
e 2s2
[t|>ns

_efa’tf%”ﬁ 13 1”(9 (t)) ”26 £ ¢///(0 (t))‘d

2
= e 252
[t|>ns

670‘7 (t+oz /a”)

PVWx and e =

e

—|— t a’ 2 1"
—M(f(2 T el's 56" (02(1)) ‘ dt is its complex conjugate (z,g5), thus ¢(s,u, &, ¢) and
a(u) <x,g(s7u7§7c7¢)> can be computed in O(1).
< / - <|| ||oo+1> gt
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Figure 1: A Gaussian chirp atom and its Wigner-Ville
transform.
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Figure 2: Decay (in decibels) of the relative energy
|IR™z||” / ||=||* of the residual with the number m of
iterations. Plain : Gabor Matching Pursuit. Bold :
Fast Ridge Pursuit with chirp dictionary. One needs
fewer chirp atoms than Gabor atoms to get the same
approximation quality.
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Figure 3: Time-frequency distributions of a sound
signal of size N & 30000, with M = 5000 iterations
of (a) Gabor Matching Pursuit (b) Fast Ridge Pur-
suit. The display is focused on a time-frequency re-
gion wherein the vibrato occurs. Vertical lines (e.g.
at time ¢ = 2.1) correspond to short scale atoms that
represent transients. Horizontal lines, associated to
large scale constant frequency atoms, represent the
resonance of the notes of the instruments of the or-
chestra. The vibrato is decomposed into several con-
stant frequency atoms by the Gabor Matching Pur-
suit. On the contrary the Fast Ridge Pursuit decom-
poses it into only a few chirp atoms.



