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Abstract

This article is a detailled study of a class of indefinitely oscillating function in H*(IR).
It’s a class of functions of Sobolev space H*(IR) which have for all m integer one primitive
of the order m in the same space.

We will try to characterize at the same time the oscillations as well as the Holder exponents.
Our contribution consists of measuring these two parameters by using the L? instead of L*
norm. This work is an extension of a previous study that has been done by Y.Meyer and
S.Jaffard. We introduced chirp’s functional space by using Sobolev spaces. We observe that a
chirp is an asymptotic signal which is of the form s(t) = A(t)e**® where A(t) and ¢(t) are
two regular functions and A >> 1. (Actually ¢'(t) — oo when t — t;). The function e*®
is fundamental in the last definition. It’s an indefinitely oscillating function in L* sense. It
will be replaced by what we call an indefinitely oscillating function. Hong Xu has worked on
chirps by using LP indefinitely oscillating function defined on IR™. Our contribution consists of
studying the behavior of the Fourier transform of indefinitely oscillating function in H* on IR
around 0. The motivation for studying the indefinitely oscillating function is given by chirps.
The first example considered herein is the cry of a bat. The signal is given by the formula:

F(z) = e+ — 1 which is a function of real variable. Its Fourier Transform on the real axe is
1

given by: ﬁ’(f) = J1(§§)2

one. We have then a discontinuity at the origin, this is obviously shown by the fact that
ez —1~ _;’ at the infinity. A second example is the emission of chirps by vibrating lorries to
localize petroleum fields. It concerns signals with large band of frequency with short-lived. So
that the detection possibility of a large range of objects by avoiding the interference thanks to
short duration of those signals. The last example is given by gravitational waves. The existence
of these waves follows from the theory of general relativity. The scientist world has already
indirect evidences of their existence. But the gravitational waves have never been measured by

experiences. Several sources are susceptible to product these gravitational waves:

if € >0 F(¢) = 0 elsewhere. .J; is the Bessel function of indicia
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1. Coalescence of a binary star gives birth to a chirp.
2. Collapse of neutrons star.

3. Collapse of black holes.

Let E a functional Banach space, which means S(IR) C E C S8'(IR) where the two injections
are continuous. We say that f € E is indefinitely oscillating (in E sense) if, for all m, there
d

exist f,, € E such that f(z) = (d—
T
to understood the nature of the difficulties which occurs. If E = L*(IR), the problem can be
solved by Fourier transform and it becomes f(£) = (€)™ f,n(£). Then f € L?(IR) is indefinitely

oscillating in L?(IR) sense if and only if/ | £(&) | d¢ = O(e?) for all integer g.

We will systematically study the case of Sobolev spaces H*(IR). The characterization of func-
tions indefinitely oscillating is then similar.

In the second parte of this chapter we will interested on a complex problem, those of functions
which are only defined on a half axe, [0,00) for example. The difficulty results from that we
can not use the notion of Fourier Transform. We can get round this difficulty by the following
way: Either one defines the space of functions indefinitely oscillating on [0, 00) as the space of
restrictions to [0, 00) of functions indefinitely oscillating on IR, or one defines function f indefi-
nitely oscillating on [0, 00) using the scalar product < f, ¢ > where ¢ € Cg°([—1,1]), which
have a sense if p(,p) () = 2¢(22) and b > a + 1. One shows than that the two definitions are
identical.

)™ fm(z). A particular case is extremely simple and let us

1 Indefinitely oscillating function theory on real axe

1.1 Fourier transform characterization
1.1.1 L*(R) or H*(IR) case

One considers a function f(z) of real or complex value, defined on IR.

Definition 1 f is an indefinitely oscillating function in L*(IR) (resp H*(IR)) sense if, for all
d
integer n > 0, an n-th primitive function f,(z) de f(x), defined by (d—)”fn(x) = f(z), belongs
x
to L*(IR) (resp H°(IR)).
There is a general definition in the general arbitrary Banach space. This definition is a
particular case of the previously mentioned general definition.

Studying the behavior of the Fourier transform of the function around zero is another way of
characterizing the indefinitely oscillating functions in H*(IR).

Lemma 1 f is an indefinitely oscillating function in H*(IR) if and only if f belongs to H*(IR)

and for all N one has: X
L1FE© P
[1 e BN dé < oo




Proof of Lemma

Using the classical definition of indefinitely oscillating function:

s dAﬂfN
VN, 3fy € H*(IR) such that f = —
X

and by application of Fourier transform one has: f(€) = fx(£)(i€)N. A necessary and sufficient
condition that f is an indefinitely oscillating in H® on all IR is that for all integer IV one has:

/+°° | f©) P

oo [ &N

F(€) belongs to H*, then f is in L2([—1,1]) and

dé < oo

+o0 ~
[ lefEe) 1P de < oo

IRemark:
The conditionl does not depend on s. Hence, the characterization of indefinitely oscillating
functions’ spaces either in L?(IR) or in H*(IR) is the same.

Another equivalent definition is:
Lemma 2 The two following properties are equivalent:

1. f is an indefinitely oscillating function in H*(IR)
2. f belongs to H°(IR) and for all integer q and all | € |< 1

one has:
[ 1iwrda=oger
Proof:
¢ (1) — (@)
© e g [CLIOPR
[, 1 F@rd= [ S 1PN
o €150 1
f; | £ | l/ng | t|2N' dt
¢ (2) — (1)

A dyadic decomposition gives:

4| f(6) P
Lo e

2—j+1

28 [T FE) I dg

—J

IN

< (9i(2N—q)

Normally convergent series for ¢ > 2.
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1.2 Characterization by Littlewood-Paley analysis
1.2.1 L*(R) CASE

Theorem 3 The three following proprieties are equivalents

1. f belongs to L*(IR) and || &; (f)]]2 < Cn27N forj < —1

2. f belongs to L*(IR) and ¥n >0 f = d CJ;"(CU) where f, is in L*(IR).
xn
3. Vn f= d C{"(x) where f, is in H"(R).
xn

Proof of theorem (3)
e (1) = (2) Littlewood-Paley decomposition gives f = > A;(f).

j
Let f, a n-th primitive defined by f(z) = d C‘an(x) If f and f, belong to L?(IR), and
xn

d
f= (%)”fn then one has

F(&) = (i&)" fu (&)
with R -
F&) =30

f and f, belong to L?(IR). Then ., is defined almost everywhere by
: o 1O

—

D)€ = fray(€)
= f(Od()

A/J\f is supported by a2/ < |£] < 327 with 0 < a < 3. One has then

—

i ey =y 2alH)E)
and .
£;(H)E)

I [l < Ca277"|| A5 f1I2

(i6)"



e (2) = (1) Let n a positive integer, f is in L?(IR) and Vn > 0 one has

f(z) = d;n(x) where f,, and f belong to L?(IR). Then one has :
xn

FOD(277) = (1€)" ful©)(277€)
We deduct that:
18, flls = 15,7112

= [1G&)" Fa (&2l

< G2 fu(©Y(277E) ]2
For 7 < —1 one has .
| & fll2 < CR2"

And for j >0 o o
1 8 flla < CR2™[| fo(§)V(2778)]l2 < €jm

with Zein < 0o , since f belongs to L?(IR).
0

1.2.2 H*(R) CASE

Theorem 4 The two following proprieties are equivalents:

d"f

1. ¥n, there exist f, in H°(IR) such that f = : in a distributions sense.
by

2. f€ H(R) and || 2 (f)||l2 < Cn22N VN and Vj < —1.
We say that f is indefinitely oscillating in H*(IR). We remark then, that f, is in H*™"(IR).
We start by giving the following lemma:

us for all s in IR.

Lemma 5 If f is supported by par [, B] where 0 < a < 8 then ||f||2 =~ || f]
e Proof of (1) = (2)

d"f.

fisin H*(IR) and Vn ; 3f, € H*(IR) such that f = el

~

Using Fourier transform one has: f(£) = (i€)"f.(€), and hence f, is in H*(IR) which is
giving either by:

Fe)]2
Ja +§2)S|f€(§3| dg < o



So we have

L9
/1|§(22| df < oo

-1
Using Littlewood-Paley decomposition we can write: f = Z AN f+So(f). Applying Fourier

~ too ~ — ) .
we have: f(§) = ZA]f(f) As A f is supported by dyadic corona a2’ < [£| < 27 with

0 < a < . Hence the inequality

[P e
1 €2n

become then :

oo
I AP
1 €2n
Thanks to the quasiorthogonality of the terms, we have then:

+Z°° /1 NGk

1 §2n

dé < oo

dé < oo

—00

In the same way we have:

—

/"’” 12, (&)1

= 18,11l < Cu27"

d€ < o0
for all n and for all j < —1
e Proof of (2) = (1):

fisin H*(RR) and || A; fl|2 < C,2" for all n and for all j < —1.
dn n . . . r . P
Let f, such that f = y J . By using Fourier transform we will have: f(§) = (i€)" fn(€) -
x

n

As f is in H*(IR), we have then:
Jp A EVIF@PdE < oo or again
R
[ +eyPifaold < oo

(RR)

" 1
which gives /( )(52)”+S|fn(§)|2 d¢. Now there remain to verify that we have / | fu(6)? dE <

V(oo -1

0o, and thus we will prove that f, is in H*™"(IR). Littlewood-Paley decomposition of f, is

6



+o0o
given by f, = Z A fn, using Fourier one has:

—1 R +oo
= Z Ajfn(g) + Z Ajfn(f)
—00 0

Show that each of the two terms is in L*([—1, 1]). Hence, since supports of the different terms
are 2 by 2 disjoints

Nt N i Rt
[ IS Am@rdc<2 [ SIAfu(O)F

Then one has:

—1 2 | A 2
/'Zﬂfn (€)Pd¢ < 22/?%(%

oo a2l
—1
< Cun Z 92j(N—n)

And then for a good choice of N this series is normally convergent. Concerning the other term
we have, by again using that supports are disjoints:

1 too
/|ZAfn (O de < /szn (©) de

Ta

<

df

A +oo
Or ||A;(f)(€)]]2 < € for j > 0 with ) €7 < co. which indicates:
0

+oo g2l A 2
[LIS dpepa < o3 [ IATO0

0 a2l

—+o00
< 2 Z Cne?2*21"
0

1.3 Generalization in an arbitrary Banach space

Let E a functional Banach space : S(IR) C E C S'(IR). Assuming that the norm in E is
invariant by translation and that E satisfy the following propriety

(1) LEE | fille < Cand f; — fino(S,S) sens
= feFand || fllg < C

In other hand, one has || f ||g< limsup;_,+ || fj ||E each time that f; converge in distributions
sense.

Definition 2 A function f € E is indefinitely oscillating relatively to E if, for all m > 1,
d

there exist f,, € E such that f(z) = (d—)mfm(x)
x



+oo
I = Z A means the Littlewood-Paley decomposition. One has then

Theorem 6 The three following proprieties are equivalents

1. f is indefinitely oscillating in E sense
2.1 25(f) |le< Cr22™ for allm >0 and all j§ <0
and f =Y N;(f) in o(S'(IR),S(IR)) sense

3. S;(f) |le< CL27™ for allm > 0 and all j < 0.
We start by the following lemma

Lemma 7 Ifw e LY(IR), f € E, then f xw € E and
| frwlle<[[wll]l f e

e Starting by (2) = (1)

One calls 9 a function of Schwartz class S(IR) for which Fourier transform is equal to 1

over ; <| ¢ |<4and 0if | £ |> 5 and | £ |> 10. The Fourier transform of 1 is taken by

1 <| € |< 3.0ne writes then

_ d s
L) = 8i(85F) = ()27 By (D)

or by Fourier transform,
D(277€) = (i€277) ™ P(m) (277€)

which means N

P(§) = (i)™ ¥m ().
It is then evident that ¢, € S(IR).
One applies then the Lemma 7 and will have

o d
Bi(f) =27 ()" fim

where '
| fim ll2< Cn27Y

for all integer N.
Then

0
> 27" fim

8



converge in F/ norm sense.
Let

og(f) = D 8(F)

Jj>—q

one has o,(f) — f (in distributions sense) when ¢ — +o0.

54(1) = (o) "oqm())

and og,,(f) — L,(f) where ¢ — +o0.

Then
d

(%)mjm(f) =f

e (1) = (3) ;
Hence f = (%)mfm and f,, € E.

Then

d m
(1) = (oS, (f)
and p
(%) S; =218}
: . d
SJ(-m) is the convolution with 27¢p(™)(272) where (™) (z) = (%)mtp(x) It is sufficient then to

apply the lemma (7).

* (3) = (2)
This implication is evident since A; = S, 1 — 5.

2 Theory of indefinitely oscillating functions on the half
real axe

We can’t then use the Fourier transform. We have two ways to do it:

e Restrictions to a half real axe of functions indefinitely oscillating on all IR

e Direct definition

Before studying the case of functions indefinitely oscillating on [0, 00) relatively to space
H*[0,00), we will recall the results now classics of functions indefinitely oscillating on [0, 0o)
relatively to space L>[0, 00).



2.1 L*™([0,00)) case

Definition 3 Considering a function f defined on the half real aze [0,00). One says that f
is indefinitely oscillating in L*>([0,00)) sense if f € L*([0,00)) and if for all integer m there

exist f, € L*([0,00)) such that f(z) = (di)mfm(:z:) (in distributions sense on [0, 00) ).
x

Theorem 8 Let f a function indefinitely oscillating in L*(]0,00)) sense.
Then f is the restriction to [0,00) of a function g indefinitely oscillating on IR for all integer.

Proof of theorem:

To prove this remarkable result, we will start by defining the generalized moments piof f

by:

1 oofez'k
p = lim € v f(x) da

by showing the existing of this limit.

o d ~ d
/0 €_Ezwk%($) dr = [e_“xkfl(fﬂ)]go_/o %(e_ﬁzxk)fl(x) du

x
The first parte in the right hand side is nul. Then we have:

o —€ex _ > d —€ex
et de = (FD* [T i) d
_ (—1)’“[k;!/0 e~ fi () dz + ..
ek2w /Ooo efemxk—2fk(x) dr
L g2kl /Ooo e fu(z)7 ' do

+ € /Ooo e “z* fi(z) dx)

We reason by recurrence on the integer k. One assumes

lir% e”“xlf(x)dr exists for ¢ = 0,1,.., k — 1.

e—0 Jo

One remarks, that if f is an indefinitely oscillating function on [0, 00) its primitives functions

fis-+ fr, ... giving by the definition of indefinitely oscillating function are so.
And because of the recurrent hypotheses, the quantity / e ““zlf,(z) dr has a limit when e
0

goes to 0, for all integer n and for all integer ¢ satisfies 0 < ¢ < k — 1. However precisely we
have:

/Ooo e~ gk f(x)yde = (—1)*[k! /000 e frlz)dr + ...

10



E?(k —1)? oo
k—2 ( 5 ) / e—emxk—2fk(l_) dx
0

_k26k_1 /oo e—emfk(l,)xk—l dx
0

+-€F /OOO e~ 2" fi(2) dx

+e€

To have the wanted result, it is sufficient to show the existence of

lim € /oo ek £ (z) da
0

e—0

By another integration and using the recurrent hypotheses we have :

o0
6k+1/0 ek fy1 (z) da

And another last integration gives us:
k2 [ k
G / e~ “x” fria(x) dx
0

that can be majored by ||fk+2||ooe/ z¥e™® dz, which goes to 0 when € goes to 0.

The demonstration will be complete if the propriety is well satisfy to zero rank:

/Ooo e “fle)yde = [fi(x)e |+ e/ooo fi(z)e e dz
= —hO) +¢ [ fila)e “da

a new integration gives:

e[ h@e = dp@eIr + e [ e da
= —€f2(0) + € /Ooo fo(z)e™ dx
Precisely we have:
0= [T f)e “do] <dlfall [ e do
these last quantity goes to 0 when € goes to 0.

Corollary 9

e =1lim [ e f(z) dw = (1) k] i (0).
e—0Jo

or again

lim [ e “ fr(z) dz = — frs1(0).

e—0 /o

11



Return back to the proof of the theorem. Applying Borel’s theorem : there exist then a
function h belonging to a Schwartz class taken by (—oo, 0] such that:

0
— L, :/ 2*h(z) dz

We will show that h(z) + fx[o,c) is the function g(z) that we seek. For this, it is sufficient to
show that g is indefinitely oscillating on all IR . Hence g(z) = h(z) + fX[o,00) is in L*(IR). by

definition g; (z) :/ g(t) dt.

—00

Si <0 then g¢gi(z) = /x h(t) dt

o)

g€ L((—00,0)
Si £=0 then ¢ (0) = /Oooh(t)dt:—,uo
= £1(0)
etsi o3>0 then g(z) — /Oooh(t)dtJr/ozf(t)dt
= f1(0) + fi(z) — f1(0)

Which indicates |[g1]|co < C.
Also go(x) = / g1(t)dt. And for x > 0 one has:

@) = [ a@d+ [ pod

= /_Ooogl(t)dt+f2($)_f2(0)
= —/_Oooth(t) dt + fa(x) — f2(0)

0
Or / th(t) dt = —uy = — f2(0) by the construction A .

IRemark :

— g = /0 2*h(z) dr = /000 hi(z) dx = hyy1(0)

—00 —

Showing this by recurrence, assuming that ||gk||cc < Crx < 00 for k < n and showing that g,
follows that same inequality :
One has
0
gn(0) = Gn—1(t) di

—00

= fn(o)

—1)»=1t ro 1
_ En_)n!/oo‘”n h(z) de

12




For z < 0 one has g,(z) = h,(z) which belongs to Schwartz class.
And for x > 0 one has:

(@) = [ geat)a
:/ ho 1 (t dt+/fn1

= [fu(0) + fu(z) = fu(0

Or f,(x) is bounded by hypotheses. It is also the same for g, ().

2.2 L*[0,0)) case
Definition 4 Let f a function in L*([0,00)). One says that f is indefinitely oscillating in

a*f,
L3([0,00)) sense, if there exist functions in L*[0,00) such that f(x) = C{T’(lx)
sense.

mn distributions

Let f a function indefinitely oscillating in L? sense, and using the same notations, showing that
fn € H™(]0,00)). ,
fO<z<yona fi(y) — filz) = / () dt.

By consequence |f1(y) — fi(z)| < vy — z||f||]2. Also f; is uniformly continuous on [0, c0) and
can be extended at 0, it is also the same for all f,,n > 1.
Showing now that f,, goes to 0 at infinity for all n > 1. For this writing the following lemma:

Lemma 10 Let u an uniformly continuous function on [0, 00).
If w is in L2[0,00) then lim u(z) = 0.

The proof of this lemma is known. We will give it herein just for reader convenient.
To prove this lemma, we reason by absurd. We assume that u does not go to 0 when x goes to
infinity. By consequent there exist a net x; which goes to infinity such that |u(xzg)| > § > 0. u
is uniformly continuous, there exist € > 0 such that |u(z), +t)| > £ if [t| < e. Using sub net,
we can always assume that intervals [zy, — €, 2}, + €] are two by two disjoints. Then

||u||2>z/ (s)*ds = oo

Remark: If f is in L?[0, 00) and is indefinitely oscillating, then primitives given by the definition
fi, f2y - fu, ... are indefinitely oscillating in L>(]0, 00)) sense. By consequent the f generalized
moments py, exist for all integer k£ > 1.

Lemma 11 If f € L?([0,00)) is indefinitely oscillating in L*([0,00)) sense, then

—+o0
lime__g / e f(z)dx
0

exists and equal to — f1(0).

13



Proof of lemma

integrating by party

+00 +oo
[T et = e p@l= e [ e h@de
0 0

Or fi(+o0) = 0, the first term of the right hand side is equal —f;(0) and the second can be
| fill2
Ve

Theorem 12 If f € L*[0,00) is indefinitely oscillating, then there exist a function g in L*(IR),
indefinitely oscillating, for which its restriction to [0,00) is f.

bounded using Cauchy-Schwarz by

To use the Borel theorem, it is necessary to begin by defining the generalized moments of f.
Let then f in L?[0,c0), indefinitely oscillating.

Vn o fz) = dng;,gx)

where f, is in L?[0,00). We have already proved that ¥n > 1 f, is uniformly continuous on
[0,00) and that lim fa(z) =0.
One has then the following corollary:

Corollary 13 Let f € L*([0,00)) and f indefinitely oscillating, then for all integer k:

lim [ ez f(2)de = (—1)* k! foaa(0)

e—0 /o

or again lim/ e “fe(x)dr = —fri1(0)
e—0 /o

We can then apply the Borel theorem:

There exist a Schwartz class function h taken by (—o0,0], such that h(z) + f(z)x[0,x) is a
function in L?(IR), indefinitely oscillating on any real axe. Finally one shows, by an analogue
reasoning to that in the case L*°, that h(x) + f(x)X[0,c0) is the wanted function g.

2.3 H?*([0,00)) case

Definition 5 Let f in H*(]0,00)). One says that f is indefinitely oscillating if, for all integer
dn
n, there exist a function (or a distribution) f, in H*([0,00)) such that f =

sense).

n

(in distributions

:U’Il

Theorem 14 FEvery function (resp. distribution) f in H*([0,00)), indefinitely oscillating, is
the restriction to [0,00) of a function (resp. distribution) g belonging to H*(IR) and indefinitely
oscillating.

14



One starts by s > 0 case.
Then fi, fs, ..., fa, ... are uniformly continuous and can be extended to 0. We can then apply
the Borel theorem, and constructs a h Schwartz class function taken by (—oo, 0] such that:

fn(0) = /Ooohml(:c)d:v where Ay _1(z) = /:hm2(t)dt

Then one lets g(z) = h(z)+ f(2)X[o,00)- This approach is possible only in the case of 0 <'s < 1.
The reason is that if f is in H*([0,00)), it is true that f is the restriction to [0,00) of a
function in H*(IR), but it is not necessary that this function is obtained by multiplying it by
the indicating function X[p,.0). Then we are arrived to proof the following result:

Theorem 15 If —% < s < % and f is in H*(IR), then f.x; is in H*(IR) for all interval I

(either for a finite or infinite length).

One has first to return to the following particular case: The multiplication by sign(z) = %

and this case will be find out its importance since it can let us to prove the general case. Let
then f in H*(IR) with 0 < s < 3, observing the Fourier transform of sign(z)f (). We will have

1 . 1

F(st = —f* V(=

(sign(a)f (@) = = V(g

As one remarks, the Borel theorem can be applied only in the case s > 0, and the theorem (15)

in the case 0 < s < % For proving the theorem (14), for the case where s is an arbitrary real,
it is sufficient to use the following lemma.

)

Starting by making the following remark:
f is indefinitely oscillating in H*® sense (either on half axe or on the whole axe) if and only if
D™ f is indefinitely oscillating in H*~™ sense for all m relative integer.

Lemma 16 f is indefinitely oscillating in H® sense( either on some subset of IR or on IR) if
and only if D*f is indefinitely oscillating in H*~% sense for all real c.

Proof of lemma:

15



e Let 0 < a < 1 we define the fractional derivative by:

©  fly)
D% f(x) = cq /

) = (z—y)=
The equality (2.3) has a sense as f is defined on [T, 00).Let f a function indefinitely os-
cillating. If f is in H*®, then D f is in H* * (it is a fractional derivative). By hypothesis

d™ fm
Ym  3f, € H**™ such that f = d—f We have D*f,, € H*™™ *  So D*f is
:L-m

dy

indefinitely oscillating in H*~ sense.

Inversely, if D*f is indefinitely oscillating in H*~® sense, posing also ¢ = D*f then g,,
isin H* 2t As 0 < 1—a < 1 with D' ®g, € H® and D' ®g; = f. One deducts
Dlg,, € H*"™ 1 and D'"%g,, = fn_1.

ecas -1 <a<0 g
Taking f indefinitely oscillating. Then Vm 3f,, € H*™™ such that f = d—f As fi

m

is in H*™'. One deducts that D'*f; is in H*=®. (The operator D'™* is a derivative
operator since 0 < 1+ a < 1). As f; is indefinitely oscillating in H**! sense which is
equivalent to say that D'*®f; is indefinitely oscillating in H*~® sense.

2.4 Generalization to an arbitrary Banach space

We take a Banach space E satisfies the following conditions:
1. E C D'(]0,00)) and the injection is continuous
2. If f; e E, || f; ||le< C and if f; — f (in D'([0, 00)) sense), then f € E
3. if fe E, 7>0,then T7f, defined by T7 f(z) = f(z + 7), belongs to E with
1T f le<Il f e

Definition 6 A function (or distribution) f € E is indefinitely oscillating, relatively to E, if
d

and only if, for all integer n > 1, there exists f, € E such that one has f(z) = (d—)"fn(x)
T

(the derivatives are considered in distributions sense).

Definition 7 A function 1 € C§°(0,1) is admissible if
/ u”p(u) du = v, # 0 for all integer ¢ > 1.
0

This is compatible with the fact that ¢» has a nul integral.

Theorem 17 With the previous notations, the two following proprieties of the function f € E
are equivalents.

1. f s indefinitely oscillating relatively to B

16



Ydz ,b>0, a> 0 satisfy, for all a > 1,
| Wia, [|[e< Cna ™™

Proof of theorem

e 1 =— 2 is evident.

We can show the following lemma.
Lemma 18 if w € L'(0,00), f € E, then/ (T" flw(r)dr € E
0

Using this result, we write

Wias = /Oof(w)azﬂ( —)de

1
—/ s
= (Ve [ fale) S0 b)dx

T

= (~yra [T m>fn>(b>5¢ " <5>dx
= (=1)"a"" W) (o)

Owing to lemma (18), W(n)(a b € E with a norm bound uniformly by a. The estimation
(2) by result.

e The implication 2 = 1 is more subtle.

We use the identity

1 —x da_ b pye!
[T e T - ot
We conclude that we have
(= D! ufol@) = [ @ Wia da

where f,(z) is the g-th primitive of f(z).
If g > 1, / a® "W da € E since | W,y < C || f ||g (lemma (18)). Now

/ a?” 1W(a,x) da € E since (2) let to satisfy that the integral is the Bochner integral.
1

17



2.5 Some interesting examples of the indefinitely oscillating func-
tions

Some links between functions indefinitely oscillating in L* and H*® sense can be more interest-
ing. It is evident to constat that if f is indefinitely oscillating in H® and if s > %, then f is
indefinitely oscillating in L*> sense (because of the Sobolev injections).

One has also the following assertion:

Lemma 19 If f is in H*(IR)N L>®(R) for s < % and f is indefinitely oscillating in H*(IR)
sense then f is a functions indefinitely oscillating in L>(IR) sense.

Proof of lemma

By hypothesis one has || A; f [|o< Cy27Y VN, Vj < —1. As A/J\f(f) is taken by the dyadic
corona a2’ <| £ |[< 27 with 0 < o < 8. It becomes then:

— B2
| 55f = [ 1 55(©) | dg
Applying Cauchy-Schwarz one has:
| A5f < On2iN28 VN, V) < —1

or
Dif(@) = [ Bif()e d
By consequent we have:

|85 lloo < 1157 s
COn2iN23

IN

Another interesting example, is to show that if f is in H*(/R) and is indefinitely oscillating in
L*>*(IR) sense, then we have not necessarily f indefinitely oscillating in H*(IR) sense. We will
construct such function in the following way:

Let ¢ a function of compact support and indefinitely derivative (It is then in Schwartz class)

such that ¢(£) > 0. Writing
+o00
_ .2 X i 7k$
flz) = ;2 ¥ SO(ﬁ)62
By using Fourier transforms it becomes:

“+o00

f(6) =222 (g - 272"

0

It clair that one has

/2—- 1 f©) ] de=0(2)
i<|g|<22-7

18



It can be remarked by the proof of the last lemma that f is indefinitely oscillating in L*
sense, but

lim | £(©) P d§ =400

j—rFoo Ja-i<|g|<22-9

By consequent f is not indefinitely oscillating in L? sense.

IRemark:

One knows that an indefinitely oscillating function in H® sense can be writing under the forme
f = fo+ fi, where fy is the basic component frequency which defines the oscillating charac-
teristic of the function f, f; is a function of H* indefinitely oscillating since the support of fl
does not content 0. Finally f; is a function indefinitely oscillating in L? sense.
An interesting example of indefinitely oscillating function in L? sense is the A.Grossmann
wavelet defined by:

fl@) = e’ g >0

f(x) = e logleltim® i 2 <0

We can show easily that f is in the Schwartz class. By consequent f is in the Schwartz class.
By Paley-Wiener’s theorem, f () = 0 for £ < 0 and % is Schwartz class, for all N. One
deducts that 0 is a zero of infinity order for f . By consequent f is indefinitely oscillating L?
sense.

We can observe that the same function is also indefinitely oscillating in L*° sense.
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