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In a separable Hilbert space H, greedy algorithms iteratively define m-term
approximants to a given vector from a complete redundant dictionary D. With
very large dictionaries, the pure greedy algorithm cannot be implemented and
must be replaced with a weak greedy algorithm. A conjecture about the con-
vergence of very weak greedy algorithms arises naturally from the observation
of numerical experiments. We introduce, study and disprove this conjecture.
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1. INTRODUCTION

Given a complete dictionary D of unit vectors (or atoms) in a separable
Hilbert space H, one can consider the approximations of a vector R; by
linear combinations of atoms taken from D. When the dictionary is indeed
an orthonormal basis, the best m-term approximation to R; can actually
be constructed. But whenever the dictionary is redundant, there is no
unique linear decomposition of R;, and the best m-term approximation
may be difficult to build. A greedy algorithm (known as Matching Pursuit
in signal processing [8], or Projection Pursuit in statistics [6]) provides such
an m-term approximation by constructing a sequence R,, € H,m > 1 such
that at each step

Rm = <Rmagm> gm + Rmy1, gm €D (1)
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with

(B, gm)| = sup [(Rim, 9)| . (2)
geD

It was proved that such a sequence converges weakly [6] and strongly [7]
to zero. When the dictionary D is very large, the choice (2) of the best
atom from D maybe so computationnaly costly that a sub-optimal choice
has to be considered. More recently, the convergence of greedy algorithms
was proved under the weaker sufficient condition

(R, gm)| > tim sup [(Rum, 9)] , (3)
g€D

provided that (¢,,) complies with some additional condition. In [9] the
convergence is proved if 3t > 0,Vm,t,, > ¢. In [10] the stronger result of
convergence whenever ) t,, /m = oo is proved, and the remark was made
that divergence may occur when ) t2 < oo. An open question consists
in filling the gap between these two conditions on (,,).

In [1, 2], a pursuit with sub-dictionaries of local maxima of D was defined
for the approximation of images. The same technique was developped in
[4, 5] in order to accelerate the analysis of sound signals. Between iterations
m, and m,41 — 1, a sub-dictionary D, of local maxima is used. It is
computed at the iteration m, and contains the best atom for this iteration.
The convergence of such an algorithm was proved [1] under the restrictive
assumption that mpy; — m, is bounded. The proof used the convergence
of weak greedy algorithms [9]. The results from [10] show that a weaker
sufficient condition for the convergence of this algorithm is Zp mL,, = 00
For example if m;, = plogp, there is convergence but m,;; — m, is not
bounded.

With a multiscale time-frequency dictionary of chirps [5], we suggested
a much weaker two-step choice of the “best” atom of D. At first we only
consider a complete sub-dictionary D* of reasonable size, and select the
best atom g} € D*. Then we improve this choice by choosing a “locally
optimal” atom g, € D in a “neighborhood” of g;,. The final choice thus
complies with

[(Bins gm)| > [(Rims g)| = sup [(Rom, g} - (4)
g€D*

Such a stepwise choice g,, € D is generally much weaker than (3), if no
additional assumption is made about D and D*. We call the corresponding
class of algorithms “very weak greedy algorithms” (VWGA).

A VWGA is “stepwise better” than a pure greedy algorithm in D*. A
natural question is whether such a choice of g, € D will improve the speed
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of convergence, compared to a pursuit in D*. That is to say, if one is doing
a pursuit in D* (which is known to converge), is it a good idea to get at
each step a “better atom” in D ? Does it “take advantage” of the extra
redundancy given by D 7 The intuition tells us that it should converge, may
be with an improvement of the speed of convergence. In finite dimension,
the convergence of VWGA is actually trivial.

The goal of this report is to show that the intuition is false in infinite
dimension. Not only the VWGA can converge more slowly than a pur-
suit in D* (this is already known from a counter-example of DeVore and
Temlyakov [3], where D* an orthonormal basis and D = D* U {go} with go
a “bad” vector), but it may not converge at all. We show this by building
a counter-example.

In the first section, we give a precise statement of the natural conjecture,
and define the notion of (pure, weak and very weak) greedy sequence.
In the second section we build a very weak greedy sequence that is our
counter-example. In the third section we make some comments about the
implications of our result.

2. GREEDY ALGORITHMS AND SEQUENCES
The natural conjecture about VWGA is the following

CONJECTURE 2.1. Let D* C D two complete dictionaries. Let {Ry,}m>1
such that, for all m, (1) holds with some g,, € D chosen such that (4) is
true. Then ||Ry,||, — 0.

If this conjecture were true, then it should be true when D* = B is an
orthonormal basis of H and D D B is any dictionary containing this basis.
It would imply the following result.

CONJECTURE 2.2. Let B = {e,,n € N} an orthonormal basis of H, and
define for any x € H : ||z|| = supneN|(m,en>|2. Let {Rpn}m>1 a se-
quence such that for all m > my,

(R, Rint1) = || Rns1 |15 (5)

and

|1 Bonlls = | R |l5 > Slégl(Rm,enMQ = | Rl (6)

Then ||Ry||, — 0.
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Proof. Let R,, comply with (5) and (6). We shall prove that (1) and (4)
hold for m > my, for some dictionary D that we will specify later on. As
the convergence is an asymptotic property, it is clear that we can replace,
in conjecture 2.1, “(1) and (4) hold for all m” by “(1) and (4) hold for all
m > my”. Thus, if conjecture 2.1 is true, we will get ||R.,||, — 0.

Let us define

9m = (Rus — i)/ |Ron — R ()
and
D :=BU{gm,m € N} . (8)

From the definition of gy,, Ry = 0mgm + Rm41 for some d,,. From (5) we
get (Rpm+1,gm) = 0, thus 6, = (R, gm), which shows (1).

Now from (6) we have |(Ru, gm)|” = | Rinl5—= | Rm+11l5 > supe, e [{(Bms ex)]”
which shows (4). |

This enables us to only deal with properties of sequences in H : we can
forget about the algorithmic nature of the iterative decomposition. We
will call greedy sequence any sequence R, in H complying with (5). A
greedy sequence that additionnaly complies with (6) will be called a very
weak greedy sequence, by opposition to a pure greedy sequence which is
supposed to satisfy the stronger condition (which is equivalent to (2))

2 2 2
[Bomlly = [ Bmtally 2> sup [(Bm, 9)]” -
g€D

We shall prove that conjecture 2.1 is false by building a counter-example
to conjecture 2.2, that is to say a very weak greedy sequence R,, such that
IR ]|, is bounded below by some ¢ > 0.

3. A COUNTER-EXAMPLE

For convenience, our counter-example { R, },>1 will be defined through
its normalization Sy, := R,/ ||[Rml, in ||| - Let us first show that, for
any A > 0 and any sequence {S,,},>1 such that [|S,,||,, = 1 there is a
unique sequence

Ry, = ||Rm||oo Sm.

such that (5) holds and ||R;[|,, = A. It is done by proving that the sequence
of norms {||Rm ||, }m>1 is defined by A and the sequence {Sy, },m>1, which
comes from the fact that (5) is equivalent to

I1Bms1llo / 1 Bmlloe = (Smt1, Sm) / (Smt1, Sm1) - 9)
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Condition (6) on {R,,}m>1 then becomes

(Sm:Sm> - (Sm+1a5m>2 / <Sm+175m+1> Z 1. (10)

Let us remark that for any greedy sequence, {||Ry||,}m>1 is a decreasing
positive sequence, hence it has a limit. For a very weak greedy sequence,
the fact that (6)/(10) holds for m > mg thus implies || R,,||,, — 0. Suppose
now that {R,, }m>1 is a counter-example to conjecture 2.2, which is equiv-
alent to lim ||Ry|[, > 0 : {Ry, }m>1 corresponds to some “bad” sequence
{Sm}m>1 complying with (10) such that

1Bmlly = 1Bl 1Smlly = ¢, (11)
where ||R,||,, is defined through (9) and ¢ > 0 is some constant. Hence
we must have ||S,,||, = oco.

We are going to specify some badly behaved sequence {Sy,;}m>1 of vec-

tors, such that ||S,,||., =1, [|Smlly = 00, and (10)-(11) hold. Our setting
is now H = [*(N) and we define, for 0 < e < 1

S(e) :={(1—=€e)"},50- (12)

One can easily check that ||S(€)||,, =1 and for all 0 < €,n < 1,

(S(€),Sm) = 3 (=) =m) = (c+n—en) " = 7 F—.(13)
n=0 € n
In particular
IS(ll; = (2e—¢*) " (14)

Using this family of “bad vectors” we can now build the counter-example
we have announced.

PROPOSITION 3.1. Let H = I>(N) and B its canonical basis. Let « > 2
and €, = m~*. Let Sy, = S(em). Let Ry, = || Ryl o, Sm where {|| Ry, o Fm>1
is inductively defined by (9), with an arbitrary initial value ||Ry]| > 0.
Then {Rm}m>1 is a counter example, that is to say : there exists mg € N
such that for all m > my, relations (5) and (6) hold, and

3¢ >0,Vm,||Rnl, > ¢ (15)
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Notations. We use the symbol a,, < b,, to denote the existence of
constants ¢ and C such that ca,, < b, < Ca,, for m big enough. The
notation a,, ~ by, means that a, /by, — 1. Finally a,, = O(by,) is written
when a,, /b, is bounded.

Proof.  Using (13) we get

(Sm+1,Sm)®  _ m>* ((m +1)* —m*)*

(Smr Sim) = (Smi1,Smy1)  (2me — 1) (m + 1)* + me — 1)

(e}

~ ’% (1+1/m)* — 1) < m*2  (16)

which proves that (10) is true, because its left hand side goes to infinity.

From (14) we know that ||Sm||§ ~ 1/(2€p) < m®. Tt is thus sufficient to
prove that ||R,,||., < m~®/2 to obtain (11) and reach our conclusion. To
get this result we use the sequence vy, := log||Rim+1llo / |1Bmlle . m > 1
and show that

_ O ppgmtl -2
U = 2log - + O(m™). (17)

Indeed, from (9) we have vy, = log (Sm+1,Sm) — 10g(Sm+1, Sm+1), thus
using (13) we get

U + log Em ¥ Emi1 _ log(1 — €,,/2) — log(1l — €mem+1/(€m + €m+1)) = O(m™ ).
2€m41
(18)
Moreover, one easily gets
€m + €m1 1 o —2
log——— =log |1+ = (1 +1/m)*—-1)| = — . (1
0“5 g |14 3 (14 1/m)* ~1)] = 5= + Om ™). (19)

As 1/m =log(m + 1) —logm + O(m~2), and a > 2, (18) and (19) lead to
(17). To finish with,

a m—1 a k+1 m—1
log || R || o —10g||R1||oo+§logm: (vk+§log ? > = Z O(1/m?)
k=1 k=1
(20)

has a limit K € R, which proves that

| Rl m*? = C > 0. (21)
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4. COMMENTS AND CONSEQUENCES

This counter-example gives some additional information on the proper-
ties of weak greedy sequences. Let us state some (known) results about
greedy sequences

LEMMA 4.1. Let {Ry}m>1 be any very weak greedy sequence. If )" ||Rpm — Rmyilly, < 00
then ||Ry||, — 0.

Proof. As H is complete, Y |[|Ry — Rimy1|ly < 00 implies the (strong)
convergence of {Rp,}m>1 to some Ry € H. But we have seen that

IR, — 0 because of (6). Fatou’s lemma thus gives R = 0. |

The counter-example we have built must thus comply with > ||Rp — Ryl = o0.
On the other hand, it is easy to see that

LEMMA 4.2. For every greedy sequence {Rp}m>1,

> IR = Ryl < oo

Proof. The stepwise orthogonal decomposition (1) implies a stepwise
energy conservation ||Rm|ls = ||[Rm — Rmiills + |Rme1|l5, which gives
S 1Rm — Rims1ll3 < ||R1|)* by a telescoping sequence argument. |

We currently know that, for any counter-example to conjecture 2.2 :

Y B = Rl = oo (22)
Y R = Rl < oo (23)

What about the convergence of " ||Ry, — Rp+all5,1 < p < 2 ? The
particular counter-example we built in proposition 3.1 does show that such
a convergence is not sufficient to ensure the strong convergence of Ry, to
Zero.

LEMMA 4.3. The counter-ezample {R.;,}m>1 to conjecture 2.2 built in
proposition 3.1 complies, for all p > 1, with

Y I1Bm = Rusa |l < o0
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Proof.  We show that ||Rp, — Rp+1|l, < m™", which gives the result.
Using the asymptotic rates (16) and (21) we get

1R = Buniall; = 1Rl = 1R
1Rl ((Sims Sm) = (Smr, Sm)’ / (St Smsn)

=m~2

= m—ama—2

We know from [10] that, for any counter-example to conjecture 2.2,
> tm/m < 0o, where we use (7) and (8) to define

e NBmogm)| 1B — Bl
tm = = . (24)
SungD |<Rm,g>| Sung'D |<Rm>g>|

We would like to know whether we can find any counter-example to con-
jecture 2.2 such that " #2, = co. It would show that >_t2 = oo is not a
sufficient condition to ensure the convergence of weak greedy algorithms.

Let us start by studying the asymptotic behavior of t,, for any very
weak greedy sequence {Rp,}m>1. It is actually easy to see that ¢, =
|Bim — Rut1lly / sup, [(Bm, gp)| where g, = (R — Rp11)/ ||Bp — Rp+all,-
For each p, one can write

(12l 1,11, (S S3) — S22 (53, 5,0) )]

|<Rm;gp>|2 =
”Rp - Rp+1||§
_ (Spt1,5p) 2
= ||R ||2 ((Sm,Sp> (Sp+1,5p+1) <Sm’5p+1>)
T (S0 5p) — gt (S, Spia)
so that
> _ B = Bl 25)
" 1R iml% Kom
Wlth Km = Supp Km,p and
_ _(Sp41,5) 2
Km7p _ ((Sm; Sp> (Sp+1,Sp+1) <Sm; Sp+1>) (26)

(Spv Sp> e T <Spv Sp+1>

© (Sp41,5p+1)
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Let us now restrict the study to the very specific case of sequences
{Rm }m>1 which associated sequence {Sy, } m>1 can be written as {S(1/um) }m>1
(using definition (12)). We know that if {R,,}m>1 is a counter-example to
conjecture 2.2, then [|S(1/um)||, = 0o, which shows that u,, — oo thanks
to (14). Let us show that it implies > 2, < oco.

LEMMA 4.4. For any sequence u,, — 0o, there exists 0 < 31 < 2 < 00,
n > 0, and mg € N, such that for all m > mg there exists p,, € N complying
with

Up,, € [ﬁlumaﬁQUm] (27)
Up,+1 & [(1=n)/(1+n)um, (L+n)/(1 = n)un] (28)

Proof. For everyn > 0 and x > 0, denote I,,(z) the interval [(1—n)/(1+
n)x, (1 +n)/(1 —n)x]. Suppose the conclusion is false. The we know that
for every 0 < 31 < B2 < 00, every n > 0 and every M, there exists m > M
such that for all p, up, € [Bium,Bottm] = Upt1 € I;(um). Let us take
61 =(01-n)/(1+n)and B> = (1+n)/(1 —n), for some arbitrary 5. In this
case, we know that, for some m, for all p, up, € I))(um) = upt1 € In(um).
But we also know that u,, € I;(u,), so it becomes clear that by induction,

f(n) € I,(urp,) for all n > m, which is in contradiction with u;y, — co. |

PROPOSITION 4.1. For every very weak greedy sequence which can be
written as Ry, = ||Rpl|,, S(1/um) and is a counter-ezample to conjecture
2.2, we have

tm X ||Rm - Rm+1||2 )

hence

thn < 0.

Proof. One can check that

2u, — 1 Upt1 — Um 2
Ky =1, P bt : (29)
(up + Uy, — 1)° \Upt1 +um —1

It is then easy to show that

u2

Kpy = il,lrgKmm < Wm—l ~ U [2. (30)
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Moreover, using lemma 4.4, one gets a sequence p,, such that

2 m— 1 231n?
Ky, > U’?Z'n Bru 2772 - /31277
(B2 + Dup, — 1) 5

Um, (31)

which shows that K, < u,,. From (14) this becomes K, < ||S(1/um)||§
thus, using (25), we get

£, = 1B = Ronsall3 / (1Rl 1S um) 1) = 1Bon = R 13 / 1o

which finally gives t2, < ||R,, — Rm+1||§ using (11). We get the square
summability of ¢,, from lemma 4.2. |

5. CONCLUSION

The family of potential counter-examples R,,, = ||Ry||,, S(em) that we
have built does not discard the possibility that Y #2, = oo might be a
sufficient condition to ensure the convergence of a weak greedy algorithm.
These counter-examples show that too weak a choice of g,, in a greedy
algorithm can prevent the algorithm from converging. However, some of
our numerical experiments [5] do show convergence of a very weak greedy
algorithm in the multiscale time-frequency dictionary of Gaussian chirps D,
with an improvement of the speed of convergence compared to a pure greedy
algorithm in the multiscale Gabor dictionary D*. One simple reason for
the convergence is that numerical experiments use finite dimensional data.
But this does not explain the improvement in the rate of convergence. The
reason for the good behaviour of this algorithm still has to be investigated.
It may be due to the particular structure of D* and D and/or to the
properties of the choice functional R — g(R) which defines a particular set
of very weak greedy sequences Ry+1 = Ry — (R, 9(Rim)) 9(Rm)-
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