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Abstract. Let ∆m = {(t0, . . . , tm) ∈ Rn+1 : ti ≥ 0,
∑m

i=0 ti = 1}
be the standard m-dimensional simplex. Let ∅ �= S ⊂ ⋃∞

m=1 ∆m,
then a function h : C → R with domain a convex set in a real
vector space is S-almost convex iff for all (t0, . . . , tm) ∈ S and
x0, . . . , xm ∈ C the inequality

h(t0x0 + · · · + tmxm) ≤ 1 + t0h(x0) + · · · + tmh(xm)

holds. A detailed study of the properties of S-almost convex
functions is made. It is also shown that if S contains at least
one point that is not a vertex, then an extremal S-almost con-
vex function ES : ∆n → R is constructed with the properties
that it vanishes on the vertices of ∆m and if h : ∆n → R is any
bounded S-almost convex function with h(ek) ≤ 0 on the ver-
tices of ∆n, then h(x) ≤ ES(x) for all x ∈ ∆n. In the special case
S = {(1/(m+1), . . . , 1/(m+1))} the barycenter of ∆m very explicit
formulas are given for ES and κS(n) = supx∈∆n

ES(x). These are
of interest as ES and κS(n) are extremal in various geometric and
analytic inequalities and theorems.
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1. Introduction.

Let C be a convex set in a real vector space and let h : C → R. Then
according to Hyers and Ulam [5] for ε > 0, h is ε-approximately convex
iff

(1.1) h((1 − t)x + ty) ≤ ε + (1 − t)h(x) + th(y), for all t ∈ [0, 1].

In [5] they show that if h is ε-approximately convex and C ⊆ Rn then
there is a convex function g : C → R and a constant C(n) only depend-
ing on the dimension so that |h(x) − g(x)| ≤ 1

2
C(n)ε. In a previous

paper we show the sharp constant is C(n) = �log2 n	 + �2(n+1−2�log2 n�)
n+1

.
(Here �·	 is the floor, or greatest integer function, and 
·� is the ceiling
function.) In the present paper we generalize the notion of approximate
convexity and give the sharp constants in theorems the corresponding
Hyers-Ulam type theorem. This is done by finding the extremal approx-
imately convex function on the simplex that vanishes on the vertices.

To put the these problems in a somewhat larger setting. First by re-
placing h by ε−1h in (1.1) there is no loss of generality in assuming that
ε = 1. Then many natural notions of generalized convexity are covered
in the following. Let ∆m = {(t0, . . . , tm) ∈ Rm+1 : ti ≥ 0,

∑m
i=0 ti = 1}

be the standard m-dimensional simplex.

1.1. Definition. Let V a vector space over the reals and let ∅ �=
C ⊆ V be a convex set and let ∅ �= S ⊆ ⋃∞

m=1 ∆m. Then a function
h : C → R is S-almost convex on C iff for all (t0, . . . , tm) ∈ S and
x0, . . . , xm ∈ C the inequality

h

(
m∑

i=0

tixi

)
≤ 1 +

m∑
i=0

tih(xi)

holds. We denote by

AlmConS(C) := {h : h is S-almost convex on C}
the set of almost convex functions h : C → R. �
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The case of S = ∆1 corresponds to the case studied by Hyers and
Ulam [5] and others (cf. the book [4] for more information and refer-
ences). When S = {(1/2, 1/2)} the S-almost convex functions are just
the functions that satisfy

h

(
x + y

2

)
≤ 1 +

h(x) + h(y)

2
.

which are the approximately midpoint convex function, (sometimes
called the approximately Jensen convex functions) which also have been
studied by several authors.

We give a general theory of S-almost convex functions. In partic-
ular when S has at least one point that is not a vertex we construct
(Definition 1.17 and Theorem 1.22) a bounded S-almost convex func-
tion E∆n

S : ∆n → R such that if h : ∆n → R is bounded, S-almost
convex, and h(ek) ≤ 0 on the vertices of ∆n then h(x) ≤ E∆n

S (x) for
all x ∈ ∆n. Then the number κS(n) := supx∈∆n

E∆n
S (x) is the sharp

constant in stability theorems of Hypers-Ulam type and the function
E∆m

S is the function that shows it is sharp (See Theorem 1.26.)
Probably the most natural choice for S are S = ∆m a simplex and

S = {(1/(m+1), . . . , 1/(m+1))} the barycenter of a simplex. In these
cases we are able to give very explicit formulas both for the extremal
function E∆n

S and for the κS(n) = supx∈∆n
E∆n

S (x). (For the case
S = ∆m this was done in our earlier paper [3]. For the case of S the
barycenter of ∆m see Theorems 3.1.) There is an interesting dichotomy
in these two cases. When S = ∆m then E∆n

S is a concave piecewise
linear function that is continuous on the interior ∆◦

n of ∆n and the
maximum occurs at the barycenter of ∆n. (See [3].) However when
S = {(1/(m + 1), . . . , 1/(m + 1))} is the barycenter of ∆m then E∆n

S

is discontinuous on a dense subset of ∆n and the graph of E∆n
S is a

fractal with a large number of self similarities. See Figure 2.
This paper is not completely self-contained. Several of the results

have proofs that are very similar to the proofs in our earlier paper [2]
and at several places we refer the reader to [2] for proofs.

1.1. Definition and basic properties. Let ∆m := {(t0, . . . , tm) :∑m
k=0 tk = 1, tk ≥ 0} be the standard m-dimensional simplex. For the

rest of this section we fix a subset

S ⊂
∞⋃

m=1

∆m.

It follows easily from the definition of S-almost convex that AlmConS(C)
is a convex subset of the vector space of all functions form C to R.
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It is useful to make a distinction between two cases:

1.2. Definition. If S ⊆ ⋃∞
m=1 ∆m then

(1) If S �
⋃N

m=1 ∆m for any finite N then S is of infinite type .

(2) If S ⊆ ⋃N
m=1 ∆m for some N then S is of finite type . If further

S ⊆ ∆m for some m then S is homogeneous . �
1.3. Remark. If we assume that the union

⋃∞
m=1 ∆m is disjoint and has

the natural topology (U ⊆ ⋃∞
m=1 ∆m is open iff U ∩∆m is open in ∆m

for all m) then it is not hard to see that S is of finite type if and only
if it has compact closure in

⋃∞
m=1 ∆m. �

When considering S-almost convex functions there is no real distinc-
tion between S of finite type and S homogeneous.

1.4. Proposition. Let S ⊆ ⋃N
m=1 ∆m. For m ≤ N let ιmN : ∆m → ∆N

be the inclusion ιnN(t0, . . . , tm) = (t0, . . . , tm, 0, . . . , 0) and set S∗
m =

ιmN [S ∩ ∆m] ⊆ ∆N . Let S∗ =
⋃N

m=1 S∗
m ⊆ ∆N . Then for any convex

subset C of a real vector space AlmConS∗(C) = AlmConS(C).

Proof. This is a more or less straightforward chase though the defini-
tion. �

The proof of the following is also straightforward and left to the
reader.

1.5. Proposition. Let S ⊆ ∆m and let

S∗ =
⋃

ρ∈sym(m+1)

{(tρ(0), tρ(1), . . . , tρ(m)) : (t0, t1, . . . , tm) ∈ S}

where sym(m + 1) is the group of all permutations of {0, 1, . . . , m}.
Then for any convex subset C of a real vector space AlmConS∗(C) =
AlmConS(C).

The following is also trivial.

1.6. Proposition. Let S1 ⊆ S2 ⊆ ⋃∞
m=1 ∆m. Then for any convex

subset C of a real vector space AlmConS2(C) ⊆ AlmConS1(C). �
The following can be used to reduce certain questions about S-almost

convex functions to the case where S ⊆ ∆1.

1.7. Proposition. Let S ⊆ ⋃∞
m=1 ∆m and let S1 be a nonempty sub-

set of S ∩ ∆m for some m. Let N0, . . . , Nk be a partition of the set
{0, 1, . . . , m} into k + 1 nonempty sets and let

S2 := {(α0(t), α2(t), . . . , αk(t)) : t ∈ S1} ⊆ ∆k
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where
αj(t) :=

∑
i∈Nj

ti.

Then
AlmConS(C) ⊆ AlmConS2(C)

for any convex subset C of a real vector space. In particular if
(t0, . . . , tm) ∈ S and for some k ∈ {1, . . . ,m−1} we set α = t1+· · ·+tk
and β = tk+1+ · · ·+tm then any S almost convex function h will satisfy
h(αx0) + h(βx1) ≤ 1 + αh(x0) + βh(x1).

Proof. Let C be a convex subset of a real vector space and let
y0, . . . , yk ∈ C, α ∈ S2 and h ∈ AlmConS(C). Let x0, . . . , xm ∈ C be
defined by

xi = yj if i ∈ Nj

As α ∈ S2 there is a t = (t0, . . . , tm) ∈ S1 ⊆ S so that αj =
∑

i∈Nj
ti.

Then as h is S-almost convex

h

( k∑
j=0

αjyj

)
= h

( m∑
i=0

tixi

)
≤ 1 +

k∑
i=0

tih(xi) = 1 +
m∑

i=0

αjh(yj).

Thus h ∈ AlmConS2(C). �
It is useful to understand when an S-almost convex function is

bounded.

1.8. Theorem. Let S ⊆ ⋃∞
m=1 ∆m and assume that S contains at least

one point that is not a vertex (that is there is (t0, . . . , tm) ∈ S with
maxi ti < 1). Let U be a convex open set in Rn. Then any S-almost
convex function h : U → R which is Lebesgue measurable is bounded
above and below on any compact subset of U .

Proof. Let (t0, . . . , tm) ∈ S with maxi ti < 1. Then there is a k ∈
{1, . . . ,m− 1} so that if α = t1 + · · ·+ tk and β = tk+1 + · · ·+ tm, then
0 < α, β < 1, α + β = 1 and by Proposition 1.7

h(αx0 + βx1) ≤ 1 + αh(x0) + βh(x1).

We assume that α ≤ β, the case of α > β having a similar proof. As
any compact subset of U is contained in a bounded convex open subset
of U we can also assume, without loss of generality, that U is bounded.

Let K ⊂ U be compact and let r = dist(K, ∂U). For any x ∈ Rn let
Br(x) be the open ball of radius r about x. Then for any a ∈ K we
have Br(a) ⊆ U . For a ∈ K define θa : Rn → Rn by

θa(x) =
1

β
a − α

β
x.



6 DILWORTH, HOWARD, AND ROBERTS

Then it is easy to check that θa(a) = a for all a ∈ Rn and αx +
βθa(x) = a for all x ∈ Rn. Also θa is a dilation in the sense that
‖θa(x1) − θa(x0)‖ = (α/β)‖x1 − x0‖ for all x0, x1 ∈ Rn. As θa(a) = a
and (α/β) ≤ 1 this implies θa[Ba(r)] = Ba((α/β)r) ⊆ Ba(r). Let Ln

be Lebesgue measure on Rn. Then for any measurable subset P of Rn

Ln(θa[P ]) = (α/β)nLn(P ).

Choose a positive real number ε so that

(1.2)

(
1 +

(
α

β

)n)
ε <

(
α

β

)n

Ln(B(r))

where B(r) is the open ball of radius r about the origin. Because h is
measurable and Ln(U) < ∞ there is a positive M so large that

Ln{x ∈ U : h(x) > M} < ε.

Therefore if V := {x ∈ U : h(x) ≤ M} then Ln(U � V ) < ε. Let
A := Ba(r) ∩ V . We now claim that A ∩ θa[A] has positive measure.
For if not then A and θa[A] would be essentially disjoint subsets of
Br(a) and therefore, using that Ln(θa[A]) = (α/β)nLn(A),

Ln(Ba(r)) ≥ Ln(A) + Ln(θa[A])

=

(
1 +

(
α

β

)n)
Ln(A)

≥
(

1 +

(
α

β

)n)
(Ln(Ba(r)) − ε)

which can be rearranged as (1 + (α/β)n) ε ≥ (α/β)nLn(B(r)) contra-
dicting (1.2). Therefore Ln(A ∩ θa[A]) > 0 as claimed. Let a �= x ∈
A∩ θa[A]). Then x and θa(x) are both in A = Ba(r)∩ V and therefore
h(x), h(θa(x)) ≤ M . Thus

h(a) = h(αx+βθa(x)) ≤ 1+αh(x)+βh(θa(x)) ≤ 1+αM+βM = M+1

which shows that h is bounded above on K.
To show that h has a lower bound on compact subsets of U , let a ∈ U

and let r > 0 be small enough that the closed ball Ba(r) is contained
in U . Then Ba(r)is compact so by what we have just done there is a
constant C > 0 so that h(x) ≤ C for all x ∈ Ba(r). Let x ∈ Ba(r).
Then, again as above, θa(x) ∈ Ba(r), and therefore

h(a) = h(αx + βθa(x)) ≤ 1 + αh(x) + βh(θa(x)) ≤ 1 + αh(x) + βC

which can be solved for h(x) to give

h(x) ≥ 1

α
(h(a) − 1 − βC).
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Therefore h is bounded below on Ba(r). But any compact subset of
U can be covered by a finite number of such open balls and thus h is
bounded below on all compact subsets of U . �

The following will be needed later.

1.9. Corollary. Let h : [a, b] → R be a Lebesgue measurable function so
that h(αx+βy) ≤ 1+αh(x)+βh(y) for some α, β > 0 with α +β = 1
(that is h is S-almost convex with S = {(α, β)} ⊂ ∆1). Then h is
bounded above on [a, b].

Proof. By doing a linear change of variable (which preserves S-almost
convexity) we can assume that [a, b] = [0, 1]. Also by replacing h by
x �→ h(x)− ((1−x)h(0) +xh(1)) we can assume that h(0) = h(1) = 0.
Let δ = α/(1 + α). Then by Theorem 1.8 there is a constant C1 > 0
such that h(x) ≤ C1 on [δ, 1 − δ]. Let

C2 = max{C1, 1/(1 − α) + αC1}.
We now show that h ≤ C2 on [0, 1]. If x = 0, x = 1, or x ∈ [δ, 1−δ] this
is clear. Let x ∈ (0, δ) then the choice δ is so that there is a y ∈ [δ, 1−δ]
such that x = αky for some positive integer k. Also, as y ∈ [δ, 1 − δ],
h(y) ≤ C1. Therefore

h(x) = h(αky) = h(β0 + ααk−1y)

≤ 1 + βh(0) + αh(αk−1y) = 1 + αh(αk−1y)

≤ 1 + α
(
1 + αh(αk−2y)

)
= 1 + α + α2h(αk−2y)

≤ 1 + α + α2 + · · · + αk−1 + αkh(y)

≤ 1

1 − α
+ αC1 ≤ C2.

If x ∈ (1− δ, 1) a similar calculation shows that h(x) ≤ C2 (or this can
be reduced to the case x ∈ (0, δ) by the change of variable x �→ (1−x)).
This completes the proof. �

1.2. A general construction for the extremal S almost convex
set on a simplex. We will show that on the n-dimensional simplex
∆n there is a pointwise largest bounded S-almost convex function that
vanishes on the vertices of ∆m. We start with some definitions.

1.10. Definition. A tree , T , is a collection of points N , called nodes ,
and a set of (directed) edges connecting some pairs of nodes with the
following properties: The set N is a disjoint union N =

⋃∞
k=0 Nk where

N0 contains exactly one point, the root of the tree, each Nk is a finite
set and if Nk = {v1, . . . , vm} then Nm+1 is a disjoint union Nm+1 =
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P1 ∪ · · · ∪ Pm of nonempty sets where Pi is the set of successors of
vi. The (directed) edges of the tree leave a node and connect it to its
successors and there are no other edges in the tree (cf. Figure 1). If v
is a node of the tree then r(v) := k where v ∈ Nk is the rank of v. A
branch of the tree is a sequence of nodes 〈vk〉∞k=0 where v0 is the root,
r(vk) = k, and there is an edge from vk to vk+1. �

We now consider trees with extra structure, a labeling of the edges
in a way that will be used in defining the extremal S-almost convex
function.

1.11. Definition. Let S ⊆ ⋃∞
m=1 ∆m be nonempty. Then an S-ranked

tree is a tree T with its edges labeled by non-negative real numbers
in such a way that for any node v of the tree there is an element
t = (t0, . . . , tm) ∈ S so that there are exactly m + 1 edges leaving v
and these are labeled by t0, . . . , tm. The number ti is the weight of
the edge it labels. Figure 1 shows a typical S-ranked tree. �

�

� �

� � � � �

�
�

�
�

�

�
�

�
�

�

�
�
�
�
��

�
�

�
�

��

�
�
�
�
�

�
�

�
�

�

t0 t1

s0 s1 r0 r1r2

The root := unique node of rank 0.

The rank one nodes.

The rank two nodes.

Figure 1. An S ranked tree showing the labeling of the edges
out of the root by t = (t0, t1) ∈ S and the edges out of the rank
one nodes by s = (s0, s1) ∈ S and r = (r0, r1, r2) ∈ S. In our
definition each node will have at least two edges leaving it and the
sum of the weights t0, . . . , tm of the weights of all edges leaving a
node is unity (as (t0, . . . , tm) ∈ ∆m). Finally, in the definition of
tree used here, all branches are of infinite length.

We now describe how an S-ranked tree determines a probability mea-
sure on the set of branches of the tree. Let T be an S-ranked tree and
let X = X(T ) be the set of all branches of T . If 〈vk〉∞k=0, 〈wk〉∞k=0 ∈ X
are two elements of X we can define a distance between them as
d(〈vk〉∞k=0, 〈wk〉∞k=0) = 2−� where 	 is the smallest index with v� �= w�

(and d(〈vk〉∞k=0, 〈wk〉∞k=0) = 0 if 〈vk〉∞k=0 = 〈wk〉∞k=0). While we will not
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need to use this fact, it is not hard to check that this makes X into a
compact metric space which is homeomorphic to the Cantor set.

1.12. Definition. Let S ⊆ ⋃∞
m=1 ∆m be nonempty and let T be an

S-ranked tree. Then T defines a measure on X, the set of branches of
T , as follows. For v a node of T let I(v) be the set of branches of T
that pass through v. If k = r(v) is the rank of v then let 〈v0, v1, . . . , vk〉
be the initial segment of a branch passing through v (so that v = vk)
and for 1 ≤ i ≤ k let si be the weight of the edge from vi−1 to vi. Then
µ is the measure on X such that

µ(I(v)) = s0s1 · · · sk.

(That is µ(I(v)) is the product of the weights of the edges along an
initial segment of a branch connecting the root to v.) A measure arising
in this way will be called an S-ranked probability measure . �

It follows from this definition that if v is a node of T and v0, . . . , vm

are the successors of v and t = (t0, . . . , tm) ∈ S labels the edges from v
in such a way that ti labels the edge from v to vi then

µ(I(vi)) = tiµ(I(v)).

It is useful to give a description of an S-ranked probability measure
that does not rely directly on its construction from an S-ranked tree.

1.13. Alternative Definition. An S-ranked probability mea-
sure is an ordered triple (X,µ,π) where X is a nonempty set,
π = 〈π0, π1, π2, . . .〉 a sequence of finite partitions of X into nonempty
subsets such that π0 = {X} and πk+1 refines πk, µ is a measure defined
on the σ-algebra, A(π), generated by

⋃∞
k=0 πk so that for all j ≥ 0 and

all I ∈ πj, there exists (t0, . . . , tm) ∈ S such that if

{J ∈ πj+1 : J ⊂ I} = {I0, I1, . . . , Im}
then

µ(Ii) = tiµ(I), for 0 ≤ i ≤ m.

If I ∈ ⋃∞
k=0 πk then the rank of I is r(I) = k where I ∈ πk. (The

union
⋃∞

k=0 πk is disjoint so this is well defined.) �
Given an S-ranked probability measure (X,µ,π) we can construct

an S-ranked tree by using for the set of nodes of the tree N =
⋃∞

j=0 πj,
letting Nk = πk be the set of nodes of rank k. There is an edge from
I ∈ Nj = πj to J ∈ Nj+1 iff J ⊂ I in this case the weight of this edge
is the ti such that µ(J) = tiµ(I). In most of what follows we will work
with the alternative definition of S-ranked probability 1.13, but will
think of any such measure as being constructed from an S-ranked tree
as above.
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1.14. Example. Suppose S consists of a single point (t0, . . . , tm) in the
interior of ∆m (so that each ti is positive). Then there is a only one
S-ranked probability measure i.e. µ = the product measure on [m]N

where [m] = {0, 1, . . . , m} and µ = ν×ν×· · · and ν is given on [m] by
ν({i}) = ti. This uniqueness is clear when viewed in terms of S-ranked
trees as when S is a one point set there is clearly only one S-ranked
tree. �
1.15. Remark. Let (t0, . . . , tm) ∈ S and for each i with 0 ≤ i ≤ m, let
(Xi, µ

(i),π(i)) be an S-ranked probability measure on a set Xi where
we assume Xi ∩ Xj = ∅ for i �= j. We let X =

∐m
i=0 Xi (the disjoint

union of the Xi) and let π0 = {X}. For j ≥ 1 set πj =
⋃m

i=1 π
(i)
j−1.

(This gives π1 := {X0, . . . , Xm}.) Define a measure µ on A(π) by
µ(A) =

∑m
i=1 tiµ

(i)(A∩Xi). Then (X,µ,π) is an S-ranked probability

measure. Note that if I ∈ π
(i)
j then rµ(i)(I) = j and rµ(I) = j + 1. �

1.16. Definition. If x = (x0, . . . , xn) ∈ ∆n and α = 〈αi〉∞i=1 is a proba-
bility sequence in 	+

1 (that is
∑∞

i=1 αi = 1 and αi ≥ 0) then x divides
α, written as x | α, iff N = {1, 2, . . . } can be partitioned into sets
N0, N1, . . . , Nn such that

xk =
∑
i∈Nk

αi for k = 0, 1, . . . , n.

�
1.17. Definition. Define E = E∆n

S : ∆n → R by

E(x) = inf
∞∑

j=1

rµ(Ij)µ(Ij)

where the infimum is taken over all S-ranked probability measures
(X,µ,π) and all disjoint sequences 〈Ij〉∞j=1 ⊂ {∅} ∪⋃∞

k=0 πk with

(1.3)
∞∑

j=1

µ(Ij) = 1 and x | 〈µ(Ij)〉∞j=1

(This can be rephrased using disjoint sequences 〈Ij〉 ⊂
⋃∞

k=0 πk which
are either finite or countable. But it is notationally more convenient to
take a finite sequence 〈Ij〉mj=1 and extend it to a sequence 〈Ij〉∞j=1 with
Ij = ∅ for j ≥ m + 1.) �

In much of what follows that the domain of E is ∆n will be clear
and we will just write ES or just E rather than E∆n

S .

1.18. Remark. For each S-ranked probability measure (X,µ,π) we let
Ai denote the finite algebra with elements of πi as its atoms. Then
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in the last definition let 〈Ij〉∞j=1 ⊂ ⋃∞
k=0 Ak be a disjoint sequence so

that (1.3) holds and let N = N0, . . . , Nn be a partition of N so that
xk =

∑
j∈Nk

µ(Ij). Then set Ai k = ∪{Ij : r(Ij) = i, j ∈ Nk}. Then

∞∑
j=1

rµ(Ij)µ(Ij) =
n∑

k=0

∞∑
i=0

iµ(Ai k).

Therefore we could also define E(x) by

E(x) = inf
n∑

k=0

∞∑
i=0

iµ(Ai k)

where the infimum is taken over all S-ranked probability measures, and
all disjoint sequences 〈Ai k〉0≤k≤n, 0≤i so that

Ai k ∈ Ai and
∑

i

µ(Ai k) = xk. �

The following sum will be used a couple of times. The proof is left
to the reader.

1.19. Lemma. Let a, x ∈ R with |x| < 1 and k an integer. Then

∞∑
j=0

(a + j)xk+j = axk + (a + 1)xk+1 + (a + 2)xk+2 + · · ·

=
axk

1 − x
+

xk+1

(1 − x)2
=

axk + (1 − a)xk+1

(1 − x)2

�

1.20. Proposition. For any nonempty S ⊂ ⋃∞
m=1 ∆m we have

ES(ek) = 0 for all vertices of ∆n and if x ∈ ∆n is not a vertex
then ES(x) ≥ 1. If S contains a point (t0, . . . , tm) which is not a
vertex, i.e. ε := maxi ti < 1, then ES is bounded on ∆n and in fact has
the upper bound

ES(x) ≤ 1 +
(2ε − ε2)(n + 1)

(1 − ε)2

on ∆n. Thus if inft∈S maxi ti = 0 (for example when S =
⋃∞

m=1 ∆m)
then E is given by E(ek) = 0 and E(x) = 1 for x ∈ ∆n and x not a
vertex.

Proof. If x is a vertex of ∆m, which without lost of generality we can
take to be x = e0, then let (X,µ,π) be any S-ranked probability
measure and let I1 = X and Ij = ∅ for j ≥ 2. Partition N as N0 = {1}
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and N1, . . . , Nn an arbitrary partition of N�{0}. Then r(I1) = r(X) =
0 and µ(Ij) = µ(∅) = 0 for j ≥ 2 and therefore

0 ≤ E(e0) ≤
∞∑

j=0

r(Ij)µ(Ij) = 0.

Thus E(e0) = 0.
Now assume that x is not a vertex and let (X,µ,π) be an S-ranked

probability measure and 〈Ij〉∞j=1 with
∑∞

j=1 µ(Ij) = 1 and x | 〈µ(Ij)〉∞j=1.
Then as x is not a vertex we have that xk < 1 for 0 ≤ k ≤ n and
therefore µ(Ij) ≤ xk < 1. Thus Ij �= X and therefore r(Ij) ≥ 1. This
gives

∞∑
j=1

rµ(Ij)µ(Ij) ≥
∞∑

j=1

µ(Ij) = 1

Taking an infimum then gives that E(x) ≥ 1.
Now assume that S contains a point that is not a vertex and note

that if S1 ⊂ S2 then ES2(x) ≤ ES1(x) for all x. Thus it suffices to show
that ES(x) is bounded when S is a single point (t0, . . . , tm) with ε =
maxi ti < 1. Suppose (x0, x1, . . . , xn) ∈ ∆n. We let µ be the product
measure as in Example 1.14 and we let Ai := A(πi) as in Remark 1.18
and use the alternative definition of ES given in Remark 1.18. For
each k, 0 ≤ k ≤ n, we select inductively a set Ai k ∈ Ai with 〈Ai k〉i,k
pairwise disjoint such that

xk − εi ≤
i∑

j=0

µ(Aj k) ≤ xk.

Note that if I ∈ πi, then µ(I) ≤ εi. We carry out the the inductive
selection as follows: Let

Ii :=

{
I ∈ πi : I ∩

( n⋃
k=0

i−1⋃
j=0

Aj k

)
= ∅

}
= {I1, I2, . . . , IM}.

Then

(1.4) 1 =
n∑

k=0

i−1∑
j=0

µ(Aj k) +
M∑

s=1

µ(Is).

If
∑i−1

j=0 µ(Aj 0) ≥ x0 − εi, let Ai 0 = ∅. If
∑i−1

j=0 µ(Aj 0) < x0 − εi let s0

be the first integer such that

i−1∑
j=0

µ(Aj 0) +

s0∑
s=0

µ(Is) ≥ x0 − εi.
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Since µ(Is0) ≤ εi,

i−1∑
j=0

µ(Aj 0) +

s0∑
s=0

µ(Is) ≤ x0.

Let Ai 0 =
⋃s0

s=0 Is. Continue choosing from {Is0+1, . . . , IM} to obtain
Ai 1, . . . , Ai n. Note that by (1.4), the supply of atoms in Ii is sufficient
to choose the sets Ai 0, Ai 1, . . . , Ai n. For i ≥ 2 we have

xk − εi−1 ≤
i−1∑
j=0

µ(Aj k) ≤
i∑

j=0

µ(Aj k) ≤ xk

which implies µ(Ai k) ≤ εi−1 for i ≥ 2. As µ(A1 k) ≤ xk we can use
Lemma 1.19 (with a = 0) to compute

∞∑
i=0

iµ(Ai k) = µ(A1 k) +
∞∑
i=2

iµ(Ai k) ≤ xk +
∞∑
i=2

iεi−1 = xk +
2ε − ε2

(1 − ε)2
.

Thus, in the notation of Remark 1.18,

E(x) ≤
n∑

k=0

∞∑
i=1

iµ(Ai k) ≤
n∑

k=0

xk +
(n + 1)ε

(1 − ε)2
= 1 +

(n + 1)(2ε − ε2)

(1 − ε)2

which bounds E as required. �

1.21. Proposition. The function E = ES is S-almost convex on ∆n.

Proof. Let (t0, t1, . . . , tm) ∈ S and y0, y1, . . . , ym ∈ ∆n. For 0 ≤
i ≤ m, let (Xi, µ

(i),π(i)) be an S-ranked probability measure. We

let 〈I(i)
j 〉∞j=1 ⊂ {∅} ∪ ⋃∞

k=1 π
(i)
k be a disjoint sequence such that yi |

〈µ(i)(I
(i)
j )〉∞j=1. Now let µ be the S-ranked probability measure on

X =
∐m

i=0 Xi as in Remark 1.15, i.e. µ(A) =
∑m

i=0 tiµ
(i)(Xi ∩ A). It

is easily checked that
∑m

i=0 tiyi | 〈µ(I
(i)
j )〉mi=1

∞
j=1 (and

∑
i,j µ(I

(i)
j ) = 1).

Thus

E

( m∑
i=0

tiyi

)
≤

m∑
i=0

∞∑
j=1

rµ

(
I

(i)
j

)
µ
(
I

(i)
j

)
=

m∑
i=0

∞∑
j=1

rµ

(
I

(i)
j

)
tiµ

(i)
(
I

(i)
j

)
=

m∑
i=0

∞∑
j=1

[
rµ(i)

(
I

(i)
j

)
+ 1
]
tiµ

(i)
(
I

(i)
j

)
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= 1 +
m∑

i=0

ti

( ∞∑
j=1

(
rµ(i)I

(i)
j

)
µ(i)
(
I

(i)
j

))
.

Taking the infimum over all µ(0), . . . , µ(m) on the right hand side of this
gives E (

∑m
i=0 tiyi) ≤ 1 +

∑m
i=0 E(yi) which completes the proof. �

1.22. Theorem. The function E = ES is the extremal S-almost convex
function on ∆n in the sense that if h is a bounded S-almost convex
function on ∆n with h(ek) ≤ 0 for 0 ≤ k ≤ m, then h(x) ≤ E(x) for
all x ∈ ∆n.

Proof. Let x ∈ ∆n. Also let (X,µ,π) be an S-ranked probability
measure and 〈Ii〉∞i=1 a disjoint sequence in π such that

∞∑
i=1

µ(Ii) = 1 and
∑
i∈Nk

µ(Ii) = xk

where N is partitioned by N0, N1, . . . , Nn and x =
∑n

k=0 xkek. If A ∈
σ{Ii : i = 1, 2, . . . } (the σ-algebra generated by {Ii : i = 1, 2, . . . }), i.e.
A = ∪{Ii : Ii ⊆ A}, we define (for A �= ∅, so that µ(A) > 0)

xA :=
1

µ(A)

n∑
k=0

( ∑
i∈Nk, Ii⊆A

µ(Ii)

)
ek.

Then the map A �→ µ(A)xA is a vector measure on σ{Ii : i = 1, 2, . . . }.
Note that xX = x (as X =

⋃∞
i=0 Ii except for a set of µ-measure zero

so that X ∈ σ{Ii : i = 1, 2, . . . }). For each m = 1, 2, 3, . . . let

Am :=
⋃

rµ(Ii)≤m

Ii, and Rm := {J ∈ πm : J ∩ Am = ∅}.

Note that if rµ(Ii) > m, then Ii ⊆ J for some J ∈ Rm. Since∑
rµ(Ii)>m

µ(Ii) = 1 − µ(Am) =
∑

J∈Rm

µ(J)

each J ∈ RM is (except for a set of µ-measure zero) a disjoint union of
countable many sets Ii with rµ(Ii) > m so that J ∈ σ{Ii : i = 1, 2, . . . }.
1.23. Lemma. With h as in the statement of Theorem 1.22

(1.5) h(x) ≤
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) +
∑

J∈Rm

[m + h(xJ)]µ(J).

Before proving the lemma we show that it implies the theorem. As h
is bounded there is an M so that h(x) ≤ M for all x ∈ ∆n. Therefore
by the lemma
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h(x) ≤
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) +
∑

J∈Rm

mµ(J) + M
∑

J∈Rm

µ(J)

=
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) + m
∑

rµ(Ii)>m

µ(Ii) + M
∑

rµ(Ii)>m

µ(Ii)

≤
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) +
∑

rµ(Ii)>m

rµ(Ii)µ(Ii) + M
∑

rµ(Ii)>m

µ(Ii)

=
∞∑
i=1

rµ(Ii)µ(Ii) + M
∑

rµ(Ii)>m

µ(Ii).

Since limm→∞
∑

rµ(Ii)>m µ(Ii) = 0 this yields h(x) ≤ ∑∞
i=1 µ(Ii)rµ(Ii).

Taking the infimum over µ gives h(x) ≤ E(x) and completes the proof
of Theorem 1.22. �
Proof of Lemma 1.23. The proof is by induction on m. The base case is
m = 0 which amounts to h(x) ≤ [0 + h(xX)]µ(X) which is an equality.
Now assume for some m ≥ 0 that the inequality (1.5) holds. Consider
J ∈ Rm. Then J divides into sets J0, J1, . . . , JN ∈ πm+1 such that(

µ(J0)

µ(J)
, . . . ,

µ(JN)

µ(J)

)
∈ S.

Since
∑N

i=0 µ(Ji)xJi
= µ(J)xJ the S-almost convexity of h implies

h(xJ) ≤ 1 +
N∑

i=0

µ(Ji)

µ(J)
h(xJi

).

Multiplying this by µ(J)

µ(J)h(xJ) ≤ µ(J) +
N∑

i=0

µ(Ji)h(xJi
)

=
N∑

i=0

µ(Ji) +
N∑

i=0

µ(Ji)h(xJi
)

=
N∑

i=0

[1 + h(xJi
)]µ(Ji)

If we let Sm = {J ∈ πm+1 : J ∩ Am = ∅} and apply the above to each
J ∈ Rm ∑

J∈Rm

[m + h(xJ)]µ(J) ≤
∑

J∈Sm

[m + 1 + h(xJ)]µ(J).
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If J ∈ Sm and J = Ii for some i then xJ = xIi
= ek, where i ∈ Nk.

Thus the term for J satisfies

[m+1+h(xJ)]µ(J) = [m+1+h(ek)]µ(Ii) ≤ (m+1)µ(Ii) = rµ(Ii)µ(Ii)

since Ii ∈ πm+1 and h(ek) ≤ 0. Now {J ∈ Sm : J �= Ii for any i} =
Rm+1. Thus

h(x) ≤
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) +
∑

J∈Rm

[m + h(xJ)]µ(J)

≤
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) +
∑

J∈Sm

[m + 1 + h(xJ)]µ(J)

≤
∑

rµ(Ii)≤m

rµ(Ii)µ(Ii) +
∑

rµ(Ii)=m+1

rµ(Ii)µ(Ii)

+
∑

J∈Rm+1

[m + 1 + h(xJ)]µ(J)

=
∑

rµ(Ii)≤m+1

rµ(Ii)µ(Ii) +
∑

J∈Rm+1

[m + 1 + h(xJ)]µ(J).

This closes the induction and completes the proof of the lemma. �

1.3. Bounds for S-almost convex functions and the sharp
constants in stability theorems of Hyers-Ulam type. Let
S ⊆ ⋃∞

m=1 ∆m and assume that S contains at least one point that
is not a vertex, that is a point (t0, . . . , tm) with maxi ti < 1. Then,
letting E∆n

S : ∆n → R be as in Definition 1.17, set

(1.6) κS(n) := sup
x∈∆n

E∆n
S (x).

By Proposition 1.20 the number κS(n) is finite. The function E∆n
S and

the number κS(n) are extremal in several analytic and geometric in-
equalities involving S-almost convex functions and sets. An example
of this is the sharp form of the Hyers-Ulam stability theorem (Theo-
rem 1.26) in which κS(n) is the best constant and the example showing
this is the case is the function E∆n

S . The exact value of κS(n) for
some natural choices of S are given in latter sections. As a prelimi-
nary to Theorem 1.26 we show that S-almost convex functions with
minimal regularity (Borel measurability) are locally bounded so that
Theorem 1.22 can be applied.

Recall that in a metric space the Borel sets are the members of the
σ-algebra generated by the open sets and if f : X → Y is a function
between metric spaces then it is Borel measurable iff f−1[U ] is a Borel
subset of X for every open subset U of Y .
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1.24. Proposition. Assume that S has at least one point that is not a
vertex. Let h : ∆n → R be a Borel measurable S-almost convex func-
tion. Then

h(x) ≤ E∆n
S (x) + x0h(e0) + · · · + xnh(en)

≤ κS(n) + x0h(e0) + · · · + xnh(en).

Proof. By replacing h by x �→ h(x)−(x0h(e0)+· · ·+xnh(en)), which will
still be S-almost convex, we may assume that h(ei) = 0 for 0 ≤ i ≤ n.
If h is bounded then h ≤ E∆n

S by Theorem 1.22. So to finish the
proof it is enough to show that h is bounded. In doing this we can use
Proposition 1.7 and note that there are α, β > 0 with α+β = 1 so that
if S2 = {α, β} then h is S2-almost convex. (To be a bit more precise
let (t0, . . . , tm) ∈ S with max ti < 1 and then the choice α = maxi ti
and β = 1 − α works.)

With this choice of S2 we now prove by induction on n that if
h : ∆n → R is S2-almost convex and vanishes on the vertices of ∆n

then h ≤ κS2(n). The base case is n = 1. Then as a Borel measurable
function is Lebesgue measurable Corollary 1.9 implies h is bounded.
But then Theorem 1.22 implies h(x) ≤ E∆1

Ss
(x) ≤ κS2(1).

For the induction step let h : ∆n → R be S2-almost convex and
vanishes on the vertices of ∆n. Let g : ∆n−1 → R be the function
g(y0, . . . , yn−1) = h(y0, . . . , yn−1, 0). Then g is S2-almost convex, van-
ishes on the vertices of ∆n−1 and is Borel measurable. Therefore by
the induction hypothesis g ≤ κS2(n − 1). Let y ∈ ∆n−1 and consider

the function h̃ : [0, 1] → R given by

h̃(t) = h((1 − t)(y, 0) + ten) − (1 − t)h(y, 0).

Then this is S2-almost convex on [0, 1] and is Borel measurable. There-

fore another application of Corollary 1.9 implies that h̃ bounded and as

h̃ vanishes at the endpoints of [0, 1] we have that h̃(t) ≤ κS2(1). This
implies

h((1 − t)(y, 0) + ten) = h̃(t) + (1 − t)h(y, 0) = h̃(t) + (1 − t)g(y)

≤ κS2(1) + (1 − t)κS2(n − 1)

≤ κS2(1) + κS2(n − 1).

But every x ∈ ∆n can be expressed as x = (1 − t)(y, 0) + ten for
some y ∈ ∆n−1 and some t ∈ [0, 1]. Therefore h is bounded on ∆n.
Then Theorem 1.22 implies h(x) ≤ ES2(x) ≤ κS2(n). This closes the
induction and completes the proof. �
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1.25. Theorem. Let U be a convex set in a normed vector space and
let h : U → R be an S-almost convex function which is bounded above
on compact subsets of U . Assume that S contains at least one point
which is not a vertex. Then for any x0, . . . , xn ∈ U the inequalities

h(t0x0 + · · · + tnxn) ≤ E∆n
S (t) + t0h(x0) + · · · + tnh(xn)

≤ κS(n) + t0h(x0) + · · · + tnh(xn)(1.7)

hold for all t = (t0, . . . , tn) ∈ ∆n. If U is compact, n-dimensional and
V is the set of extreme points of U then

(1.8) sup
x∈U

h(x) ≤ κS(n) + sup
v∈V

h(v).

Proof. Let f : ∆n → R be given by f(t) = h(t0x0 + · · · + tnxn) −
(t0h(x0) + · · · + tnh(xn)). Then f is S-almost convex, bounded (as h
is bounded on the convex hull of {x0, . . . , xn} as it is compact) and
vanishes on the vertices of ∆n. Therefore by Theorem 1.22 f(t) ≤
E∆n

S (t) ≤ κS(n) which implies (1.7).
If U is compact and n dimensional with extreme points V , then U is

the convex hull of V . By Carathéodory’s Theorem for any x ∈ U there
are x0, . . . , xn ∈ V and t = (t0, . . . , tn) so that x = t0x0 + · · · + tnxn

which, along with (1.7), implies (1.8). �
We can now give the sharp version of the Hyers-Ulam stability the-

orem for S-almost convex functions.

1.26. Theorem. Let S ⊆ ⋃∞
m=1 ∆m so that S contains at least one

point that is not a vertex. Assume that U ⊆ Rn, ε > 0, and that
h : U → R is bounded above on compact subsets of U and satisfies

(1.9) h(t0x0 + · · · + tmxm) ≤ ε + t0h(x0) + · · · + tmh(x0)

for all t = (t0, . . . , tm) ∈ S and points x0, . . . , xm ∈ U . Then there exist
convex functions g, g0 : U → R such that

h(x) ≤ g(x) ≤ h(x) + κS(n)ε and |h − g0(x)| ≤ κS(n)

2
ε

for all x ∈ U . The constant κS(n) is the best constant in these inequal-
ities.

1.27. Remark. Note that if h satisfies (1.9) then ε−1h is S-almost con-
vex. Therefore, by Theorem 1.8, if U is open and h is Lebesgue mea-
surable then h will automatically be bounded on compact subsets of
U . Likewise if U is a Borel set and h is Borel measurable then by
Proposition 1.24 h will be bounded above on the convex hull of any
finite number of points and which is enough for the proof of the theo-
rem. �
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Proof. In the special case that S = {(1/2, 1/2)} ⊂ ∆1 a proof, based
on ideas of Hyers and Ulam [5, p. 823] and Cholewa [1, pp. 81–82],
can be found in [2, pp. 29-30]. As the details in the present case are
identical we omit the proof. �

2. General results when S is compact.

We now assume that S ⊆ ⋃∞
m=1 ∆m is compact. By Remark 1.3 this

implies that S is of finite type. Therefore by Proposition 1.4 there is
no loss in generality in assuming that S ⊆ ∆m for some m.

2.1. Mean value and semi-continuity properties. Let K ⊂ Rn

be a compact convex set and let V be the set of extreme points of K.
If ϕ : V → R is a function, then h : K → R has extreme values
equal to ϕ iff h

∣∣
V

= ϕ. Two functions g, f : K → R have the same
extreme values iff they agree on V . If ϕ : V → R is a bounded
function and S ⊆ ∆m then let BS(K,ϕ) be the set of bounded S-almost
convex functions h : K → R so that h

∣∣
V
≤ ϕ. Then the extremal S-

almost convex function with extreme values ϕ is

ES,K,ϕ(x) := sup
h∈BS(K,ϕ)

h(x).

If S contains at least one point which is not a vertex, then Theo-
rem 1.25 implies that ES,K,ϕ is finite valued and in fact ES,K,ϕ(x) ≤
supv∈V ϕ(v) + κS(n). As the pointwise supremum of S-almost con-
vex functions is S-almost convex, the function ES,K,ϕ is the pointwise
largest S-almost convex function with ES,K,ϕ(v) ≤ ϕ(v) on V .

If K ⊂ Rn is a compact convex set and V is the set of extreme points
of K then for any function h : K → R define MSh : K → Rn by

MSh(x) =

⎧⎪⎨⎪⎩
h(x), x ∈ V ;

inf

{
1 +

m∑
i=i

tih(yi) : t ∈ S, x =
m∑

i=1

tiyi

}
, x ∈ K � V

where it is assumed that y0, . . . , ym ∈ K. We can then define S-almost
convex functions in terms of this operator by the following, for any
bounded function f : K → R,

f ≤ MSf ⇐⇒ f is S-almost convex.

This operator satisfies a maximum principle and can be used to prove
that extremal S-almost convex functions are lower semi-continuous.

2.1. Theorem. Let K ⊂ Rn be a compact convex set with extreme
points V . Assume that S ⊂ ∆m is compact and has at least one point
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which is not a vertex. Let f, F : K → R be bounded functions so that
MSf ≤ f and F is S-almost convex (that is MSF ≥ F ) then

(2.1) sup
x∈K

(F (x) − f(x)) = sup
v∈V

(F (v) − f(v))

and if L is the lower semi-continuous envelope of f ,

(2.2) L(x) := min{f(x), lim inf
y→x

f(y)}
then

sup
x∈K

(F (x) − L(x)) = sup
v∈V

(F (v) − L(v)) .

2.2. Remark. The proof here follows the basic outline of the proof of cor-
responding result, [2, Theorem 2.8 p.9], in the case S = {(1/2/1/2)} ⊂
∆1. However the technical details are trickier in the case when S is in-
finite. But most of the rest of the results of [2, Section 2.2] go through
with only minor changes to the proofs. �
Proof. The proofs of (2.1) and (2.2) are similar, with the proof of (2.1)
being the simpler of the two, so we will give the details in the proof
of (2.2). The inequality f ≥ MSf implies for x /∈ V and any ε > 0
there is a t = (t0, . . . , tm) ∈ S and y0, . . . , ym ∈ K such that

(2.3) x =
m∑

i=0

tiyi, f(x) ≥ 1 − ε +
m∑

i=0

tif(yi).

As f and F are bounded we can assume, by adding appropriate positive
constants to f and F , that 1 ≤ f ≤ F ≤ M for some M > 1. Set

ω(x) := F (x) − L(x), δ := sup
x∈K

ω(x).

We need to show that supv∈V ω(v) ≥ δ (as supv∈V ω(v) ≤ δ is clear).
We may assume that δ > 0, for if δ = 0 then F = L and there is
nothing to prove.

2.3. Lemma. Let w0 ∈ K, but w0 /∈ V and assume for some ε > 0
that

(1 − ε)δ ≤ ω(w0).

Then there is a w1 ∈ K so that

(1 − (m + 1)(2M − 1)ε) δ ≤ ω(w1) and L(w1) ≤ L(w0) − 1

2
.

We now prove Theorem 2.1 from the lemma. Let ε > 0. We now
choose a finite sequence w0, w1, . . . , wk with k ≤ 2M as follows. From
the definition of δ there is a w0 ∈ K with (1 − ε)δ ≤ ω(w0). If w0 ∈ V
we stop. If w0 /∈ V , then by the lemma, there is a w1 ∈ K with
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(1− (m+1)(2M − 1)ε)δ ≤ ω(w1) and L(w1) ≤ L(w0)− 1/2. If w1 ∈ V
then stop, otherwise use the lemma (with w1 replacing w0 and (m +
1)(2M−1)ε replacing ε) to get a w2 with (1−((m+1)(2M−1))2ε)δ ≤ δ.
If w2 ∈ V , stop. If w2 /∈ V then we continue to use the lemma to get
w0, w1, . . . , wk with(

1 − ((m + 1)(2M − 1))j ε
)

δ ≤ ω(wj) and L(wj) ≤ L(wj−1) − 1

2

for 1 ≤ j ≤ k. This implies that L(wk) ≤ L(w0)−k/2 ≤ M −2/k. But
as L ≥ 1 this process must terminate for some k ≤ 2M with wk ∈ V .
Then

sup
v∈V

ω(v) ≥ ω(wk) ≥
(
1 − ((m + 1)(2M − 1))k ε

)
δ

≥
(
1 − ((m + 1)(2M − 1))2M ε

)
δ.

Letting ε ↘ 0 in this implies supv∈V ω(v) ≥ δ which completes the
proof. �
Proof of Lemma 2.3. Let w0 be as in the statement of the lemma. From
the definition of L there is a sequence 〈x(s)〉∞s=1 ⊂ K so that x(s) →
w0 and f(x(s)) → L(w0). By (2.3) there is a sequence 〈t(s)〉∞s=1 =
〈(t0(s), . . . , tm(s))〉∞s=1 ⊆ S and sequences 〈y0(s)〉∞s=0, . . . , 〈ym(s)〉∞s=0 ⊆
K so that (replacing 〈x(s)〉∞s=1 by the appropriate subsequence).

f(x(s)) −
(

1 +
m∑

i=0

ti(s)f(yi(s))

)
s→∞−−−→ C ≥ 0

for some non-negative real number C. By compactness of S and K we
can assume, by possibly going to a subsequence, that t(s) → t ∈ S and
yi(s) → yi ∈ K and that f(yi(s)) → Ai for some t ∈ S, y0, . . . , ym ∈ S
and Ai ∈ R. Then w0 =

∑m
i=0 tiyi and from the definition of L,

L(yi) ≤ lims→∞ f(yi(s)) = Ai. Therefore

(2.4) lim
s→∞

f(x(s)) = L(w0) = C + 1 +
m∑

i=0

tiAi ≥ 1 +
m∑

i=0

tiL(yi).

This is turn implies that

(2.5) F (w0) = ω(w0) + L(w0) ≥ ω(w0) + 1 +
m∑

i=0

tiL(yi).

Because F is S-almost convex,

(2.6) F (w0) ≤ 1 +
m∑

i=0

tiF (yi) = 1 +
m∑

i=0

tiL(yi) +
m∑

i=0

tiω(yi).
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Combining (2.5) and (2.6) yields

(2.7) ω(w0) ≤
m∑

i=0

tiω(yi).

We now claim there is an i0 so that

(2.8) ti0 ≥
1

(m + 1)(2M − 1)
, L(yi0) ≤ L(w0) − 1

2
.

To see this partition {0, 1, . . . , m} into two sets I1 and I2 where I1 :=
{i : ti < 1/((m + 1)(2M − 1))} and I2 := {i : ti ≥ 1/((m + 1)(2M −
1))} = {0, . . . , m} � I1. Note that as M > 1 we have∑

i∈I1

ti ≤ (m + 1)/((m + 1)(2M − 1)) = 1/(2M − 1) < 1/2

so that I2 �= ∅. For i ∈ I2 let αi = (
∑

i∈I2
ti)

−1ti. Then
∑

i∈I2
αi = 1.

Using (2.4),∑
i∈I2

αiL(yi) =

(∑
i∈I2

ti

)−1∑
i∈I2

tiL(yi) ≤
(∑

i∈I2

ti

)−1 m∑
i=0

tiL(yi)

≤
(∑

i∈I2

ti

)−1

(L(w0) − 1)

We have already seen that 1 −∑i∈I2
ti =

∑
i∈I1

ti ≤ 1/(2M − 1) and
therefore

∑
i∈I2

ti ≥ 1 − 1/(2M − 1) = (M − 1)/(M − 1/2). Thus∑
i∈I2

αiL(yi) ≤ M − 1/2

M − 1
(L(w0) − 1)

≤ L(w0) − 1/2

L(w0) − 1
(L(w0) − 1)

= L(w0) − 1

2

where we have used that L(w0) ≤ M and that (M − 1/2)/(M − 1) is
decreasing for M > 1. As

∑
i∈I2

αi = 1 this implies there is at least one
i0 ∈ I2 with L(yi0) ≤ L(w0) − 1/2. For this i0 the claim (2.8) holds.

Letting i0 be so that (2.8) holds and using (1 − ε)δ ≤ ω(w0), and
that ω(yi) ≤ δ for all i in (2.7) we have

(1 − ε) δ ≤ ω(w0) ≤
m∑

i=0

tiω(yi) ≤ ti0ω(yi0) + (1 − ti0)δ.

This implies (
1 − t−1

i0
ε
)
δ ≤ ω(yi0).
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As ti0 ≥ 1/((m + 1)(2M − 1)) this gives

(1 − ((m + 1)(2M − 1)) ε) δ ≤ ω(yi0).

Letting w1 = yi0 completes the proof of the lemma. �

2.4. Theorem. Let K ⊂ Rn be a compact convex set with extreme
points V . Assume that ϕ : V → R is uniformly continuous. Let S ⊆
∆m be compact and contain at least one point that is not a vertex. Then
the extremal S-almost convex function ES,K,ϕ is lower semi-continuous
and satisfies ES,K,ϕ

∣∣
V

= ϕ.

Proof. This can be derived from Theorem 2.1 in the same way that [2,
Theorem 2.12 p. 13] is derived from [2, Theorem 2.8 p. 9]. �

2.2. Simplifications in the construction of E∆n
S when S is com-

pact. One complication in Definition 1.17 is that the infimum is taken
over a collection of measures that are not all defined on the same mea-
sure space. When S ⊆ ∆m it is possible to have all the measures
involved defined on the same space.

Suppose S ⊆ ∆m. We may regard each S-ranked probability mea-
sure as a (Borel) probability measure on X = [m]N, with [m] =
{0, 1, . . . , m}. Let P(X) be the space of probability measures on X.
Then P(X) ⊂ C(X)∗ and in the weak∗ topology P(X) is compact and
metrizable (as C(X) is separable). We let

PS(X) := {µ ∈ P(X) : µ is S-ranked}.
Then every µ ∈ PS(X) has πj(µ) = πj given by

I ∈ πj ⇐⇒
{

for some (i1, . . . , im) ∈ [m]j,
I = {x ∈ X : x(1) = i1, . . . , x(j) = ij}.

or what is the same thing I ∈ πj if and only if I = {i1}×{i2}×{ij}×Xj

where Xj =
∏∞

i=j+1 Yi with Yi = [m] for all i. Since each µ ∈ PS(X)

has the same sequence π = 〈πj〉, we let r(I) = rµ(I) which is defined
independently of the choice of µ ∈ PS(X). Let π =

⋃∞
j=1 πj.

Finally note that if Aj = A(πj) and A ∈ Aj, then A is a clopen (i.e.
both open and closed) set in X. Consequently 1A ∈ C(X). In this
case we have Aj = A(πj) and thus the function µ �→ µ(A) =

∫
1A dµ

is continuous on P(X) and thus on PS(X). �

2.5. Proposition. With this notation, if S ⊂ ∆m is closed, then PS(X)
is closed in P(X) and thus is weak∗ compact.
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Proof. Notice that if µ ∈ P(X), then µ ∈ PS(X) if and only if for every
I ∈ π, there exists (t0, t1, . . . , tm) ∈ S such that

µ(I) =
m∑

i=0

tiµ(Ii)

where I ∈ πj and I is the disjoint union of I0, I1, . . . , Im ∈ πj+1. Let
t = (t0, t1, . . . , tm) ∈ S and define a function hI,t : P(X) → R by

hI,t(µ) = µ(I) −
m∑

i=0

tiµ(Ii).

Then this is continuous on P(X). Let

ΛI :=
⋃
t∈S

h−1
I,t [{0}] = {µ ∈ P(X) : µ(I) =

m∑
i=0

tiµ(Ii) for some t ∈ S}.

Then PS =
⋂

I∈π ΛI . As an intersection of closed sets is closed, to finish
the proof it is enough to show that each ΛI is closed. Let µs ∈ ΛI

and suppose µs
weak∗−−−→ µ in P(X). For each s = 1, 2, 3, . . . there is a

t(s) = (t0(s), . . . , tm(s)) ∈ S such that µs(I) =
∑m

i=0 ti(s)µs(Ii). Since
S is compact, by passing to a subsequence, if necessary, we may assume
that t(s) → t = (t0, . . . , tm) ∈ S. Thus

µ(I) = lim
s→∞

µs(I) = lim
s→∞

m∑
i=0

ti(s)µs(Ii) =
m∑

i=0

tiµ(Ii).

Therefore ΛI is closed. �

2.6. Proposition. Suppose that S ⊂ ∆m is closed and that S contains
a point that is not a vertex (so that by Proposition 1.20 E = ES is
bounded). Then

(1) E is lower semi-continuous,
(2) If x ∈ ∆n, then there exists a µ ∈ PS(X) and a pairwise disjoint

sequence 〈Ii〉 ∈ π such that

∞∑
i=1

µ(Ii) = 1, x | 〈µ(Ii)〉

and

(2.9) E(x) =
∞∑
i=1

µ(Ii)r(Ii).

Thus the infimum that defines E(x) is a minimum.
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2.7. Remark. The lower semi-continuity of E also follows from Theo-
rem 2.4, but we include another proof here both because it is short and
also to have a proof that is independent of [2]. �
2.8. Lemma. Suppose that S is a closed subset of ∆m. Further suppose

(1) 〈x(s)〉∞s=1 is a sequence in ∆n with x(s) → x ∈ ∆n,

(2) 〈µs〉∞s=1 is a sequence in PS(X) with µs
weak∗−−−→ µ ∈ PS(X),

(3) For all s ∈ N, there a disjoint sequence 〈Ij s〉∞j=1 ⊂ {∅}∪⋃∞
l=0 πl

such that
∑∞

j=1 µs(Ij s) = 1,

(4) x(s) | 〈µ(Ij s)〉∞j=1, and
(5) There is an M > 0 so that for all s ∈ N

Ms :=
∞∑

j=1

r(Ij s)µs(Ij s) ≤ M.

Then there exists a disjoint sequence 〈Ij〉∞j=1 ⊂ {∅} ∪⋃∞
l=0 πl so that

i.
∞∑

j=1

µ(Ij) = 1

ii. x | 〈µ(Ij)〉∞j=1

iii.
∞∑

j=1

r(Ij)µ(Ij) ≤ lim sup
s→∞

Ms.

Proof. First we select a subsequence 〈xa〉a∈F of 〈xs〉∞s=1 for some infinite
F ⊆ N by first choosing sets Fj(k) ⊆ N and Ij(k) ∈ {∅} ∪ ⋃∞

l=0 πl

as follows: For each s ∈ N, we can use point 4 to partition the
terms of 〈Ij s〉∞j=1 into n+1 sequences 〈Ij s(0)〉∞j=1, . . . , 〈Ij s(n)〉∞j=1 where∑∞

j=1 µ(Ij s(k)) = xs(k) and xs =
∑n

k=0 xs(k)ek. We may assume

that for every k ∈ {0, 1, . . . , n} that r(I1 s(k)) ≤ r(I2 s(k)) ≤ · · · .
If lims→∞ r(I1 s(0)) = ∞, let F1(0) = N and I1(0) = ∅, otherwise
〈r(I1 s(0))〉∞s=1 is bounded for some infinite set of s ∈ N. Since for
any integer L, there are only finitely many sets in π of rank ≤ L,
there is an I1(0) so that I1 s(0) = I1(0) on an infinite subset F1(0) of
N. Similarly choose F1(1) infinite in F1(0) and I1(1) such that either
lims→∞ r(I1 s(1)) = ∞ and I1(1) = ∅ or I1 s(1) = I1(1) for all s ∈ F1(1).
Continue selecting infinite sets Fj(k) of N and Ij(k) ∈ {∅} ∪ ⋃∞

l=0 πl

such that

F1(0) ⊇ F1(1) ⊇ · · · ⊇ F1(n) ⊇ F2(0) ⊇ F2(1) ⊇ · · ·
and either lims→∞ r(Ij s(k)) = ∞ and Ij(k) = ∅ or Ij s(k) = Ij(k) for
all s ∈ Fj(k). The inequalities r(I1 s(k)) ≤ r(I2 s(k)) ≤ · · · yield

lim
s→∞

r(Ij s(k)) = ∞ implies lim
s→∞

r(Ij+1 s(k)) = ∞,
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and therefore

lim
s→∞

r(Ij s(k)) = ∞ implies ∅ = Ij(k) = Ij+1(k) = Ij+2(k) = · · · .

Also the sets 〈Ij(k)〉∞j=1
n
k=0 are pairwise disjoint.

Now let F be an infinite set in N such that each F � Fj(k) is finite.
Let L ∈ N. Assumption 5 implies

(L + 1)
∑

r(Ij s(k))≥L+1

µs(Ij s) ≤
∑

r(Ij s(k))≥L+1

r(Ij s)µs(Ij s) ≤ M

Thus for fixed s and k ∑
r(Ij s(k))≥L+1

µs(Ij s) ≤ M

L + 1

and therefore ∑
r(Ij s(k))≤L

µs(Ij s) ≥ xs(k) − M

L + 1
.

Hence ∑
r(Ij s(k))≤L

µ(Ij(k)) = lim
s∈F
s→∞

∑
r(Ij s(k))≤L

µs(Ij s)

≥ lim
s→∞

xs(k) − M

L + 1

= x(k) − M

L + 1

where x =
∑n

k=0 x(k)ek. It follows that
∞∑

j=1

µ(Ij(k)) ≥ x(k).

But since the sets 〈Ij(k)〉 are pairwise disjoint

1 ≥
n∑

k=0

∞∑
j=1

µ(Ij(k)) ≥
n∑

k=0

x(k) = 1.

Since this implies that there must be equality for each k ∈ {0, . . . , n}:
∞∑

j=1

µ(Ij(k)) = x(k).

Once again fix L ∈ N. For s suitably large in F , Ij s(k) = Ij(k) if
r(Ij(k)) ≤ L. Thus∑

r(Ij(k))≤L

µ(Ij(k))r(Ij(k)) = lim
s→∞

∑
r(Ij(k))≤L

µ(Ij s(k))r(Ij s(k))
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≤ lim sup
s→∞

Ms.

(All the sums are finite so there is no problem in interchanging the
limit with the summation.) Since this holds for all large L ∈ N,∑

j,k

µ(Ij(k))r(Ij(k)) ≤ lim sup
s→∞

Ms.

Now splice the sequences 〈Ij(0)〉∞j=1, 〈Ij(1)〉∞j=1, . . . , 〈Ij(n)〉∞j=1 into a sin-
gle sequence 〈Ij〉∞j=1 ⊂ {∅} ∪⋃∞

l=0 πl. This sequence satisfies the con-
clusion of the Lemma. �
Proof of Proposition 2.6. We First show the lower semi-continuity of
E. Suppose that 〈x(s)〉∞s=1 is a sequence in ∆n and that x(s) → x ∈
∆n. Further suppose that 〈E(x(s))〉 is convergent. For each s ∈ N,
select a measure µs ∈ PS(X) and a sequence 〈Ij s〉∞j=1 in π such that∑∞

j=1 µs(Ij s) = 1, x(s) | 〈µs(Ij s)〉∞j=1, and Ms =
∑∞

j=1 µs(Ij s)r(Ij s) <

E(xs)+1/s. By passing to a subsequence, if necessary, we may assume

that µs
weak∗−−−→ µ ∈ PS(X). By Lemma 2.8, there is a sequence 〈Ii〉∞i=1

in π so that
∑∞

i=1 µ(Ii)r(Ii) = 1, x | 〈µ(Ii)〉∞i=1 and

E(x) ≤
∞∑
i=1

µ(Ii)r(Ii) ≤ lim sup
s→∞

Ms = lim
s→∞

E(xs).

Thus E is lower semi-continuous.
We now show the second conclusion of Proposition 2.6. Let x ∈ ∆n.

Select 〈µs〉∞s=1 a sequence in PS(X) and for each s choose a sequence
〈Ij s〉∞j=1 in π such that

∑∞
j=1 µs(Ij s) = 1, x | 〈µs(Ij s)〉∞j=1 and

E(x) ≤
∞∑

j=1

µs(Ij s)r(Ij s) < E(x) +
1

s
.

By passing to a subsequence, if necessary, µs
weak∗−−−→ µ for some µ ∈

PS(X). Let 〈Ii〉∞j=1 be the sequence obtained by Lemma 2.8. Then for
the measure µ and the sequence 〈Ij〉∞j=1 the equality 2.9 holds. This
completes the proof. �

3. Explicit Calculation of E∆n
S and κS(n) when S the

barycenter of ∆m.

The most natural choices of S are when S is a entire simplex ∆m

or S is the barycenter of ∆m. We have treated the case of S = ∆m

in a previous paper [3] by different methods. Here we compute E∆n
S

and κS(n) in the case S is the barycenter of ∆m based on the general
theory above. It will simplify notation to let B = m + 1.
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We now assume that S = {(1/B, . . . , 1/B)} ⊂ ∆B−1. To give E∆n
S

explicitly we need a little notation. First for any real number x let
{x} = x − �x	 be the fractional part of x and define a function H =
HB : R → R from by

(3.1) HB(x) =
∞∑

k=0

{Bkx}
Bk

.

Note that this series is termwise dominated by the geometric series∑∞
k=0 1/Bk and therefore it is easy to deal with computationally.

3.1. Theorem. For S = {(1/B, . . . , 1/B)} the function E :=
ES : ∆n → R is given by

E(x) = E(x0, x1, . . . , xn) = HB(x0) + HB(x1) + · · · + HB(xn)

and the value of κS(n) = supx∈∆n
E(x) is

κS(n) = �logB n	 + 1 +
n

(B − 1)B
logB n� .

Some values of κS(n) for small values of B and n are given in Table 1.

B\n 1 2 3 4 5 6 7 8 9 10

2 2.0000 3.0000 3.5000 4.0000 4.2500 4.5000 4.7500 5.0000 5.1250 5.2500
3 1.5000 2.0000 2.5000 2.6667 2.8333 3.0000 3.1667 3.3333 3.5000 3.5556
4 1.3333 1.6667 2.0000 2.3333 2.4167 2.5000 2.5833 2.6667 2.7500 2.8333
5 1.2500 1.5000 1.7500 2.0000 2.2500 2.3000 2.3500 2.4000 2.4500 2.5000
6 1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 2.2333 2.2667 2.3000 2.3333
7 1.1667 1.3333 1.5000 1.6667 1.8333 2.0000 2.1667 2.1905 2.2143 2.2381
8 1.1429 1.2857 1.4286 1.5714 1.7143 1.8571 2.0000 2.1429 2.1607 2.1786
9 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.1389
10 1.1111 1.2222 1.3333 1.4444 1.5556 1.6667 1.7778 1.8889 2.0000 2.1111
11 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000

Table 1. Values of κS(n) for S = {1/B, . . . , 1/B)} with 2 ≤
B ≤ 11 and 1 ≤ n ≤ 10.

The graphs of z = E∆2
S (x, y, 1 − x − y) for some small values of B

are given in Figure 2.

3.2. Remark. Let B be the set of numbers of the form j/Bl for j, l
integers and j relatively prime to B. Then using the series expan-
sion (3.1) and the argument of [2, Prop. 2.25 p. 22] it is not hard to
show E = E∆1

S : ∆1 → R is given by

E(1 − t, t) =

⎧⎪⎨⎪⎩
B

B − 1
, t /∈ B;

B

B − 1
− 1

Bl−1
, t =

j

Bl−1
∈ B. �
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Figure 2. Graphs of z = ES(x, y, 1 − x − y) for S =
{(1/B, . . . , 1/B)} ∈ ∆B−1 showing the dependence on B. The
values of B are B = 3 (top), B = 6 (middle), and B = 10 (bot-
tom). (The graph for B = 2 is in [2, p. 23].)

3.0.1. The formula for E∆n
S . Let [B] = {1, 2, . . . , B} and let X = [B]N.

Let µ be the measure on X given by µ =
∏∞

j=1 νj where νj is the mea-

sure on [B] given by µj({i}) = 1/B for 1 ≤ i ≤ B. Therefore if I ∈ πk
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then µ(I) = 1/Bk. The following lemma on being able to realize certain
sequences of numbers as sequences 〈µ(Ij)〉∞j=1 with 〈Ij〉∞j=1 a sequence
from {∅} ∪ ⋃∞

k=0 πk allows us to simplify the definition of ES(x) in
some cases by replacing the infimum over S-ranked measures with an
infimum over special sequences of numbers rather than measures.

3.3. Lemma. Let 〈rj〉∞j=1 be a nondecreasing sequence of nonnegative
integers such that

∞∑
j=1

1

Brj
≤ 1.

Then there is disjoint sequence 〈Ij〉∞j=1 in
⋃∞

k=0 πk such that

µ(Ij) =
1

Brj
and r(Ij) = rj.

Proof. As for I ∈ ⋃∞
k=0 πk we have µ(I) = 1/Br(I) it is enough to show

the existence of disjoint sequence 〈µ(Ij)〉∞j=1 with µ(Ij) = 1/Brj for then
r(Ij) = rj automatically holds. We select this sequence recursively.
Suppose that I1, I2, . . . , Ij have been chosen to be pointwise disjoint
with µ(Ii) = 1/Bri . Then

j∑
i=1

µ(Ii) =

j∑
i=1

1

Bri
≤ 1 −

∞∑
i=j+1

1

Bri
≤ 1 − 1

Brj+1
.

Since each of the sets I1, I2, . . . , Ij is a union of atoms from πrj+1
, there

is an atom of πrj+1
that is disjoint from I1, I2, . . . , Ij. As atoms of πrj+1

have µ-measure 1/Brj+1 we can use this atom as Ij+1. �
In light of Lemma 3.3 and Proposition 2.6 we have that E = E∆n

S is
given on x = (x0, . . . , xn) ∈ ∆n by

E(x) = min

{ ∞∑
j=1

r(Ij)µ(Ij) : x | 〈µ(Ij)〉∞j=1

}

(where µ is S-ranked, 〈Ij〉∞j=1 is pairwise disjoint, and
∑∞

j=1 µ(Ij) = 1)

= min

{ ∞∑
j=1

rj

Brj
: x | 〈1/Brj〉∞j=1

}

(where rj ∈ N and
∑∞

j=1 1/Brj = 1)

=
n∑

k=1

min
N0,...,Nn

partitions N

⎧⎨⎩
∞∑

j=1

rj

Brj
: xk =

∑
j∈Nj

1

Brj

⎫⎬⎭
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So if H : [0, 1] → R is defined by

H(x) = HB(x) = min

{ ∞∑
j=1

rj

Brj
:

∞∑
j=1

1

Brj
= x

}
,

then

E(x) =
n∑

k=0

H(xk).

(We will shortly see that HB is also given by the formula (3.1) so
this notation is consistent with the notation used in the statement of
Theorem 3.1.)

We now give some other representations of H. For x ∈ [0, 1] consider
sums ∞∑

j=1

rj

Brj
where x =

∞∑
j=1

1

Brj
.

Let xi = |{j : rj = i}|. Then these sums can be rewritten as
∞∑
i=0

ixi

Bi
where x =

∞∑
i=0

xi

Bi

and so

(3.2) H(x) = min

{ ∞∑
i=0

ixi

Bi
:

∞∑
i=0

xi

Bi
= x, xi ∈ N

}
.

3.4. Lemma. If
∑∞

i=0 ixi/B
i is a minimizing sum in (3.2) (so that

H(x) =
∑∞

i=0 ixi/B
i), then xi ∈ {0, 1, . . . , B − 1}.

Proof. Clearly x0 ≤ 1 (otherwise x /∈ [0, 1]). Suppose that for some
j ≥ 1 that xj ≥ B. Then let

yi =

⎧⎪⎨⎪⎩
xj−1 + 1, i = j − 1;

xj − B, i = j;

xi i �= j, j − 1.

Then each yi is nonnegative integer,
∑∞

i=0 yi/B
i = x and

∞∑
i=0

iyi

Bi
=

(j − 1)(xj−1 + 1)

Bj−1
+

j(xj − B)

Bj
+
∑

i�=j,j−1

ixi

Bi

=
j − 1

Bj−1
− j

Bj−1
+

(j − 1)xj−1

Bj−1
+

xj

Bj
+
∑

i�=j,j−1

ixi

Bi

= − 1

Bj−1
+

∞∑
i=0

ixi

Bi
= H(x) − 1

Bj−1
.
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This contradicts the minimality of the sum and completes the proof.
�

Recall that any real number x ∈ [0, 1] has a base B-expansion
x =

∑∞
i=0 xi/B

i where each xi ∈ {0, 1, . . . , B − 1}. This expansion
is unique unless x is a B-adic rational (that is a rational number of
the form k/Bl for integers k and l). A B-adic rational has exactly
two base B expansions, one finite and one infinite (if xn > 0 then∑n

i=0 xi/B
i =

∑n−1
i=0 xi/B

i + (xn − 1)/Bn +
∑

i=n+1(B − 1)/Bi). For
B-adic rationals x we will always use the finite expansion, but will
still write x =

∑∞
i=0 xi/B

i with the understanding that xi = 0 for i
sufficiently large.

3.5. Proposition. If x ∈ [0, 1] has base B expansion x =
∑∞

i=0 xi/B
i,

then H(x) is given by

H(x) =
∞∑
i=0

ixi

Bi
.

Proof. From Lemma 3.4 we know that if x =
∑∞

i=0 yi/B
i with yi non-

negative integers is the expansion of x so that H(x) =
∑∞

i=0 iyi/B
i,

then 0 ≤ yi ≤ B − 1. When x is not a B-adic rational uniqueness
of base B expansions implies that yi = xi and we are done. If x is a
B-adic rational and so has two expansions with 0 ≤ yi ≤ B − 1 then
direct calculation shows that

∑∞
i=0 iyi/B

i is smaller when the finite
expansion is used. Thus yi = xi in this case also. �

It is convenient to extend H to all of R to be periodic, H(x + 1) =
H(x). This is possible as H(0) = H(1) = 0. Let r : R → R be the
function that agrees with the greatest integer (or floor) function on
[0, B) and is periodic of period B. That is

r(x) :=

{
�x	, 0 ≤ x < B;

r(x + B) = r(x), x ∈ R.

Then if x =
∑∞

i=1 xi/B
i is the base B expansion of x ∈ [0, 1) then it

is easily checked that xi = r(Bix) and therefore x =
∑∞

i=1 r(Bix)/Bi.
Then the fractional part {x} of the real number x is given by

{x} =
∞∑
i=1

r(Bix)

Bi
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as both sides are equal to x on [0, 1) and are periodic of period 1. Also
the periodic extension of H to R is given by

H(x) =
∞∑
i=1

ir(Bix)

Bi
.

These relations can be used to prove:

3.6. Proposition. The periodic extension of H to R satisfies the func-
tional equation

(3.3) H(x) = {x} +
1

B
H(Bx)

and has the series representation

(3.4) H(x) =
∞∑

k=0

{Bkx}
Bk

.

Thus H is lower semi-continuous, continuous at all points of [0, 1] that
are not B-adic rationals, and right continuous at all points of [0, 1].
Also this function satisfies the bounds

x logB(1/x) ≤ H(x) ≤ Bx

B − 1
+ x logB(1/x)

on [0, 1] (see Figure 3).

Proof. Other than the lower bound x logB(1/x) ≤ H(x), we refer the
reader to the proofs of [2, Prop. 2.14 p. 15] and [2, Prop. 2.21 p. 19]
which cover the case when B = 2. Only trivial changes are required
for the general case.

To prove the lower bound, suppose x =
∑∞

j=n xj/B
j is the base

B expansion for x with xn ≥ 1. Then x ≥ 1/Bn and therefore
logB(1/x) ≤ n. Thus

x logB(1/x) ≤
∞∑

j=n

nxj

Bj
≤

∞∑
j=n

jxj

Bj
= H(x)

as required. �
We have now finished all of the proof of Theorem 3.1 other than

computing the exact value of κS(n).

3.7. Remark. The graph of HB has some interesting geometric proper-
ties. The following facts can be verified by the arguments used in [2,
Remark 2.15 p. 16] which corresponds to the case B = 2. For each
positive integers i, j, k the graphs of the restrictions HB

∣∣
[i/Bk,(i+1)/Bk)

and HB

∣∣
[j/Bk,(j+1)/Bk)

are translates of each other and so the graph of H
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Figure 3. Graphs of y = HB(x), y = x logB(1/x), and y =
Bx/(B−1)+x logB(1/x) on [0, 1] for the values B = 3 and B = 10.

is “locally self congruent at all scales 1/Bk”. The closure of the graph
is homeomorphic to the Cantor set and the graph itself is this Cantor
set with a countable number of points deleted. Thus the graph is zero-
dimensional as a topological space. However the Hausdorff dimension
of the graph is one. Thus the closure of the graph has metric dimension
larger than its topological dimension and therefore is a fractal. �

3.8. Remark. (Cf. [2, Remark 2.26 p. 22]) The functional equation (3.3)
for h = HB can be used to explain the self-similarities of the graph of
ES : ∆n → R with S = {(1/B, . . . , 1/B). Let v ∈ ∆n point so that
all the entries of (B − 1)v are integers. Let x ∈ ∆n be any point
that is not a vertex. Then (x + (B − 1)v)/B is not a vertex and so
all the components of (x + (B − 1)v)/B are in the interval [0, 1) and
thus are equal to their fractional part. So letting x = (x0, . . . , xn) and
v = (v0, . . . , vn) and using (3.4)

E

(
x + (B − 1)v

B

)
=

n∑
k=0

H

(
xk + (B − 1)vk

B

)

=
n∑

k=0

{{{
xk + (B − 1)vk

B

}}}
+

1

B

n∑
k=0

H(xk + (B − 1)vk)
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=
n∑

k=0

xk + (B − 1)vk

B
+

1

B

n∑
k=0

H(xk)

= 1 +
1

B
E(x).

where we have used that for each k that (B − 1)vk is an integer so
that H(xk + (B − 1)vk) = H(xk) as H has period one. On the set
∆n × [0,∞) for each v ∈ ∆n so that (B − 1)v has all integer entries
define θv : ∆n × [0,∞) → ∆n × [0,∞) by

θv(x, z) =

(
x + (B − 1)v

B
, 1 +

1

B
z

)
.

This is the dilation by 1/B with center (v,B/(B−1)). The calculation
we have just done shows for each x ∈ ∆n that is not a vertex that

θv(x,E(x)) =

(
x + (B − 1)v

B
, 1 +

1

B
E(x)

)
=

(
x + (B − 1)v

B
,E

(
x + (B − 1)v

B

))
.

Therefore each of these dilations maps the graph of E into a subset of
the graph. When B is much larger than n there will be a large number
of points v ∈ ∆n so that (B − 1)v has all integral elements and thus in
this case the graph of z = E(x) will have a very large number of self
symmetries. This is apparent in the bottom graph in Figure 2 where
n = 2 and B = 10. �
3.0.2. Calculation of κS(n). Let Bn be the points in ∆n with B-adic
rational coordinates. Then Bn is dense in ∆n and E is lower semi-
continuous. Therefore

sup
x∈Bn

E(x) = sup
x∈∆n

E(x).

So there is a sequence 〈x(s)〉∞s=1 ⊂ ∆n so that x(s) =
∑n

k=0 xk(s)ek

with each xk(s) a B-adic rational and with lims→∞ E(x(s)) = κS(n).
Each xk(s) can be written xk(s) =

∑∞
j=0 xj k(s)/B

j with xj k(s) ∈
{0, . . . , B − 1} and each sequence 〈xj k(s)〉∞j=0 eventually 0. By passing
to a subsequence we may assume that for 0 ≤ k ≤ n and 0 ≤ j < ∞
that lims→∞ xj k(s) = xj k with xj k ∈ {0, . . . , B − 1}. That is for fixed
j and k we have xj k(s) = xj k for sufficiently large s. Therefore if
xk =

∑∞
j=0 xj k/B

j for 0 ≤ k ≤ n, then by the Lebesgue Dominated

Convergence Theorem
∑n

k=0 xk = 1. (All the series
∑∞

j=0 xj k(s)/B
j are

dominated by the convergent geometric series
∑∞

j=0(B − 1)/Bj so we

can take the limit in 1 = lims→∞
∑n

k=0 xj k(s)/B
j =

∑n
k=0 xj k/B

j =
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k=0 xk.) Another application of the Lebesgue Dominated Conver-

gence Theorem gives

κS(n) = lim
s→∞

E(x(s)) = lim
s→∞

∞∑
k=0

∞∑
j=0

jxj k(s)

Bj

=
∞∑

k=0

∞∑
j=0

jxj k

Bj

.

Let

Mj(s) :=
n∑

k=0

xj k(s) and Mj :=
m∑

k=0

xj k.

So for fixed j we have Mj(s) = Mj for sufficiently large s. Also

E(x(s)) =
∞∑

j=0

jMj(s)

Bj
, κS(n) =

∞∑
j=0

jMj

Bj
, 1 =

∑
j=1

Mj

Bj
,

and for fixed s we have Mj(s) = 0 for sufficiently large j.
As a first observation note that each xj(s) ≤ B − 1 which implies

Mj(s) ≤ (n + 1)(B − 1) which in turn implies

(3.5) Mj ≤ (n + 1)(B − 1).

Assuming n ≥ 1 (as we know κS(0) = 0) we have M0 = 0 (for
M0 =

∑n
k=0 x0 k > 0 would imply that the point (x0, . . . , xn) is a vertex

of ∆n and this is clearly not a maximizing sum). Let

	 + 1 = least j such that Mj > 0.

In particular 0 = M0 = · · · = M� and M�+1 > 0.

3.9. Lemma. If j ≥ 	 + 2, then Mj ≥ (B − 1)n.

Proof. Suppose not and let i be the least i ≥ 	 + 2 such that Mi <
(B − 1)n. If i > 	 + 2, then Mi−1 ≥ (B − 1)n and if i = 	 + 2, then
Mi−1 = M�+1 > 0. In either case Mi−1 > 0. There is an s0 such that for
s ≥ s0, Mi−1(s) = Mi−1 and Mi(s) = Mi. Thus for each s ≥ s0 there

is a y(s) =
∑n

k=0

(∑∞
j=0 yj k(s)/B

j
)

ek with yj k(s) defined so that

yj k(s) = xj k(s) if j �= i − 1, i,

n∑
k=0

yi−1 k(s) = Mi−1 − 1.

(this is possible because Mi−1 > 0) and

n∑
k=0

yi k(s) = Mi + B
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(this is possible becasue Mi < (B−1)n so that Mi+B ≤ (B−1)(n+1)).
But then for s > s0,

E(y(s)) = E(x(s)) +
iB

Bi
− i − 1

Bi−1
= E(x(s)) +

1

Bi−1
.

But then lims→∞ E(y(s)) = κS(n) + 1/Bi−1 which is impossible. �

3.10. Lemma. For infinitely many j the inequaltiy Mj < (B−1)(n+1)
holds.

Proof. Suppose that for some j0 that j ≥ j0 implies Mj = (B − 1)(n +
1). Then there exists s0 such that for j < j0 and s > s0 we have
Mj(s) = Mj. But then for any s > s0 (recall that for fixed s there
holds Mj(s) = 0 for j sufficiently large)

1 =
∞∑

j=0

Mj(s)

Bj
=

j0−1∑
j=0

Mj(s)

Bj
+

∞∑
j=j0

Mj(s)

Bj

=

j0∑
j=0

Mj

Bj
+

∞∑
j=j0

Mj(s)

Bj
<

j0∑
j=0

Mj

Bj
+

∞∑
j=j0

(B − 1)(n + 1)

Bj

=
∞∑

j=0

Mj

Bj
= 1

which is a contradiction. �

3.11. Lemma. If j ≥ 	 + 2, then Mj = (B − 1)n.

Proof. By Lemma 3.9 Mj ≥ (B − 1)n and by Lemma 3.10 Mj < (B −
1)(n + 1) for infinitely many j. Thus

∞∑
j=�+2

Mj

Bj
=

∞∑
j=�+2

(B − 1)n

Bj
+

∞∑
j=�+m+2

Mj − (B − 1)n

Bj

=
(B − 1)n

B�+2

(
1

1 − 1/B

)
+

∞∑
j=�+2

Mj − (B − 1)n

Bj

=
n

B�+1
+

∞∑
j=�+2

Mj − (B − 1)n

Bj

Set R =
∑∞

j=�+2
Mj−(B−1)n

Bj . Then

0 ≤ R <

∞∑
j=�+2

B − 1

Bj
=

B − 1

B�+2

(
1

1 − 1/B

)
=

1

B�+1
.
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where the first inequaly follows form Lemma 3.9 and the second from
Lemma 3.10. Thus

1 =
∞∑

j=0

Mj

Bj
=

�+1∑
j=0

Mj

Bj
+

n

B�+1
+ R =

L

B�+1
+ R

with 0 ≤ R < 1/B�+1 and L a positive integer. But then 0 ≤ R =
1 − L/B�+1 = (B�+1 − L)/B�+1 < 1/B�+1, which implies that R = 0.

That is 0 = R =
∑∞

j=�+2
Mj−(B−1)n

Bj . Thus Mj − (B − 1)n = 0 for
j ≥ 	 + 2. �

3.12. Lemma. The integer 	 satisfies
M�+1 + n

B�+1
= 1.

Proof. Using the results from the last several lemmas:

1 =
∞∑

j=0

Mj

Bj
=

M�+1

B�+1
+ (B − 1)n

∞∑
j=�+2

1

Bj

=
M�+1

B�+1
+

n

B�+1
=

M�+1 + n

B�+1
.

�
3.13. Lemma. The integer 	 satisfies B� ≤ n < B�+1 so that 	 =
�logB n	.
Proof. By Lemma 3.12 M�+1 + n = B�+1 and M�+1 > 0 so n < B�+1.
For the other inequality, use M�+1 ≤ (n + 1)(B − 1) so that

B�+1 = M�+1 + n ≤ (n + 1)(B − 1) + n = nB + B − 1

=⇒ (n + 1)B ≥ B�+1 + 1

=⇒ (n + 1)B > B�+1

=⇒ n + 1 > B�

=⇒ n ≥ B�

�
Using the results of these lemmas we can now compute the value of

κS(n).

(3.6) κS(n) =
∞∑

j=0

jMj

Bj
=

(	 + 1)M�+1

B�+1
+ n(B − 1)

∞∑
j=�+2

j

Bj
.

Using Lemma 1.19 (with x = 1/B and a = k = 	 + 2)

(B − 1)
∞∑

j=�+2

j

Bj
= (B − 1)

∞∑
i=0

	 + 2 + i

B�+2+i
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= (B − 1)
(	 + 2)(1/B)�+2 + (1 − (	 + 2))(1/B)�+3

(1 − 1/B)2

=
(	 + 2)B − (	 + 1)

(B − 1)B�+1

Using this and that M�+1 = B�+1 − n (Lemma 3.12) in (3.6) gives

κS(n) =
(	 + 1)M�+1

B�+1
+

n[(	 + 2)B − (	 + 1)]

(B − 1)B�+1

=
(	 + 1)(B�+1 − n)

B�+1
+

n[(	 + 2)B − (	 + 1)]

(B − 1)B�+1

= 	 + 1 +
−n(	 + 1)

B�+1
+

n[(	 + 2)B − (	 + 1)]

(B − 1)B�+1

= 	 + 1 +
n

(B − 1)B�

= �logB n	 + 1 +
n

(B − 1)B
logB n� .

This completes the proof of Theorem 3.1.
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several variables, Birkhäuser Boston Inc., Boston, MA, 1998. MR 99i:39035

5. D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer.
Math. Soc. 3 (1952), 821–828.

Department of Mathematics

University of South Carolina

Columbia, S.C. 29208, USA

dilworth@math.sc.edu
howard@math.sc.edu
roberts@math.sc.edu


