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Abstract
Wawvelet-type systems providing a uniformly convergent expansion for any
continuous function on the sphere are found. This construction is transferred
to the disk due to some special connections between polynomaial bases on the
sphere and on the disk.

1. In [1], a polynomial basis for the space of continuous functions on
the disk is constructed. This basis is not good for implementations. First,
the growth of the degrees of polynomials is too rapid. Second, finding of
the coefficient functionals for a concrete function is quite difficult. In the
one-dimensional case, construction of polynomial bases was actively studied
by many mathematicians for almost forty years. An optimal (regarding the
growth of the degrees of polynomials) orthogonal basis for Cfa,b] was pre-
sented in [2]. This basis is a wavelet system with respect to some special
”shift”-operators. Though this construction can be realized in any Hilbert
space with a polynomial orthonormal basis, it is not clear if the Lebesgue
functions of the wavelet Fourier sums are bounded in general. Wavelet-type
systems for the sphere was proposed by W. Freeden [3]. In contrast to classi-
cal wavelet bases these systems are not orthogonal. Moreover, they are even
not Ly - bases. Nevertheless, expansions with respect to such systems are
very alike usual wavelet series. In the present paper we show that some spe-
cial cases of Freeden’s ”"wavelets” provide a uniformly convergent polynomial
expansion for any continuous function on the sphere. This construction can
be transferred to the disk due to connections between weighted orthonormal
polynomial bases on the disk and Laplace series.

2. The following notations will be used throughout the paper:

Ty =Ty + ...+ 2y, |2] = Tz for x,y € RY, 7w is the space of
polynomials in d variables of degree at most n. X,, denotes the n-th Legendre
normalized polynomial, S? = {x € R® : |z| = 1}. Let B={z € R? : |z| < 1},
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w(z) = 7711 — |z|?)~Y2 for x € B, we consider the weighted space Ly, of
functions defined on B with the inner product (f, g) = [ fgw. For functions
B

F,G € Ly(S?) the inner product is (F,G) = [ FG.
S2

Set P, = m2 & m2_, in Ly, It is clear that the spaces P, are mutually
orthogonal, dim P,, = n+1. For each n, P, consists of the polynomials in two
variables of degree exactly n. Let {pni}r_, be an orthonormal basis for P,,.
Two different explicit formulas for p,, were presented in [1] and [4], but we
will not need them. The entire collection {py, }r.» constitute an orthonormal
polynomial complete system in Lo ,,.

An orthonormal basis for Ly(S5?) has a similar structure (see [4]): it con-
sists of spherical harmonics Y,x, k =0,...,n, n =0,1,...; the spaces H, =
span{Y,x,k = 0,...,n} are mutually orthogonal; the space Hy = ®Y_H,
comprises the restriction to S? of m3. One has the following addition for-
mula [4]:

2m Y Yor(2)Yor(y) = X (1) Xn(2 - y) (1)

for all z,y € S? and for alln =0,1,....
The following statement summarizes the quadrature formula given in [6]
(see also [7], Theorem 2.1).

Theorem 1 For any finite set {n,}ocq of distinct points n, € S?* and for any
positive integer N satisfying

N maxmin |z — n,| < A,
z€S2 LeQ

where A is an absolute constant, there exist nonnegative weights ay, { € 2,
such that

/P= Zaep(m)

3 eQ
for all P € 3.
Due to this theorem, to each nonnegative integer 7 we can assign a set

{77?)}1269]. of distinct points néj) € 5% and a set {a_ﬁj }ecq, of nonnegative
weights with the following properties: card Q; ~ 2%; for any ¢ € Q; there



exists ¢' € €Q;, ¢ # {, such that 77(]) and 77(]) are symmetric with respect to
the plane {z € R* : 23 = 0}; for any P € 3,

/ = P, @)

£eQ);

hmw=<%£ﬁ22>

27 +2
27

forn =0,...,27, hj(n) =0forn =2741,27+2,.... One can easily recognize
the factors of the (C,2) means of order 2/. It is well known (see, e.g., [8])
that the Fourier-Legendre series is (C,2)-summable in C[—1,1]. Moreover,
an inequality due to Kogbetliantz [9, p. 71] states that

3. Let

N
N—-n+2
Z%( M PAIURY 3)
for all ¢ € (L1 86t g5(0) = Bylo) + (), (o) = o) = o)
for j =1,2,...,n=0,1,..., go(0) = ho(0) + 1, go(0) = ho(0) — 1, go(n) =
go(n) = 0 for n = 1,2,.... For each nonnegative integer j and for each
¢ € Qj 1, define the functions

> gi(n)Xa(D)Xa(nf ™ - a),

NEZ
—~ 1+1
S G Xa (V)X (T - a),
TLEZ+
Snele) = Y () Xa()Xaln @),
TLEZ+

Complete this collection by the function &, = 1.
For F € C(5?), we will study the convergence of the series

(F, D)y + Y Y af P(F, Ty Ty,

1=0 ZEQH_l
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Set
Ajo(F) = (F, &, <I>0+Z ST alTE T Wi+ af T U)Wy,
1=0 £eQ;41 lew

where w is a subset of €2;;.
Lemma 2 For any F € C(S?),

F (I)O (I)() —+ Z Z z+1) , Z \Ijiﬁ = Z afgj)<F, (I)jg>q)jg. (4)

1=0 5691-5-1 feﬂj

Proof. On the basis of (2),

3 oY) / F(t) 3 by () XX - 1) ds() S by (k)X (1) X () - ) =

fEQj g2 nez4 keZ 4

/ Z Z hj1( )/ ds(n) X,(1) Xn(n - ) Xk (1) Xk(n - ).

52 neZ4 k€L y S2

. From this, using (1) and taking into account the orthonormality of {Y, }n.k,
we have

> af (F,2)(x) = QW/F(t) D hiam)Xa(1)Xa(t - 2) ds(t). (5)
52

LeQ; nezy

Similarly,

Z al T (F, W) Uig(z) = QW/F(t) Z 9i(n)gi(n) Xon(1) X (t - 2) ds(t).

ZEQ,‘+1 g2 nezZy
(6)
Since gi(n)gi(n) = hZ(n) — h? {(n), it follows that

Z a&i)<F, Dig) D = Z a§i_1)<F, ‘I’(i—l)£>¢’(i—1)f+z aﬁ”(F, (17(1._1)[}\11@_1)[.

e, e £eQ);

Summing these equalities over all i = 1,...,j we obtain (4). <
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Lemma 3 Let x be an integrable function on [—1,1], then

1

/X(x-t)ds(t) :27r/x

s “1

for all z € S2.

Proof. Fix a point x € S? and chose a Descartes coordinate system such
that z = (0,0,1). We have

[ as) =[x asto =

52 52
2w ™ 1
/ dcp/x(cos ) sinf df = 27T/X(T) dr. ©
0 0 “1

Theorem 4 For any F € C(S?),

lim [[F = Aju(F)leo =0, (7)
J—00
where the convergence is uniform over all w C ;.

Proof. First we will prove that the operators A;,, taking C'(5?) to C(S?)
are uniformly bounded. By (4), (2) and (3),

|Ajo(F,x)| = Za (F,®,0)®;¢| =

el

[ st 3 by (0 X(0) Xl / ASWF () Y hya(m) X)Xl 1) <

kEZ+ g2 NEZ

1Pl / D) Sy (B)Xa(1) X 2 / ds(t) S hyoa () Xa(1) X (- 1)

keZ 4 neEZy



Since, due to 4,

/Zhj1 (1) X, (y - t) ds(?) _zw/Zhjl (1) X, (7) dr = 2m,

g2 NEZ+ 7y n€Z4

we obtain
A 0l < 47°. (8)

()

Similarly, taking into account that a,’ > 0, we have

> af E ) T(x)| <
> o / FOLY S X, 0X,fe18) ds()-
lew s=j—1n€zZy4
PIP LR NE
1Fle 3 af*! / S S (XUt 1) ds(t)
e 52 s=j—1n€Z
> D he(B)Xu(D) X ™) =
1Pl / ds(n) / as(t) 33 ha(m) Xu(1) Xt 1) -
g2 S2 s=j—1n€Zy

Z > (k) Xi(1) X (2 - n) = 167° || F | .

_] 1 k€Z+

This and (8) give ||A;.]| < 207%. Now, by the Banach-Steinhaus theorem,
it suffices to check that (7) holds on the set of spherical polynomials. Let

N n
F = Z:o Zo QnyYny, due to the orthonormality of {Y,x},x and (1), it follows



from (4) and (5), that

N n
Ajvﬂ(F) = Z h?—l(n) Z am/Ynu-
n=0 v=0
Since
lim hj(n) = (9)
Jj—o0

whenever n is fixed, we obtain (7) for w = (. Again, due to the orthonor-
mality of {Y,x}nr and (1),

Z Qg Y Z gj(n zn: Oy Yy (nﬁjﬂ))‘l’ﬂ(%)

lew

1
max [h;(n) — hj 1(n |Z|ozw|||yw||ooz\a/+ je(@)| (10)

0<n<N
lew

§ ' (4+1)
al F \Ifjg Jg

lew

<

On the basis of (2) and Lemma 3, taking into account the positivity of afzj )

and (3), we have

> ‘agjﬂ)‘l’je(x)‘ <

lew

S ST by ()X (D)Xt 78 ) + Y by ()X (1) Xt -0 )

EEQ]-_H n€Z+ kEZ+

[ st | X m XXt + 3 by (XXt ) | =am

pe neEZy kez

Combining this with (9) and (10), we obtain

lim max
j—o0 LUCQ]'+1

=0,

o0

> afM(F Ty,

lew

what remained to be proved. <
4. To any f € C(B) we assign an associated function F defined on S*
by: F(z1,2,23) = f(z1,22) for all z € S2.
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Theorem 5 ([1]) Let {pnr}i_, be an orthonormal basis for Py, in Lo, f €
C(B) and let F' be the function associated with f, then

21 Y (F papnel1,23) = Xa(1) [ F(OX,(t-2)ds()

SZ
for all z € S2.

Denote by §§j ) the orthogonal projection of ngj ) onto the plane {z € R? :
z3 = 0}. For each nonnegative integer j and for each ¢ € Q,,; define the
functions

Vie(T1,22) = ZQJ ank 21, 22)pr (€0,

n€Ll+ k=0

le(xl’@) - Zgj(”)ank(fﬂl,:Ez)Pnk(ﬁéjH)),
n€Zy k=0

PGre(T1, T2) = Zhj(n)ank(xl’x2)pnk(€éj+1))'
neL4 k=0

Complete this collection by the function pg = 1.
For f € C(B), we will study the convergence of the series

(f, o) 900‘1'2 Z SLF i) e

=0 ZEQ,+1
Set

i) = (f,0) <Po+z N7 At e+ > af T i) be,

1=0 £eQ;41 lew

where w is a subset of §2,41.

Lemma 6 If f € C(B), F is the function associated with f, then
2r Y ay TV e, m0) = > af " U) W), (11)

e £eQjq
21 Y 0 (fpi)pie(r1,m2) = D af (F,00)Bj(x) (12)
KGQ]‘ ZEQ]-

forallz € 8%, j=0,1,....



Proof. Let P, be a polynomial in three variables defined by P, (x1, z2, 23) =

Pnk(Z1,22). Using (2), we have
Z a]—H f wﬂ zbﬂ(l’l,l’z)

241

S ™Y G0 Y (o) P ) -

e nezZ4 k=0

Z an’k’ fL’1,IL‘2 ,k,(nlg +1)) _

n'€Z

/ds(n) Z Gi(n) Y (f, Puk)Pn Z an’k’ T1, ) Poie () =

nEZ4 k=0 n'E€Zy

/W > giln Z Foui)Par(€) D Gi(n)D - puir (w1, 2)paris (€).

neEZy n'E€Z4

Due to the orthonormality of {pn}nk in La,,, we reduce this to

n

2m Z gj(n)g;(n) Z(f, Prk)Pnk(T1, T2). (13)

nez4 k=0
On the other hand, by (6),
1 ; ~ ~
oy > 0 TE, W) () :/ds(t)F(t) > Gi(n)g;(n) Xn(1) X, (t - )
fEQjJrl 52 nezy

The right hand side is equal to (13), on the basis of Theorem 5. So, (11) is
proved, (12) can be proved similarly. <

Corollary 7 For any f € C(B),

(f,0)po + Z PIRARIEINIESY o (£, pie)ese.

1=0 EGQHl ZEQJ‘



The proof follows immediately from Lemmas 2 and 6.
Theorem 8 For any f € C(B),
Jim (1 = A (Fllee =0, (14)
where the convergence is uniform over all w C ;.

Proof. First we will prove that the operators \;, taking C(B) to C(B)
are uniformly bounded. Let F' and P,; be the functions associated respec-
tively with f and p,, . By Corollary 7,

Ajo(f) = Z az(zj)<f; Pie)Pit-
£eQ2,;

It follows from (12) and (8) that

[Ajo(fszr, 22)] < 27| Flloo = 27| oo (15)
In [4, Theorem 4.1}, it is proved that

Z hj (n) ank(u)pnk(v) > 0 (16)

NEZ4

for all u,v € B. This also follows immediately from Theorem 5 and (3). By

this, taking into account the positivity of agj ) and the orthonormality of of
{Puk}ni in Ly, we have

S al TV f, diewe(ar, x2)| <

lew

JH /|f t1,ta)] Z Z he( ank pnk(tl,t2) (t1,t2)dty dty -
ZEw

s=j—1n€zZy

Z Z h an’k’ pn'kl($1,$2) <

r=j—1n'€z

1/l Z J+1/ Z Zh ank Npur(ts, ta) w(ty, ta)dty dts -

£eQjq B s=j—1lne€zZy

10



>3 pr (7P (@1, 2) =

r=j— 1n€Z+

2l[flloe Y af ™ Z > hul ZP’k’ (1) pure (1, 2).

£e€j11 r=j—1n'€zy

By (2), the last sum over ¢ can be reduced to

2/ Z Z hn( ZP'k' VP (21, 22) =

r=j—1n/€Z4 k'=0
!

/W Z Z hT(n,)an’k’(g)pn'k'(ﬂfl,%) = 4.

r=j—1n'€z k'=0

Hence

Zaﬁl (f, wﬂ’ Yo, x2)| < 8.

lew
Together with (15), this gives ||\, || < 107.

Now, by the Banach-Steinhaus theorem, it suffices to check that (14)
N n
holds on the polynomials. Let f = > > apnypny, due to the orthonormality
n=0v=0
of {puk}nr and Corollary 7, by means of manipulations similar to the proof

of Lemma 6, it is not difficult to show that

N n
= Z hf_l(n) Z QnyPny-
n=0 v=0

Since

lim hj(n) =1, (17)

Jj—00
whenever n is fixed, we obtain (14) for w = (). Again, due to the orthonor-
mality Of {pnk}mk,

N n
DN el = |20 >80 3 w67 | <
LEW lew n=0
1
max [h;(n) = by |Z|oznu|||p,w||oo§j\aﬂ+ el . (18)

lew

11



On the basis of (2), taking into account the positivity of aﬁj) and (16), we
have

Z a§j+1)¢je($1,$2) < Zaﬁj“)

lew leEw

i m
D2 ™ DT 37 ham) Y k(e a2) s ) =

fEQj+1 s=j—1mEeEZy k=0

/ds(n) Z Z hs(m)mek(JJbJJz)Pmk(n) =

Z mek $17x2)pmk( (J+1)) S

meZy k=0

s=j—1meEZy

/W Z Z hs(m)zpmk(ﬂchxz)pmk(f)=47r.

s=7j—1mEeEZy k=0

Combining this with (18) and (17), we obtain

=0,

o0

lim max
Jj—00 wCQj+1

> a0 E W)y,

lew

what remained to be proved. <&
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