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LATTICE POINTS CLOSE TO A SMOOTH CURVE AND
SQUAREFULL NUMBERS IN SHORT INTERVALS

OGNIAN TRIFONOV

ABSTRACT. We extend an approach of Swinnerton-Dyer and obtain new up-
per bounds for the number of lattice points close to a smooth curve. One
consequence of these bounds is a new assymptotic result for the distribution

of squarefull numbers in short intervals.

1. Introduction

A squarefull number is a positive integer n such that if p is a prime dividing n,
then p? divides n. Let Q(z) be the number of squarefull numbers which are < z.

Bateman and Grosswald [1] proved that

o) — SB/2) 1

C2/3) s, (s
o oy o=

Concerning the gaps between squarefull numbers, P.Shiu [17] proved that there
exist infinitely many positive integers n such that there is no squarefull number
between n? and (n+1)2. On the other hand, since each perfect square is a squarefull
number, Shiu’s result answers completely the question of how large the gaps between
squarefull numbers can be.

Another question is what is the distribution of squarefull numbers in short in-
tervals. The result of Bateman and Grosswald implies
€(3/2) o
20(3)
when 1/6 < 6 < 1/2. Clearly (1) does not hold with § = 0. We would like to

(1) Q (w+a"/*?) -~ Q(a) ~

determine the smallest value of § € (0,1/2) for which (1) holds. Smaller and smaller
admissible values of 6 were obtained by P.Shiu [18], P.G.Schmidt [16], C.-H.Jia [13],
P.G.Schmidt [16], H.Liu [14], D.R.Heath-Brown [5], M.Filaseta and O.Trifonov [2],

2000 Mathematics Subject Classification. 11J54, 11P21, 11N25.
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2 OGNIAN TRIFONOV

and M.Huxley and O.Trifonov [10], with the latest paper showing that (1) holds
for any 0 € (1/8,1/2). We improve on these results by proving

Theorem 1. The asymptotic formula (1) holds for all 19/154 = .1233... < 6 <
1/2.

The proof of Theorem 1 reduces to estimating the number of lattice points close to
the curve a?b3 = x. Elementary estimates of this type were obtained in [7], [3], [9],
and [8]. We improve on these estimates by extending an approach of Swinnerton-
Dyer. In [20] Swinnerton-Dyer obtained upper bounds for the number of lattice
points on a curve, provided the curve satisfies some simple analytic conditions.
One way to get these bounds is to consider second divided differences of triples of
lattice points on the curve. We extend the approach of Swinnerton-Dyer by working
with third divided differences of quadruples of lattice points close to the smooth

curve. This enables us to obtain

Theorem 2. Let 1 < C < M <T < M?, f:[M,2M] — R have a continuous

third derivative and

T : cT

_— () el
forj=2,3 and all v € [M,2M]. Let0 < § < 1/2 and § < (CM)~ 2. Define S(f,6)
to be the set of all integer points (x,y) such that x € [M,2M] and |f(z) —y| < 4.

Then for every € > 0 there exists a constant c(e) > 0 such that

IS(f,0)] < C(E)MEC(M1/2T4/27+M12/25T4/25+M9/1054/15+M12/1354/13

+MPITT?T 4 T M A+ MYPTVAGHY) 4+ COT M55,

Theorem 2 is of interest in itself. We envision various applications of it in number
theory problems. Theorem 2 gives best results when 7" is close to M?/2. For instance

one can get the following corollary.
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Corollary Let f and S(f,0) be as in Theorem 2 with C an absolute constant,
0<6<(CM)~%, and let T = M?3. Then

1S(f,0)] < c(e)M T,

The best previous result, even when § = 0, was |S| < M3 and 13/18 = .7222... <
.75.

Since the proof of Theorem 2 consists of several independent steps, we present it
in five sections. In Section 2 we state some well-known basic properties of divided
differences; we prove some preliminary lemmas in Section 3; in Section 4 we inves-
tigate lattice points on quadratic major arcs; we estimate the number of integer
solutions of a certain system of two equations in Section 5 and we prove Theorem

2 in Section 6. Section 7 is dedicated to the proof of Theorem 1.

Notation

We use the following notation throughout the whole paper:
C, T, and M are real numbers with 1 < C < M < T < M?2.
0 is a real number in (0,1/8).

Let r be a positive integer. Define F, to be the class of all real-valued functions

which are defined on I = [M,2M], have a continuous r-th derivative on I and
o <) < §E forallz € 1.

Define S(f,d) to be the set of all integer points (z,y) such that z € [M,2M] and
f(z) —yl <.

For any finite set .S of points in the plane we denote by P(S) its projection on the
z-axis, and by |S| its cardinality.

We call the graph of any quadratic function ax? + bz + ¢ with a, b, and c real
numbers a parabola.

f(u) < g(u) will mean that there exists an absolute constant ¢ such that |f(u)| <
cg(u) for all u > 1. f(u) <, g(u) will mean that there exists a constant c(e) such
that |f(u)| < c(e)g(u) for all w > 1. Similarly, f(u) <¢ g(u) will mean that the
implied constant in < depends on C' only.

For r and n positive integers, we denote by d,.(n) the number of distinct solutions

in positive integers of the equation z x5 - - -z, = n.
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For z a real number we denote by ||z|| the distance from z to the closest integer
number.

We denote by R the set of real numbers, and by Z the set of integers.

To simplify the notation we adopt the convention ¢ + ¢ = ¢ and ce = ¢ whenever ¢

is an absolute constant. There will be no division by € or comparison of €’s in this

paper.

2. Divided differences

Divided differences are in the foundation of our estimates. In this section we state
some definitions and properties of divided differences which are well-known and can
be found for example in [11].

Let f be a function defined on the reals and g, z1,...,z, be distinct real num-
bers. Then there is a unique polynomial P(z) of degree n such that P(z;) = f(z;)
for 5 =0,1,...,n. The coefficient of 2" in P(z) is defined to be the n-th divided
difference for f, and we denote it f[zg, z1,...,2,]. Denote V =V (zg,21,...,2,) =
[To<r<j<n(®j — zr) and let V; = [[(z; — z) where the product is over all £ and j

such that 0 < k < j <n, k #1, and j # 1.

Lemma 1. f[zg,z1,...,Tn] = Z?:o(—l)vnfiv;f(wi) )

Lemma 2. Let m = min(zg,1,...,2,) and M = max(zo,21,...,%,). If f has

continuous n-th derivative on [m, M| then

f[x()axla---amn] = f(n)(ﬁ)/n'

for some £ € (m, M).

1 1 1
Zo Il In
xo—l m':rlL—l JC271
Lemma 3. f[zg,21,...,Z,] = v

3. Preliminary Lemmas



LATTICE POINTS CLOSE TO A CURVE AND SQUAREFULL NUMBERS 5

This section contains three lemmas. The idea of the first two lemmas is that if
some mild conditions on ¢ hold then one can find a subset of S(f,§) which has the
following properties:

(i) it essentially has the same size as S(f,d);

(ii) it is either strictly convex or strictly concave depending on the sign of f”;

(iii) no two elements of the set are “too close”.

The first lemma of this section is contained in Huxley [7, pp.204-206].

Lemma 4. Let f € Fo, T > M and 0 < §° < Ymin,cr|f"(z)|. Then there exist
non-intersecting sets S, and Ss such that

(i) S(f,6) = S1US2;

(i) Sy is either strictly convex or strictly concave set, depending on the sign of f";

(iii) |Sa| < C6M + 1.
The next lemma is a modification of Theorem 3 in [22].

Lemma 5. Let f € Fo(\Fs and S1 C S(f,0). Assume that Si is either strictly
convex or strictly concave set. Let ﬁ > E > 0. Define S3 to be the set of integer
points (xj,y;) in Si such that there exist elements of S1, say (x;,y;) and (Tk,yk),
such that v; < z; < xp, v; —x; < E, and x, — v; < E. Then

C3TSE3 L CTE?

|S3| <« 7 e

Proof of Lemma 5.

Let a; and ag be positive integers. Define T'(a1,a2) to be the set of all positive
integers n such that n, n + a1, and n + a; + a2 are consecutive elements in P(S7).
Then by the definition of S5 we have

1S5l = > |T(a1,a2)|-
a1<B,a3<E

We will derive an estimate for |T'(aj,as)|. Fix a; < E and as < E, and let
d = ged(ay, az). Let xy and z¢ + u be two consecutive elements of T'(a1, az). Then
Xo,To + a1, o + a1 + az, o + u, xg +u + ay, and zg + u + a; + ao are all in P(Sy).
Denote z1 = zg+ai, 2 = xg+a1+az. Therefore f(zo) = yo+609, f(z1) = y1+616,
and f(z2) = ya2 + 020 for some integers yo,y1,y2 and some real numbers 6; with

|6;] < 1 for i =0,1,2. Denote zf, = xo + u, ) = z1 + u, and =}, = 5 + u. Again,
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we have f(z}) = y{ + 630, f(2}) = yi + 016, and f(z}) = y5 + 659 for some integers

Y6, Y1, y5 and some real numbers 8 with |0;| < 1 for ¢ = 0,1,2. By Lemma 1
(2) araz(ar+az)flzo, z1, z2] = azf(zo)—(a1+az2) f(z1)+ay f(z2) = m+606(ar+asz)

where m = agyo — (a1 + a2)y1 + a1y2 and 6 = al—iw(agﬁg — (a1 + a2)01 + a162).
Obviously |0] < 2. Also, m is an integer and d | m. Since S} is either strictly convex
or strictly concave then m # 0. (If m = 0 then the lattice points (zo,y0), (z1,¥1),
and (z2,y2) are in S; and lie on a straight line.)

Note that the right-hand-side of (2) is > d/2 in absolute value since |m| > d
and |0d(a; + a2)| < 46E < 1/4. Furthermore, Lemma 2 implies |f[zg, z1,22]| =
F(€)]/2 < £L; with & € I. Therefore, if |T (a1, az)| > 0, then

202
M?3d
(3) a1a2(a1 + az) Z CcT .
Similarly we have
(4) ajas(ay + ag) flzy, oy, xh) = m' + 60'6(ay + az)

where m' = azyy—(ai1+a2)yi+a1ys and 8’ = aliaz (a20)—(a1+a2)f]+a1605). Again
|6'| < 2, m'is anonzero integer and d | m’. Define a function h(z) = f(z+u)— f(z).

Subtracting (2) from (4) and taking into account Lemma 1 we get

(5) araz(ai + az)h[zo, T1, 2] = (M —m) + (6’ — 0)d(a1 + az).

(From Lemma 2, h[zg, x1,T2] = huz(”) - f”(fl+u2)—f”(’l) =

“fl;’(p) for some n and p

in I. We consider two cases.
Case I m # m/.
Since d | m’ —m we have |m' —m| > d in this case. Also [(6' — 6)d(a1 + a2)| <

8FE§ < 1/2. Therefore the right-hand-side of (5) is > d/2 in absolute value. We get
d M3d
u > >
|f”’(p)|a1a2(a1 + az) CTalag(al + a2)
Case II. m = m/.

:= P in case I.

In this case m = a2yp — (a1 + a2)y1 + a1y2 = a2y| — (a1 + a2)y] + a1yh, = m/', so
az(Yo —y1 — Yo + ¥1) = a1(y1 — y2 — Y1 +y3). Note that yo —y1 —yp +y; #0. If
not, the slope of the straight line through (xo,y) and (z1,y1) equals the slope of
the straight line through (z{, y{) and (%, y}) which contradicts the strict convexity

(concavity) of S;. Therefore |yo — y1 — yj + 1| > %1.
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h(zo) = a1h' (&) =
f(@) = yo —y1 —
@ (5 < 1/8). We

Furthermore f(xo) — f(z1) — f(xf) + f(z}) = h(z1) —
aruf’(m) with &,m € I. Also, f(zo) — f(x1) — f(xp)
Yo +y1 + (6o — 01 — 0y + 01)0. Thus ayu|f’(m)| > %4 — 46

obtain

+
2

2
> =

"= 2074
On the other hand, from (5) it follows that ajas(a; + ag)|h[zo, 21, 22]| < 26(ay +

R.

az), so a agu‘f ()] < 24, and we get

4C5M*
< :
- alazT

M
Thus, we proved that the elements of T'(a1, a2) reside in at most 5l + 1 bunches,
each of length < Q). The distance between any two elements of T'(a1, az) which are

M
in the same bunch is > R. Therefore |T(a1,as2)| < (F + 1> <9 + 1>. Note that

R

CTajaz(a1 + az) > 1. Therefore

M
(3) implies — =

P M2d
2M Q 1603(5(041 + ag)T 2CTa1a2(a1 + az)
Using (6) and |S3| = Z |T' (a1, az)|, the proof of the lemma follows. =
a1<E,ax2<E

An essential component of Swinnerton-Dyer’s approach is the strict convexity
(concavity) of the set S(f,d). Since we are working with third divided differences
rather than second, we need some sort of three-convexity condition. To ensure
strict three-convexity (concavity) of S(f,d) one needs to impose too rigid (for the
applications we envision) conditions on §. Since we need only local three-convexity
(concavity) we circumvent the above obstacle by using the following combinatorial

lemma and the estimates from Section 4.

Lemma 6. Let k be a positive integer and let T = {(z1,y1), .., (Tak, yak)} be a set
of points in the plane with ©1 < x93 < -+ < w4x. Then either there exists a parabola
that passes through at least k elements of T, or there exists a subset of 5 distinct
points of T such that no parabola passes through any 4 of these points.

Proof of Lemma 6.

Denote by P23 the parabola which passes through the points (z1,y1), (z2,y2),

and (z3,y3). If k or more elements of T lie on Pj33 then we are done. So, assume
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that |Py23()T| < k — 1. Then there are elements of T which are not on Pj23. Let
(21, 1) be one of them.

Let Pjo; be the parabola through the points (z1,y1), (z2,y2), and (21, 1), Pis; -
the parabola through (z1,y1), (z3,y3), and (z1,y;), and Pag; - the parabola through
(z2,92), (23,93), and (z7,y1)-

If |Pyoyy(\T| > k, or |Pi3i(\T| > k, or | Py (T| > k, then we are done. Assume
otherwise. Then |(Pi2s U Pi2i U Pisi U Pesi) [\ T'| < 4k — 4 (actually one can easily
replace 4k — 4 by 4k — 12). Thus there exists an element of T, say (z,, Ym ), which
is not on Pio3 |J Pio U Pizi U Paai-

Let U = {(z1,y1), (2, y2), (3,93), (X1, 1), (Tm>Ym)}- Then U is a 5 element
subset of T" and no parabola passes through any 4 elements of U. 0O

4. Lattice points on quadratic major arcs

To be able to use Lemma 6 we need a tool to deal with parabolas that contain lots
of lattice points. To this end we use the concept of quadratic major arcs which was
introduced by M.Huxley in [8]. Most of the material in this section is based on the
papers [9] and [8].

Let S = S(f,9), and let W = (112% 2¢(@) where w(q) is the number of distinct
prime divisors of g. We call the set of points A = {(z, P(z))|z € [, 8]} a quadratic
major arc if P(z) is a quadratic polynomial in z, (o, P()) € S, (8, P(8)) € S, and
A contains at least 10W elements of S. In other words, a quadratic major arcs is
a part of parabola that contains at least 10W lattice points which are close to the
graph of f. Let Q be a union of quadratic major arcs whose projections on the
z-axis do not intersect. The aim of this section is to obtain an upper bound for
QN S|. We assume that f € Fo((F3 and 62 <1 min |f"(z)|.

w€[M,2M]
First, we use the following Lemma which was proved in [9].

Lemma 7. Let P(x) be a quadratic trinomial and f(x) € Fo()Fs. Then the set
{z :|f(z) — P(z)| < &} is a union of at most three disjoint open intervals and the

length of each of these intervals does not exceed % (%)1/3.
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Let A = {(z, P(z))|z € |a, 8]} be a quadratic major arc in Q. Let Ji, Ja, and J3
be disjoint open intervals such that {z : |f(z) — P(z)| < 6} = J1UJ2|JJ3 (one
or two of these intervals could be the empty set). Denote {(z, P(z))|z € Ji} by
Ry for k = 1,2,3. Clearly, A(\S C R1 UR2URs. Let s € {1,2,3} be such that
RsN S| = k‘fﬁé‘,g'R’“ﬂS" Since |AN S| > 10W we have |Js[)S| > 3W + 1.
W.l.o.g. assume s = 1.

Note that if a parabola passes through the distinct lattice points (x;, y;), (5, y;),
and (z, yk), then from Lagrange’s interpolation formula follows P(z) = %
where a, b, ¢, and ¢ are integers, gcd(a,b,c) = 1, and q|(z; — ;) (2 — 2;) (zr — ;).
Then the lattice points on the graph of y = P(z) are all points of the form (n, P(n))

with n an integer solution of the congruence az? + bx + ¢ = 0 (mod ¢). Next we

make use of a standard lemma on congruences, stated in [8].

Lemma 8. The solutions of the quadratic congruence az® + bz +c =0 (mod q)
form a union of residue classes to a modulus q' with q'|q, q|/q'*. The number of such

residue classes modulo q' 1is at most 2w(@”?/a),

Note that since ¢’ /q < ¢ < M3, W is an upper bound for the number of residue
classes in the above lemma. Let D be the set of lattice points in R; () S which
are in the residue class modulo ¢’ containing the most elements of R;(].S. Then
Ri(\S| < WD, and |D| > |[Ri (\S|/W > 3.

Suppose Q@ = A JA2 U+ U A with P(A;)UP(Aj) = 0 when ¢ # j. For
each A;, i = 1,2,...,1 we perform the procedure we did on M and obtain a
corresponding set of lattice points D;. The sets we get have the following properties:

(i) [A; N S| <3W|D;| and |D;| >4 for i =1,2,...,1;
a;x? + b + ¢

qi

(ii) All points in D; lie on a parabola P;(z) = where a;, b;, c;,
and ¢; are integers with gecd(a;, b, ¢;) =1, and ¢; > 0;

(iii) We have D; = {(z{”, Pi(2{")),..., (&}, Pi(2)))} where 20", &), &)
form an arithmetic progression to some modulus ¢/ with ¢; | ¢/%;

(iv) |P(2) — f(z)| < & for all @ € [z}, ], ], and o}, — 2} < M ($3)"/°,

Now we make use of Lemma 22 from [8] which provides an upper bound for the

number of lattice points on the D;’s with a fixed leading coefficient a/q.
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Lemma 9. Let g < 1/(26) be a positive integer. Denote by ¢’ the least positive
integer such that q | ¢"*. Then

01/361/3M 04/35M2q1/3 053/2M3q1/2
Z |D‘ < T1/3qu T2/3q112 Tq//3

ale
Qe

The only difference between Lemma 9 and Lemma 22 in [8] is the notation (we have
U D; instead of S’, and T//M? instead of A).

Let A < 1/(26) be a parameter whose value we specify latter on. Property (iii)
of the D;’s implies

Z|Di\§%+l.

q;>A
The next lemma is a slight variation of Lemma 23 in [8].

Lemma 10. We have

3" IDi| < CYRSHATBAM Y 4 CT/BSTVAS® 4 C263/2AM + CSM + 1.
<A

Proof of Lemma 10.

First, if 2 = 0 then the elements of D; lie on a straight line. In [7, pp.205-206]
M.Huxley p(ﬁ)ved that there are < CdM +1 elements of S(f, §) which lie on straight
lines each of which contains at least three elements of S(f,d). This estimate holds
provided f € Fo(\F3, T > M, and 62 < %ze[mln |f"(z)] (and we assumed f
satisfies these conditions in the beginning of the sectlon)

Now, let & ' £ 0. Consider the divided difference f [:vl ,:vé ),:v( )] From Lemma

7

1, the properties of D;, and :c ) e S(f,0) for j =1,2,3, we get f[fﬁ ’%),x(-)] —

”5*,025 where |6;| < 4, n; is an integer, and 3e ,2 = Z—I Since a; # 0, n; # 0.

Therefore |n; + 6;6| > |n;|/2 > 1/2. From Lemma 2 f[:r:l ,:L'2 ,:L'3 ] 1"(&)/2 for

some & € [M,2M]. Thus 5 > W > Z;}z‘ = %, and gq; > g[—; Therefore

oL is within 25 < 2070 of f”({i)/Q. Since the range of f” is an interval of length

M?2

QCZ . Therefore

< M2 , the range of the non-zero % 0 ’s is an interval of length at most

2qCT 3qCT

+1 < {5 admissible values of a. Let ¢ = st?,

for each g < A there are <

where s is squarefree. Then ¢” = st, and ¢" < ¢} < A. Using Lemma 9 we get

Z StQCT <Cl/361/3M 04/35M2(St2)1/3 063/2M3(st2)1/2

|D;| < +
q/<A,a;#0 st<A M2 T35t T2/3(st)? T(st)?

)
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Since Z t < A% Z s 23423 « A3 and Z s 3?2 < A, we get the state-
st<A st<A st<A
ment of the lemma. 0

Therefore we have
M
D O IDi| < CHESATAEAM T 4 CTRT VB AP 4 G263/ AM + CSM +1 + T

for any 0 < A < 1/(26). Optimizing with respect to A (e.g. Lemma 2.4 of Graham
and Kolesnik [4]) we obtain

(7)
19N S| < 3w |Di| < W (02/351/6T1/3 + OT/BFBIBTBN5/E 1 0§34 + 1) .

Note that we omit the term C'§M since it is absorbed by the term C§%/4M.

5. On the number of integer solutions of a system of two equations

Let A and B be positive real numbers. One of the key elements in the proof of

Theorem 2 is an upper bound for the number of integer solutions of the system

Dy+Ds # Do+ Dy
(8) ZlDl + 23D3 = 22D2 + Z4D4

Z%Dl + Z§D3 = Z%DQ + ZZD4

which satisfy the conditions

(9) 0<z1<22<23<24<A, 0<|Dj|<Bforj=1,234
and
(10) ged (21, 22, 23)| ged (D1, Do, D3, Dy).

Our main tool will be Corollary 2 of Heath-Brown [6].

Lemma 11. (Heath-Brown) Let ¢ be a nonsingular integral ternary quadratic
form with matrizc M. Let A = |det(M)|, and assume that A # 0. Write Ay for

the highest common factor of the 2 X 2 minors of M. Then the number of primitive
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integer solutions of q(x) = 0 in the bozx |z;| < R; is

RiRoRy;AZ\ /2
(11) <<6{1+(71 2 ) d3(A)

for any € > 0.
Now we prove

Lemma 12. The number of integer solutions of the system (8) which satisfy (9),
(10), and ged(z1, 22,23) = d is

A1+5B8/3 B4
J11/3 + ﬁ) )

< B¢ (

Proof of Lemma 12.

. Substituting in the last equation of (8) we get

(From (8) z4 = —21D1—22D€2+23D3

(12) (D} — D1D4)2 + (D3 + D2Da)z5 + (D3 — D3Da)z;
—2D1Dsoz120 +2D1D3z123 — 2D3D3z923 = 0

which can be treated as a ternary quadratic form in z1, z2, and z3. The absolute
value of its determinant is A = | — DyD1D3D3D3| # 0 where we have denoted
Dy = (D1 + D3) — (D2 + D4). From (8) and (9) we get 0 < |Dg| < 4B. Also,

AO = ng( 1)1_1)21)31)47 D1D2D4(D1 — D2 — D4)7

D1D3Dy(Dy — Dy — D3), DaD3Dy(D3 — Dy — Dy)).

Therefore AO == ‘D4|A1 where Al == ng(l)]_DzDg,1)01)11)2,D(]l)ll)g,l)ol)zl)g)7
A2 A?

and 0= —1

A |DoDy D5 D3|

Let p be a prime dividing DyD;Dy;D3. Let p®i||D; for j = 0,1,2,3. Then

p®||DgD1 Dy D3 where oo = Z?:o aj. Let f = o — max(ap, a1, a2, a3). Clearly

p?||A;. From the definition of a and 3 we have 3 < 37"‘. Thus, if a =1, 8 = 0,

andifa =2, 8 <1.

Each nonzero integer ¢ can be represented in the form t = +a(t)b?(t)c(t) where

a(t) and b(t) are squarefree numbers, ¢(t) is a cubefull number, and ged(a(t), b(t))
ged(b(t),c(t)) = ged(alt),c(t)) = 1. Hence, if |DgD1DoD3| = t then A; <

4 A2 M3 (t)
b(t)c3/4(t) and KO < o)
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We estimate the number of solutions N(G) of (12) which satisfy (9), G <
|DyD1 Dy D3| < 2G, and ged(21, 22,23) = 1. Lemma 11 holds. Also, for a fixed inte-
ger t € [G,2G) there are 16d4(t) <. t° <. G <. B* quadruples (Dg, D1, D2, D3)
with |DyD1D2D3| =t. Applying Lemma 11 we get

N(G) < B* ) (1 + Alte Ci/G(t)> :

3
adita at/i(t)

where we have used c(t) <t < G < B* and d3(A) <. A® <, B,

Now we prove that for each G > 1,

1/6(¢
(13) Si= Yy Z—() < GY3,

For k a non-negative integer define I}, = [2%,2%*1) and let C3 be the set of cubefull

numbers. We have ¥ < Z Z Z U(G, b, ¢) where the first summation is over
k,l bely cel; (N Cs
61/6
all non-negative integers k and [ with 2k + 1 < log, 16G and U(G,b,c) = Z 73
a
where the summation is over all squarefree integers a such that G < ab’c < 2G.

Clearly, there are at most zTCi integers a with the above property and for these
2G2/3 2G2/3

a > G/(b*c). Thus U(G,b,c) < ATei2 = GaR/agle”

Since there are 2* integers in

G2/3
2k/391/6

I, and < 2!/ cubefull integers in I; (e.g. see [12]) we get ¥ < Z < G2,
kil

Using (13) we obtain N(G) <. B (G + A**G?/3). Summing the above es-
timate with G = 2™ for 0 < m < 4logy B we get that the number of primitive
solutions of (12) which satisfy (9), ged(z1, 22,23) = 1, and 0 < |DyD1D>D3| < B*
is <, B¢ (B4 + AH‘GBS/?’). Thus, we proved the lemma when ged(zy, 22, 23) = 1.

Now, let ged(21, 22, 23) = d > 1. From (10) d|D; for j = 0,...,4. Let D; = D;/d
and z; = z;/d. Then ged(2],25,25) = 1, 0 < 2 < A/d, for j = 1,2,3 and
0 < [D}| < B/d for j = 1,2,3,4. Equation (12) holds with the z; replaced by 2/
and the D; replaced by D;-. Applying the estimate for the case d = 1 we get the

statement of the lemma. 0

6. Proof of Theorem 2

First, by Lemma 4 S(f,0) = S |J S2, where S; is either strictly convex or strictly
concave set, depending on the sign of f”, and |S3] < CéM + 1. Next, let E <
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1/(164) be a positive parameter whose value we specify later on. We apply Lemma
5 with E to S7 and obtain a subset S3 that contains the elements of S; which are
“close” to both of their neighbors. (The point (x;,y;) € S3 if (z;,¥;) € S1 and
there exist (z;,y;), (zr,yx) € S1 with z; < z; <zpand z; —z; < E, zp —z; < E.)
We discard all elements of S3 from S;, and then discard every other element of
the remaining set. We denote what is left by Ss. Clearly |S1]| < 2|S4| + |S3].
Furthermore, S, has the property that if (z;,v;) and (x;,y;) are distinct elements
of Sy then |z; —z;| > E.

Next, we split the set Sy into disjoint subsets, each containing 40W consecutive
elements of S4 (the last subset may contain less elements). According to Lemma 6
from each subset we can either select 10W points which are on one and the same
parabola (a quadratic major arc), or we can select a quintuple of points such that
no four of them lie on the same parabola. Therefore there exists disjoint sets Ss

and Sg such that:
(i) Ss = 55 U Se;

(ii) S5 = U{ 331 ’y (J),yéj)),(:vgj),yé”),( (4 ),yij)),( (J) (J))}
with x(l) < xgl) <ol <P <<l <2 <)

We call the set {(z{", 31"), (25", 557), (25,5, (@i, 1), (=5, 45")} the j-
th quintuple, and each quintuple has the property that no four of its elements lie
on the same parabola;

(iii) Se is a union of quadratic major arcs whose projections on the z-axis do not
intersect;

(iv) |S4| < 8W|S5| + 4|Ss| + 40W.

Therefore

(14) |S(f,6)] < COM + |S3| + W + |S5| + |Se|.

Note that from (7) we have

(15)  |Se| < W (02/351/6T1/3 + OT/BFB/BT/BN5/8 4 0§34 1) .

Using Lemma 5 one can get an estimate for |S5|. What is left is to get an
estimate for |S5|. Consider the j-th quintuple of consecutive integer points in Sj,

{(z (]),yz(J)) i=1,...,5}. Let A be a positive fixed parameter whose value we

Z
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specify later on. There are < % + 1 quintuples with méj) — a::(lj) > A. Now, let us
estimate the number of quintuples with xéj ) _ ng ) < A. We will concentrate on
just one quintuple and to simplify the notation denote xl(-j ) by x; and ylgj ) by y; for
1=1,...,5. Define a; = z;y2 —x;+1 and b; = y; 42 — y;4+1 for  =0,1,2,3. We have
ap+a;+as+az < A. Alsoa; > E fori=0,1,2,3.

Consider the following matrix

1 1 1
1 X2 Is
R=|a? a3 - a2
S z3

| Y1 Y2 Ys |

Denote Dy_1 = det(Ry4,s) for s = 1,2,3,4,5 (here Ry, is the (4,s) minor of the
matrix R). Thus, we defined a mapping H from the set of quintuples in S5 to the
set of thirteentuples (ay,...,as, by, ...,bs,Do,...,Ds). Note, that the mapping is

one-to-one. Indeed, if the i-th and the j-th quintuples map to the same thirteentu-
y(i) _ y(i) bo y(j) _ y(j)

ple (ag,-..,bg,...,Dy4), then ﬁ . %71
2 — 20l ag xQ]) _ xgj)

strong convexity (concavity) of S5. (We have S5 C Sy C S; and S; is strictly

which contradicts the

convex (concave).) Thus, |Ss5| = |H(S5)|- So, instead of estimating the size of Ss
we estimate the number of thirteentuples in the image of Ss.

Next, note that the following identities hold.

Dy - D1 + Do -Ds + Dy = 0
1Dy — x2D1 + x3Dy —x4D3 + x5D, = 0
22Dy — z3D, + 2iDy —23D3; + 2Dy = 0
3Dy — 3Dy + 3Dy —z3D3 + 2iD; = —det(R)

Also, if (z1, z2, z3, T4, x5) satisfies the above system of equations so does (z; +
¢, Lo+ ¢, T3+ ¢, xq+ ¢, 5 + ¢) where c is any real number. Take ¢ = —z; and denote
Zj =Tj41— 1, j=1,2,3,4. (We have z; = ag, 22 = ap + a1, 23 = ag + a1 + as,
Za =apt+ar+art+a3s <A E< 2 <2 <23 <2z,and E <z —z_; for
j=2,3,4.)

Then
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— ZlDl + ZzDz —23D3 + Z4D4 = 0
- szl + Z%DQ —Z%Dg + ZED4 = 0
— 2Dy + Dy —23D3 + 23Dy = —det(R)

Lemma 3 implies D; = 0 if and only if the four points of the quintuple minus
(xj,y;) are on the same parabola. Since no four points of the quintuple are on the
same parabola we have D; # 0 for j =0,...,4. We can also bound from above the

absolute values of the D;’s. For instance, from Lemma 3 follows

f[l‘l,il,‘g,1'3,334]‘/(1'1,1'2,333, JC4) = D4 + 06143

where |0| < 4. Therefore

T
|Dy| < A6% +45A% .= B.

Working similarly, one can prove 0 < |D;| < B for each j = 0,...,4. Let
d = ged(z1, 29, 23). From the definition of z1, 29, 23, ged(21, 22, 23) = ged(ay, a1, az).
Next, we prove that d|D; for j =0,...,4.
1 1 1 1

- Ty T2 T3 T4 . .
By definition Dy = . Subtracting the third column from the

of @i af i

Y Y2 Yz Ya
fourth, the second from the third, the first from the second, and expanding with

Qo ai as
respect to the first row we get Dy = | ag(xy +22) ai(z2 +x3) aa(zs + 74)
bo b1 bo

Subtracting the first row multiplied by x5+ z3 from the second row, and expanding

with respect to the second row we get
(16) D4 = ao(ao + al)(albz - agbl) - az(al + az)(aobl — albo).

Clearly, d3|D,.

Applying the same column operations and similar row operations to the deter-
minants defining Dy, Da, and D3 we get Dy = (ag+ay)(ap+ a1 +az2)((ag + a1)bs —
(bo + b1)as) — as(az + a3)((ao + a1)bz — az(bo + b1)),

D = ag(ao + a1 +az)((a1 + az)bs — as(by + b)) — as(ar + az + as)((a1 +az2)bo —
ao(by + b2)),
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and D3 = ao(ao +a1)(a1(b2 +b3) - (CLQ —+—a3)b1) - ((Lg +(13)((11 “+as +a3)(a0b1 7(111)0).
(From the above formulas follows that d|D;, d|D2, and d|D3. Since 0 # Dy =
Dl - D2 + D3 - D4, then d|D0 as Well, and D1 + D3 7& D2 + D4.

Consider the projection
(a(],...,ag,b(),...,b3,D0,...,D4) — (ao,...,ag,Do...,D4)

defined on #(Ss). Note that all ninetuples we get from the projection satisfy the
conditions (8), (9), (10). Assume that

(17) gcd(ao,al,ag) =d.

(From Lemma 12, the number of ninetuples in the projection of #(Ss) which satisfy

a0+a1+a2+a3§AiS

A1+5B8/3 B4
<. B (W + ﬁ) .

Next, we estimate the number of distinct thirteentuples in H(Ss) which have the
same a‘s and D‘s (project to the same ninetuple).

Claim: If gcd(ag, a1, a2) = d and
L1

(18) Agmin(sé, 5

1
MPT(CT) /T, 2 MY 2(5CT) /%, M?/(CT))
then there are < d elements of H(Ss) of the form
(a07a17a27a37' - 7D07D17D27D37D4)'

Suppose the i-th quintuple maps to (ao, a1, ag, as, bo, b1, b2, bs, Do, D1, D2, D3, Dy)
and the j-th quintuple (j > i), to (ao, a1, az,as, by, by, by, b5, Do, D1, D2, D3, Dy).
From (16) follows that Dy = as(a1 + a2)dy — ag(ag + a1)de = az(a; + az)d] —
ap(ag + a1)dy, where di = a1by — apby, do = asby — a1by, d} = a1by — apb), and
dy = agb] — abh.

The first step in proving the claim will be to show d; = d} and dy = d,. We have
(di —dy)az(a1 + a2) = (d2 — dy)ao(ao + a1). Let a = ged(az(ar + a2), ao(ao + a1)).

Then M\dl — d}. Using Lemma 1 we obtain

(8 (&) () dy 26
19 Ti , Ty ,T < .
( ) |f[ 1 2 3 ] 0 1( 0 1) | 0a1
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So, |d1| < 26(ag + a1) + agai(ag +a1)$% and using the same argument one obtains

the same upper bound for |d}|. If we assume d; # d} we get

cT 4ad cT
M < 44(ap + a1) + 2apa1(ag —l—al)m, and 1 < 2a0 + 2aa1 —.

a ao M?2

2

Since A§ < %, and a < ag(ap+a1) < apA, we obtain a > OTA"

From (16) follows
that a|D4. Using that

cT M?
B=A5— +45A% > |Dy| >0a >
VER 2 1Dal z a2 5o

we obtain a contradiction with (18). Therefore d; = d} and dp = d5.
Similarly, we prove that D4 determines uniquely ds = a2(bg + b1) — ba(ag + a1)
and dy = by(ay + az) — ag(by + b2). Note that D, also equals

(ao + al)ag(bo(al + ag) - ao(b1 + bg)) - (10((11 + ag)(ag(bo + bl) - bg(ao + (11)).

Therefore D4 determines uniquely dy, d2, and agbs —azby. Thus % — % = z—% — 2—9_
for 0 <i<j <2/ 800b;=0b;+a;t/dfori=0,1,2 and some intgger t.J Alsol, sinc]e
Dy, by, by, b2, ap,a1,as, and a3 determine uniquely b3 (see the formula for Dy), the
claim will be proved if we can show that there are < d possible choices for ¢.
Lemma 2 implies that there exists &; € (:cgi),x:(,f)) such that f[mgi),m;i),mgi)] =

1" (&)/2. Using (19) we get

2d, 46
n
i) — < .
7€) apai(ap + ay) | apay
i i 2d 4
Similarly, there exists &; € (27, 2{) such that |f”(&;) — ! | < d

agaq (a() + al) agaq )

9 SR
Thus, |f7(6) ~ £(€))] = (6 = )" (n)] < o where n € (af”,a), 50

8C' M35
Ta0a1 '

8C M35

Tapa; ’ and |xgl) - w:(’,J)‘ <24+

& — &1 <
Therefore if a quintuple maps to thirteentuple of the type
(ao,a1,az2,as,...,D0, D1, Dy, D3, Dy)

then all z-coordinates of the points in the quintuple are in an interval J of length

8C' M35

<24 .
- + Ta0a1
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Dy p 20;6 b,
Since LI = 20— pr(y) + =2 with 16,] <1, 75 € J, and 2 = f(5;) +
Ty — 1y ao ao aog
2600
= with 0| < 1, n; € J, we get
ao
By=bol [t _ L 20005 CT 43
a0 7 < () = ()| + ” _\IMzﬂLa0
4d6 2CTAd 2Mds
Therefore there are <1+ — + ¢ + 8¢ choices for t. Note that d <

ap M?2 aopa
ag and from (18) CTA < M2. Pick E = min (1/(175),C(M(5)1/2). Since 1 < C <

M and § < (CM)~'/2, we have E < C(M$§)'/2. Also, since a9 > E and a; > E
we get that there are < d choices for ¢ which proves the claim.

Now, using the Claim, Lemma 12, and summing over d we get
|S5| < B€ (A“LEBS‘/3 + B“) + M/A+1,

and substituting for B,
(20)
1S5| < M¢ <08/3A17T8/3M—8 1OA9SB/3 1 AATAN 12 4 A1264) +M/A+ L.

Note that the above estimate holds for any positive A which satisfies (18). Opti-

mizing with respect to A we get
S5 < CMe <M1/2T4/27+M9/1054/15 +M12/25T4/25+M12/1364/13>
+M6 4+ (CTM)? T + MY?(CST)Y* + CT/M.

Recall (14). Since E < 1/(166) Lemma 5 holds and we obtain |S3| < C®TM/25°/2,
Recall (15). Using 1 < M < T < M? we get

|Ss| < C (Tl/?’M—l/12 + T8 pfT/16 MS/S) < OMM274/2T,

Substituting the upper bounds for |Ss|, |Ss|, and |Se| in (14) and noting that CdM
and W get absorbed by larger terms we obtain the theorem. |

7. Proof of Theorem 1.

W.l.o.g we can assume 19/154 < 6 < .129 since the theorem has been already
established in [10] when 1/8 < § < 1/2. We also assume that z is sufficiently large
(z > 107 will do).
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Next, we reduce the problem to estimating the number of lattice points close to

certain curves by using Lemma 5 from [10].

Lemma 13. Let z > 1, ¢ > 0, /z < 3h < oz, and h = «/*1%. Then
¢(3)
2¢(3)

Q(z+h) —Q(z) = 2% + O (ex®) + O(R1 + Ry)

9<m§

where Ry is the number of pairs of positive integers (m,k) with ex
/5, m?k® € (z,x + h], and Ry is the number of pairs of positive integers (m, k)

with ex? < k < x5, m2k® € (z,z + h].

We use Lemma 13 with h = 2'/21¢ and € = 27°'. First, we estimate R;. Let
S1(A, B) be the number of integers m in the interval (A4, B] for which there exists
an integer k with m?k® € (x,x + h]. Then Ry = Sy (2701, 21/5).

It is easy to check that Sy(M,2M) < [{m € (M,2M|N\Z : ||f(m)|]| < 6}
where f(m) = 2'/*m=%/% and § = 2~1/6M~2%/3. Indeed, if m € S;(M,2M) then
f(m) = (z/m*)Y? < k < ((z + h)/m?)'/3 for some integer k, and ||f(m)|| <
((z + h)Y/3 — 21/3)m-2/3,

To estimate the size of Sy(M,2M) we use Theorem 2 from [10].

Lemma 14. Let f € Fo(\F3, L < M < T, and 0 < § < 1C~Y2TY2M~1. Then
|Sl(f7 6)| < 1 + T3/10M3/10(10g M)1/2 +T4/11M2/11(10g M)5/11

_+_61/8T3/8M1/4(10gM)5/8 +61/7T1/7M4/7(10gM)5/7 +52/5T1/5M3/5 10gM+6M

From Lemma 14 with f(m) = (cc/mQ)l/S, § = V/OM23 and T = /3 M ~2/3
we get

S1(M,2M) < x*2logz  for all M € [29701 /5],

Summing over O(log ) intervals of the form (M,2M] we obtain
Ry < z'?log? z.

Next , we estimate Ry. Let Sz(A, B) be the number of integers k in the interval
(A, B] for which there exists an integer m with m?k3® € (z,z + h]. Then Ry =

Sz(xe’m,:v%).
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Again, it is easy to check that So(M,2M) < |{k € (M,2M|NZ : || f1(k)|| < 01}
where f (k) = 2'/2k=3/2 and §; = 29 M3/,
We estimate So(M,2M) for M € (x99 2:138] via exponential sums. We use a

handy lemma of Steckin [19] (one can find a proof of the lemma in [21, pp.290-292]).

Lemma 15. Let g : R — R be a 1-periodic function of bounded variation on the
interval [0,1]. Let f be any real-valued function defined on R, a < b be real numbers
with b —a > 1, and N be a positive real number. Then

1Y a0 - 6-a) [ g <Y B4 2t
=1

a<k<b 0

where S; = Y, 1< e2™if(k) " the summation is over all integers k € (a,b], and the
constant in < depends only on the variation of g. Furthermore, if the measure of

the support of g in [0,1] is < 1/N then

1 1 Y b—a
Y a0~ G- a) [ gt < SIS+
=1

a<k<b

The proof of the above lemma is via L, one-sided approximation by trigono-

metric polynomials. We apply Lemma 15 with f(k) = z'/2k=3/2,

1 if |z)| < 6y

g(z) =
0 if |lz]] > &

a =M, and b = 2M. Then So(M,2M) < YN, Bl 4 M 74 estimate S; we
use the exponent pair (55,52) = AABAAB(0,1) (e.g. see [4]) and obtain || <
(11720 -5/2) /20 \33/40 Get N = M2/Tp1/42, We get Sp(M,2M) < a/42M3/7.

0—.01’ 33'138]

Splitting the interval (z to subintervals of the form (M, 2M] and apply-

ing the last estimate to each of these subintervals we obtain
Sa (2?01, £138) « 1123,

When 29138 < M < 20158 we use Corollary 1 of [22].

Lemma 16. Let f € Fo(\F3 and 0 < 6 < 2C~YV2TV2M =1 Then

|S(f,(5)| <o M1/2T1/6+6M+51/4T1/4M1/2.
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Applying Lemma 16 with fi, 6y, and T = z'/2M —3/2 we get
SQ(M, 2M) < x1/12M1/4 + xaM—l/Q + $1/8+9/4M_1/4.
This implies
Sp (20138 70158y 5123,
The next range is M € (2158, 241/231) (41/231 = .177...). This is the critical
range. All conditions of Theorem 2 hold with f;, &y, and T = z'/2M—3/2, We

get So(M,2M) <, Me(z2/27MB/18 4 p2/35\[6/25 | 46/15 \[1/2 4 546/13 \16/13 4
$1/7M71/7+w1/2M75/2+x(20+1)/8M71/4)+w(1+50)/2M719/4_ This implies

1o
Sg(w'lsg,x41/231) <, piorte,

Finally, we estimate So(M,2M) when M € (z'/231 21/5] by using Lemma 14
with f; and &;. We obtain So(M,2M) < log M (z3/20M —3/20 4 g2/1tpr—4/11 4
@(320)/16 \[=1/2 | g (1420)/14 ) 11/T 4 5:(1446)/10 1 =3/10 | 46 \1=1/2) which in turn
implies

S (& 11/231 51/5) « 19150 og 4.
So, Ry = So(af= 01, 138) 4 Sy (2138, 158) 4 Gy (1158, p41/231) 1 G, (£41/231 51/5)

< pisate, Combining Lemma 13 and the estimates for R; and Ry we get

+ C(*g) -

() T .’L'/ O(x - / €

( 1/2 9) () 2((23) 0 O(e 01) 05(19154 )
19

Setting € = (6 — {2;) we complete the proof of the theorem. |
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