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Abstract

We develop an Eulerian-Lagrangian substructuring domain decomposition method for the solution of
unsteady-state advection-diffusion transport equations. This method reduces to an Eulerian-Lagrangian
scheme within each subdomain and to a type of Dirichlet-Neumann algorithm at subdomain interfaces.
The method generates accurate and stable solutions that are free of artifacts even if large time steps are
used in the simulation. Numerical experiments are presented to show the strong potential of the method.

1 Introduction

Advection-diffusion partial differential equations (PDEs) arise in petroleum reservoir simula-
tion, subsurface contaminant transport and remediation, and many other applications. These
problems typically possess solutions with moving steep fronts within some relatively small re-
gions, where important chemistry and physics take place. Furthermore, an identifying feature
of these applications is the presence of extremely large scale fluid flows coupled with transient
transport of physical quantities such as pollutants, chemical species, radionuclides, and tem-
perature. Consequently, an extremely refined global mesh is not feasible due to the excessive
computational and storage cost. Domain decomposition techniques prove to be a feasible
and powerful approach for the solution of these problems, because they allow a significant
reduction of the size of the problems and the use of different physical or numerical models
on different subdomains to model fluid flows more accurately. Furthermore, they are eas-
ily parallelizable. Therefore, a very important issue in the numerical simulation of subsurface
fluid flow problems is the development of domain decomposition techniques for unsteady-state
advection-diffusion transport PDEs.

Many domain decomposition methods that work well for elliptic and parabolic PDEs [20]
could perform less promising for unsteady-state advection-diffusion transport PDEs. For ex-
ample, the well-known Dirichlet-Neumann algorithm [5, 20], which was originally proposed
by Bjorstad and Widlund in the development of domain decomposition methods for elliptic
equations, assigns a Dirichlet condition to one subdomain and a Neumann boundary condi-
tion to its adjacent subdomain in the domain decomposition method and has been successfully
applied to solve elliptic and parabolic problems. However, the Dirichlet-Neumann algorithm
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tends to generate nonphysical layers near subdomain interfaces for advection-diffusion trans-
port PDEs, which are well known to arise for certain types of boundary conditions. The
fundamental reason is that these methods do not necessarily respect the hyperbolic nature
of advection-diffusion transport PDEs. In particular, even though the Dirichlet-Neumann
matching conditions could be imposed for advection-diffusion PDEs with a nondegenerate
diffusion, they might not be the hyperbolic limit of the advection-diffusion problems and so
could become numerically unstable as the diffusion becomes smaller and smaller. The errors
generated at subdomain interfaces are then propagated into the interior domain and could
destroy the accuracy and the stability of the solutions on the entire domain.

Extensive research has been carried out on developing domain decomposition methods for
advection-diffusion transport equations. One of the earliest developments to these problems
was the work of Rannacher and Zhou [18]. Cai [6, 7] developed multilevel additive and multi-
plicative Schwartz preconditioners for parabolic and unsteady-state advection-diffusion PDEs.
The Adaptive Dirichlet-Neumann (ADN) and Adaptive Robin-Neumann (ARN) nonoverlap-
ping domain decomposition methods introduced in [10, 13, 22] choose the interface matching
conditions to be adapted to the local flow direction. These methods prevent the occurance
of artificial layers at subdomain interfaces as the advection becomes dominant. However, the
underlying numerical methods used in these domain decomposition algorithms are standard
finite difference, finite element, or finite volume methods possibly with some types of upwind-
ing, and carry out temporal discretization in time. These methods tend to generate solutions
with serious nonphysical oscillations or excessive numerical dispersion and grid orientation
effect, or a combination of both, unless the spatial grids and time steps are extremely refined.
This leads to significantly increased computational cost and computer storage [12, 25, 26].
Furthermore, these methods generate discrete algebraic systems with strongly nonsymmetric
coefficient matrices at each time step, and thus require extra effort in solving the discrete
systems.

Eulerian-Lagrangian methods [3, 11, 16, 17] carry out the temporal discretization of the
advection-diffusion transport PDEs along the streamlines by combining the advective compo-
nent with the accumulation term through a characteristic tracking algorithm and treat the
diffusive term separately. These methods symmetrize the governing PDEs and generate accu-
rate numerical solutions even if large time steps are used. Thus, they solve advection-diffusion
transport PDEs effectively and efficiently. Unfortunately, many characteristic methods fail to
conserve mass and have difficulty in treating boundary fluxes when characteristics intersect
the boundary of the domain. This is one of the reasons why the few characteristic domain
decomposition methods developed for advection-diffusion transport PDEs so far are over-
lapping domain decomposition methods [18, 21]. The Eulerian-Lagrangian localized adjoint
method (ELLAM) provides a general characteristic solution procedure for the solution of
advection-diffusion PDEs with general boundary conditions in a mass-conservative manner.
Thus, ELLAM overcomes the principle shortcomings of previous characteristic methods while
maintaining their numerical advantages. Our previous work [25, 26] also show that ELLAM
schemes generate accurate solutions even if very large time steps and very coarse spatial grids
are used, and often outperform many well received and widely used numerical methods.

In this paper we base on the ELLAM formulation to develop an Eulerian-Lagrangian
nonoverlapping substructuring domain decomposition method for unsteady-state advection-
diffusion transport equations. The developed method reduces to an ELLAM scheme within
each subdomain and turns out to be a type of Dirichlet-Neumann domain decomposition al-



gorithm at subdomain boundaries. This method symmetrizes the governing transport PDEs
and generates accurate and stable solutions that are free of artifacts even if large time steps
and spatial grids are used in the simulation. This is in contrast to the facts that many
Dirichlet-Neumann domain decomposition methods are known to generate poor solutions for
advection-diffusion PDEs and that a Neumann boundary condition is not necessarily a natural
interface matching condition for advection-diffusion PDEs.

The rest of the paper is organized as follows. In Section IT we outline an ELLAM scheme
for linear advection-diffusion transport equations. In Section III we develop an Eulerian-
Lagrangian substructuring domain decomposition method. In Section IV we present numerical
experiments to show the strong potential of the method. In Section V we draw conclusions
and have some discussions.

2 An Underlying Numerical Method

In this paper we intend to carry out a principal study on the development of an effective
and efficient domain decomposition method for unsteady-state advection-diffusion transport
PDEs. For simplicity of exposition, we primarily focus on one-dimensional advection-diffusion
problems to illustrate the ideas of the development. We then briefly outline the extension
to multidimensional problems and discuss additional technical difficulties. We follow the
development in [8, 27] to present an ELLAM scheme for the following initial-boundary value
problem for the one-dimensional linear advection-diffusion transport PDE

)
ot  0Ox 0z

u(z,0) =uy(z), =€ ]la,b,
u(a,t) =g(t), te(0,T],

— (D%) (b,t) =h(t), te(0,T].

<V(x,t)u—D(x,t)@> = f(z,t), z € (a,b), t €][0,T],

(2.1)

Here u, is a prescribed initial condition. V(x,t) and D(x,t) represent the velocity field and
the diffusion coefficient, respectively; both of which are assumed to be positive throughout
the domain. The ELLAM method can accommodate any combination of Dirichlet, Neumann,
or Robin conditions at the two boundary points = a and x = b naturally in its formulation
[8, 27]. In this section, we only present an ELLAM formulation for the advection-diffusion
PDE with an inflow Dirichlet and an outflow Neumann boundary conditions, since this is
what we need in the development of our domain decomposition algorithm in the next section.

2.1 Partition and Characteristic Curves

Let I and N be two positive integers, we define a partition of the domain [a,b] x [0,T] as

follows:
B b—a

L (2.2)

r; = a+iAx, 1=0,1,...,1, Ax

=

" = nAt, n=20,1,..., N, At =



A time-stepping procedure is used in the scheme, thus we only need to focus on the current
time interval (¢*,¢"*']. While this method can accommodate nonuniform meshes and also
different spatial meshes on different time intervals, for simplicity of presentation we use a
uniform spatial grid given in (2.2).

The space-time weak formulation for equation (2.1), obtained by multiplying a test function
w that vanishes outside €2, = [a, b] X (", t"*!] (described in more detail below) and integrating
by parts, is given by

b
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where, due to the discontinuity of w(z, ) at time ¢", we use the notation w(z, t} ) = limy_» w(z, ).
In accordance with the principle of the localized adjoint method [8], the test functions w
should be selected from the solution space of the homogeneous adjoint equation
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Because the solution space of equation (2.4) is infinite-dimensional and only a finite number
of test functions should be used in a numerical scheme, the test functions are chosen to be
the (approximate) solutions of the following splitted system [8, 27|
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The first equation in (2.5) can be written as the ordinary differential equation

d _
—@w( 0;7,t),0) =0,
( (9;'@7{)79”0:5 :w(f,f),
along the characteristic X (6; z,f) which is defined for any given point (z,#) with 7 € [t", "]
as the solution of

(2.6)

dX
— =V(X,0
7 (X,90)
X(0;7,t)|p=; =1Z.
From equation (2.6) we observe that inside the domain €2, the test functions w are constant
along the characteristics, i.e.

(2.7)

w(X(6;2,1),0) = w(z,1). (2.8)
In addition, we introduce the following notations
T o= X", th), b = X(t;0%(t),t"),
r o= X"t ), b = X(t(z);z,t"), (2.9)

r = X" a,t(2)).



We define & to be the spatial point which the characteristic curve emanating from (z,t")
forward tracks to at time ¢"*!. Similarly we let z* at time " denote the point which for-
ward tracks to (z,#"™!). For the characteristic that intersects the outflow boundary ¥ .=
{(b,s) : s € (t",t")}, we define b*(t) as the spatial point at time " which forward tracks
to (b,t) (with b* := b*(¢"*1)). We also define #(z) as the time instance that the characteristic
curve emanating from (z,t") intersects the outflow boundary. Similarly for the characteristic
originating on the inflow boundary T'" := {(a,s) : s € (t*,t"*1)}, we define t*(z) to be the
time instance such that (a,t*(z)) forward tracks to = at time t"*'. We extend the definition
of both #(z) and t*(z) to be t"*! and ", respectively, for characteristics not intersecting the
corresponding boundary.

Furthermore, we observe that if the spatial nodes x; near the outflow boundary x = b are
tracked forward from time " to time "', the number of spatial degrees of freedom crossing

the outflow boundary ¥ is essentially the Courant number at the outflow boundary. To
preserve the information, we should discretize F%O) in time with about the same number of

degrees of freedom. More precisely, we partition the outflow boundary as follows
1At
IC’
where IC' = [Cr] is the ceiling of the Courant number Cr at the outflow boundary. This

partition introduces some unknowns on the outflow boundary. However, it is used to insure
that the scheme developed is suitable even for large values of the Courant number.

by =t — i=0,1,...,IC, (2.10)

2.2 Numerical Scheme

In developing the ELLAM scheme, we notice that the second equation in the splitting (2.5)
is a second-order variable-coefficient elliptic equation, which defines the spatial variation of
the test functions. However, it is impossible to find the analytical solutions in closed form
for this equation, in general. From equation (2.8), we only need to specify the test functions

on [a,b] at time t"*! and at the space-time outflow boundary FSLO). Furthermore, standard
finite element shape functions provide accurate approximations to elliptic PDEs. Hence, we
naturally choose the trial and test functions to be piecewise-linear functions at time t"*! and
at the outflow boundary T as follows: At time t"*1 we define the test function w;(z, ")
(t=1,...,I —1) to be the hat functions

%7 HAS [xiflaxi]a
x
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0, otherwise.
At the outflow boundary, the test functions are given by,
thi1—t
- teftitl,
f
w]+i(b, t) = t— tn,i-l—l telt t (212)
Atf ) [Z; Z—I—l]a
0, otherwise,



fori=1,...,IC —1, where At; = %. The test function wy(x, t" ') is defined only on [z, 71]
by (2.11) and similarly wr, ;¢ is defined only on [¢",t, ;¢ 1], while wy is so that wy(z, ")
is defined by (2.11) for the interval [x;_y, x;], and wy(b,t) is defined by (2.12) on the interval
[tnrt1, t"*1]. For the interior of the domain (2,,, we extend these test functions to be constant
along the characteristics as described in equation (2.8).

The ELLAM scheme can be formulated by evaluating the space-time integrals in equation

(2.3) along the characteristics. The second (source) term can be evaluated using a backward
Euler quadrature as follows
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where E¢(w) is the truncation error due to the application of the backward Euler quadrature.
Next we evaluate the second (diffusion) integral on the left hand side of equation (2.3).
This term can be approximated in a similar manner to the source term as follows
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where we have used a backward Euler quadrature in the second equality, with a truncation
error denoted by Ep(w). However, in order to avoid difficulties that would result from hav-
ing the diffusive flux integral on the inflow boundary (in the third term of equation (2.3)),
we make a slight adjustment to the variational formulation (2.3). Instead of applying our
approximation procedure to the second term on the inflow boundary term, we approximate

the term »
o ou
/t" o (D%> (z, hw(x,t) dzdt

by a backward-Euler time integration along the characteristics and then integrate by parts.
This results in the term

“dt(x) _Ou
o D= n+1 n+1 21
| D e, ) da (2.15)

instead of the diffusive boundary flux integral in the third term of the left side of equation
(2.3).

In deriving the ELLAM scheme, we use equations (2.13)—(2.15) for the appropriate terms
in the weak form (2.3) and drop the error terms Ef(w) and Ep(w). We then incorporate the
prescribed inflow and outflow boundary conditions in these terms. Secondly, we approximate
the solution u of equation (2.1) by a piecewise-linear trial function U on [a,b] at time ¢"*!
with respect to the spatial partition in (2.2), and at the outflow boundary F%O). Finally we
drop the fourth (adjoint) term on the left hand side of equation (2.3). We obtain the ELLAM

scheme
b gntl
/u(x,t”“)w(x,t”“) dx+/ Vb, 1) u(b, £) wib, ) dt
a tn
b oU ow
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Remark 1 With the prescribed inflow and outflow boundary conditions as well as the solution
u(z, t") which is known from the computations at the previous time level (or u,(x) forn =0),

the derived ELLAM scheme solves for u(x,t"*") on [a,b] and u(b,t) on T\?. This scheme
symmetrizes the governing equation (2.1), generates accurate numerical solutions even if large
time steps are used, naturally incorporates the boundary conditions, and conserves mass. The
numerical performance of scheme (2.16) and its comparison with many other schemes can
be found in [1, 23, 27]. The theoretically proven optimal-order error estimates for ELLAM
schemes (2.16) were derived in [23, 27].

Remark 2 For simplicity of illustrating the ideas of the ELLAM schemes and the proposed do-
main decomposition methods, we outlined an ELLAM scheme for one-dimensional advection-
diffusion PDE in this section. For multidimensional advection-diffusion PDEs, in principle
the ELLAM schemes can be derived in parallel although additional technical difficulties could
arise in the development. The reason is that the ELLAM method, like many other character-
1stic methods, combines the time derivative term and the advection term in multidimensional
advection-diffusion PDFEs into a one-dimensional ordinary differential equation along the char-
acteristics that are spatial curves in the multidimensional spaces. The approrimation of the
characteristics curves in multiple spatial dimensions has virtually the same accuracy and com-
plezities as that for one-dimensional problems. The fact that the ELLAM approaches give a
good approximation for the critical initial-boundary value problems of he domains in addition
to giving a more symmetric problem can be well addressed in the context of one-dimensional
problems. In fact, the principal issues could be drown in the technically more difficult mul-
tidimensional problems. The strength of the ELLAM method s its consistent handling of
boundary conditions, which in a domain decomposition setting means that the global transport
of information is accurately taken care of.

Remark 3 We refer readers to [14, 19, 25] for the detailed algorithm development for mul-
tidimensional ELLAM schemes and the discussions of the related technical difficulties. The
performance of multidimensional ELLAM schemes and their comparison with other methods
were investigated in [14, 25, 26]. The associated optimal-order error estimate was obtained in
[24]. The application of ELLAM schemes for multidimensional coupled systems can be found

in [4, 28].

3 An Eulerian-Lagrangian Nonoverlapping Substructuring Domain
Decomposition Method

In this section we develop an Eulerian-Lagrangian nonoverlapping substructuring domain
decomposition method for unsteady-state advection-diffusion transport PDEs. For simplicity
of exposition, we present the development of the method for the one-dimensional problem (2.1)
based on the ELLAM scheme (2.16) presented in the previous section. Hence, the presentation
in this section should be looked upon as a principal investigation of the method. The extension
of the method to multidimensional unsteady-state advection-diffusion transport PDEs could
pose additional technical difficulties and will be discussed briefly at the end of this section.
As we mentioned in Section I, many domain decomposition methods work very well for
elliptic and parabolic equations, but fail to work for advection-diffusion PDEs due to the
advection-dominance. In order for the underlying finite difference, finite element, or finite



volume methods used in these domain decomposition algorithms to generate physically rea-
sonable solutions without nonphysical oscillations, the size of the mesh Peclet number Pe
must satisfy

V Az
D

Namely, the spatial grids have to be refined excessively for advection-dominated PDEs. Conse-
quently, the size of time steps has to be chosen very small too. Thus, the underlying numerical
methods generate extremely large size discrete algebraic systems to solve, leading to extremely
expensive computational cost and excessive computer storage. One approach to stabilize these
numerical schemes is to use some types of upstream weighting techniques [2, 9]. This corre-
sponds to increasing the size of the diffusion D in (3.1) by means of numerical diffusion. This
explains why upwind methods stabilize numerical schemes for advection-diffusion equations.
While the domain decomposition methods using the upwind techniques could stabilize the
numerical procedures, the excessive numerical diffusion introduced in upwind schemes tend
to significantly smear the steep fronts of the solutions. To alleviate the smearing, one again
has to use very fine spatial grids and time steps.

Another approach to stabilize the numerical schemes for advection-diffusion equations is
to use characteristic methods [3, 11, 16, 17], which directly apply to these equations in a
nonconservative form

ou Ju 0

- + V(x,t)a—x ~ 5 <D(x,t)

Pe

= 0(1). (3.1)

ou ov
— | + —(x,t)u = j(z,7). 3.2
) + St = fa. 32)
By combining the advective component with the accumulation term in equation (3.2) to
formulate a directional derivative along the characteristic X (6;z,t) given by (2.7), one can
rewrite equation (3.2) as the following parabolic equation

w2 <D(x,t)g_z> W = fat) (3.3)

ox
without an advection term. This is why characteristic methods symmetrize the governing
advection-diffusion equations and stabilize the corresponding numerical schemes. For example,
if one discretizes the first term on the left hand side of equation (3.3) along the characteristics
emanating backward from (z,t"*') by a first-order difference quotient and apply the finite
element method to the resulting equation at time ¢"*!, one obtains the modified method of
characteristics (MMOC) that was originally developed in [11]

n+ly * 4m
/ u(z, t"t) —u(a*,t )w(x,t"+1)dx
Q

At
ov

o 01
:/f(g:,t”“)w(x,t”“)dx.
Q

+ (z, " Y u(x, " Hw(x, ") da (3.4)

As one can see, the MMOC scheme carries out the temporal discretization along the charac-
teristics through a characteristic tracking algorithm and treats the diffusive term separately
on the fixed spatial grids (2.2) on [a,b] at time ¢"*'. Since there is no advection term in
equation (3.3) and the MMOC scheme (3.4), the restriction (3.1) is satisfied automatically.



However, equation (3.3) is defined along the characteristics, which could intersect the bound-
ary of the domain. It is not clear how to define a characteristic scheme (e.g. the MMOC
scheme) near the boundary; many characteristic methods have treated general flux boundary
conditions in an ad hoc manner. This is why in the development of many characteristic meth-
ods in the literature, only the initial-value problem for advection-diffusion PDEs is considered
or a periodic assumption has been imposed on the advection-diffusion PDEs. Consequently,
despite the advantages of characteristic methods, the few characteristic domain decomposi-
tion methods developed for advection-diffusion transport PDEs so far are overlapping domain
decomposition methods [18, 21] that avoid the difficulties in treating boundary conditions.
The ELLAM formalism outlined in Section II starts from a space-time weak formulation
on the current space-time strip [a, b] x [t",#"*!]. In addition to possessing all the numerical
advantages of many previous characteristic methods, the resulting ELLAM scheme (2.16) is

defined on [a,b] at time "' and on the space-time inflow and outflow boundaries I and

T''?. It accommodates all the boundary conditions into its formulation. This enables us to
develop an Eulerian-Lagrangian nonoverlapping substructuring domain decomposition method
for unsteady-state advection-diffusion equations. However, we need to choose the subdomain
interface matching conditions very carefully for the method. At the first glance, equation (3.3)
is formally a parabolic equation, so the standard Dirichlet-Neumann algorithm should work
well. However, equation (3.3) is oriented along the characteristics. Hence, if we want to use
the standard Dirichlet-Neumann algorithm, we would have to specify the interface matching
conditions on the space-time subdomains oriented along the characteristics. This is equivalent
to specifying the interface matching conditions on the moving boundary in the space domain
and is apparently not computationally feasible! In practice, we want to carry out the domain
decomposition algorithm on subdomains with their boundaries being oriented in time. Hence,
even though we utilize a characteristic method to solve the governing transport equation, we
still have to respect their advection-dominance in the space-time domain. Notice that in the
case of elliptic or parabolic equations that are virtually homogeneous in all the directions, the
choice of the Dirichlet or Neumann interface matching condition is symmetric with respect to
an interface boundary. Namely, if a Dirichlet condition is assigned to one subdomain, then
a Neumann condition should be assigned to its adjacent subdomain or vice versa. However,
advection-diffusion transport equations are strongly direction-dependent. Their solutions are
much smoother along the characteristics than they are in any other directions. It is well known
that in the context of advection-diffusion transport equations a Dirichlet boundary condition
is well posed on the inflow boundary while a Neumann boundary condition is well posed on the
outflow boundary, but could be completely numerically unstable vice versa [27]. Therefore,
we have to very carefully choose the proper type of interface matching conditions at the
proper side of the subdomain. This leads to the following Eulerian-Lagrangian nonoverlapping
substructuring domain decomposition method:

Partition of the Domain

Decompose the spatial domain Q = [a, b] into a union of 2M subdomains
2M
=)o, Q¥ =[di,d], i=12...2M (3.5)
i=1

with
a=dy<di <dy<...<dyy=0 (36)

10



forn=0,1,...,N—-1do

Initialize the iteration parameter [ = 0.

if ERROR > TOLERANCE then
[=1+1.

L1. for:=1,3,...,2M —1 do

A. Use the prescribed inflow boundary condition at z = a for Q) and the following

relation

u(l)(dz—tla t) = u(l_l)(di_fla t)a

i=3,5...,2M—1 (3.7)

to define an artificial inflow Dirichlet boundary condition for the subdomain

QW (i =3,5,...,2M —1).

Here u(d; ;,t) and u(d; |, t) represent the left- and

right-limits of u at the point d;_;, respectively, and u(®) (d;_,#) is defined by

uO(dy, 1) = uldi_, (1),1"),

i=3,5...,2M—1, (3.8)

where d:_,(t) € QU=V is the point at time level t* which the point (d;_i,?)

backtracks to.
. Use the relation

ou® ~

ou (1-1)

+
ax (dz 7t)7

i=1,3,...,2M —1 (3.9)

to define an artificial outflow Neumann boundary condition for the subdomain

QD (i=1,3,...,2M — 1).

.

ou (I-1)

Ox (@, ?)
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i=1,3,...,

Here %(l_l)(d;’, t) is defined by

ou
—(di(t), t"
SR (0. 17),

trl—t
At

(di(t), ")

2M — 1

ifl=1,

au * n
S (1), )

ou (1-1)
4
ox

(3.10)
f_m
TV >
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where d; (t) € Q® is the point at time level ¢ which the point (d;,t) backtracks
to and d;(t) € Q0D is the point at time level "™ which the point (d;,¢) tracks

forward to.

. With the inflow and outflow boundary conditions introduced in Steps L1.A and

L1.B, use the ELLAM scheme presented in Section II to solve equation (2.1) on
the odd numbered subdomains Q& (i = 1,3,...,2M — 1) in parallel, yielding the

I-th iterative solution u(®)(x

L") on Q® and u(l)(d;, t) on the outflow boundary

of Q) for all the odd numbered subdomains Q® (5 =1,3,...,2M — 1).

end
L2. for : =2,4,...,2M do
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A. Use the following relation

uW(dt 1) =uD(d7 1), i=24,...,2M (3.11)

to define an artificial inflow Dirichlet boundary condition for the subdomain Q®
(i=24,...,2M).

B. Use the prescribed outflow boundary condition at z = b for the subdomain §2

and the relation

(0 0
% (d;,t)z% (df, 1), i=24,...,2M —2 (3.12)

to define an artificial outflow Neumann boundary condition for the subdomain
QW (i =2,4,...,2M — 2). Here

(2M)

oul ou, .o oot~ guD o g
7 (diat)_%(di(t)at) A7 +% (dit),t )Tt'

C. With the inflow and outflow boundary conditions introduced in Steps L2.A and
L2.B, use the ELLAM scheme presented in Section II to solve equation (2.1) on
the even numbered subdomains Q) (i = 2,4,...,2M) in parallel, yielding the
I-th iterative solution u® (x,#"*') on Q®) and u’(d; ,t) on the outflow boundary
of Q) for all the even numbered subdomains Q¥ (i = 2,4,...,2M).

end

(3.13)

else
Define u(z, ") = u® (2, t"*t") on QO fori=1,2,...,2M.
endif

end

Remark 4 The domain decomposition method reduces to an Eulerian-Lagrangian method on
each subdomain and to a type of Dirichlet-Neumann domain decomposition algorithm between
the subdomain interfaces. However, the interface Dirichlet-Neumann algorithm is different
from the standard Dirichlet-Neumann algorithm [5, 20] which is symmetric in the choice
of Dirichlet and Neumann interface conditions. In fact, the current domain decomposition
method is related to the Adaptive Dirichlet-Neumann (ADN) and the Adaptive Robin-Neumann
(ARN) nonoverlapping domain decomposition methods introduced in [10, 13, 22] which choose
the interface matching conditions to be adapted to the local flow direction. But in the ADN
and ARN methods, the information on the flow direction is only used to select the correct type
of interface conditions to be imposed. A standard numerical method is still used to solve the
governing transport PDE on each subdomain. In the current method, we use the flow informa-
tion both on selecting the correct interface matching condition and on setting up an ELLAM
scheme to solve the advection-diffusion PDE.

Remark 5 For simplicity of exposition, we have presented the domain decomposition method
for the one-dimensional unsteady-state advection-diffusion transport PDE (2.1) in this section.

As pointed out in Remarks 2.2 and 2.3 in Section II, ELLAM schemes have been developed and
analyzed for multidimensional advection-diffusion transport PDEs. In principle, the domain
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decomposition method developed in this paper can be extended to multidimensional analogues
of advection-diffusion PDE (2.1). For ezample, instead of partitioning the spatial domain
as a union of a sequence of intervals as in (3.5) for the one-dimensional problem (2.1), we
should order the subdomains in a red-black order in the domain decomposition method for
a two-dimensional advection-diffusion transport PDEs. Of course, varieties of new technical
difficulties could arise and need to be taken care of. These issues will be addressed in subsequent
papers.

Remark 6 As pointed out in Remark 2.3 in Section II, optimal-order asymptotic error es-
timates have been proven theoretically for ELLAM schemes for multidimensional advection-
diffusion transport PDFEs. Although the theoretical estimates for Dirichlet-Neumann algo-
rithms for elliptic PDFEs were already proved, there is no corresponding estimate for the domain
decomposition method presented in this paper. These estimates will be studied in subsequent
papers.

4 Numerical Experiments

In this section we describe numerical experiments which show the performance of the domain
decomposition method developed.

Example 1. This example considers the transport of a Gaussian pulse over the spatial domain
[a,b] = [0,3.2]. The initial configuration of the hill is given by

(z — x.)?
() = =Y 4.1
R (4.1)
where the center z, = 0.0 and the standard deviation o = 0.0316 (which gives 202 = 0.002).
We use the variable velocity field given by V(z,¢) = 1 4+ 0.01z, and a diffusion coefficient
of D(x,t) = 10~%. The corresponding analytical solution to equation (2.1) with the initial

condition (4.1) is given by,
e U2
-z -V ) ‘ (1.2)

o
t) = ——
u(, ) Vo2 + 2Dt eXp( 202 + 4Dt

The right hand side f(z,?) is computed accordingly.
In this example, we use a mesh of size Ax = ﬁ, At = %, and four subdomains (i.e.
M = 2) as follows

[0,3.2] = [0,0.8] U [0.8,1.6] U [1.6,2.4] U [2.4,3.2]. (4.3)

We carry several runs with different number of iterations in the domain decomposition
algorithm. Table 1 contains the results of several of these runs including the L, and the L,
norms of the error at time 7" = 2.5 and the consumed CPU time (in seconds) measured on
a Pentium III-500MHZ Personal computer. Moreover, we present in Figure 1 the ELLAM
solution (plotted using a solid line) verses the analytical solution (plotted using a dotted line)
at various times when two iterations are used in the algorithm.

From Figure 1 we observe that the numerical solution generated is very accurate and
coincides with the analytical solution. Moreover, it moves across the interfaces in a fairly
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Table 1: Results of Experiment I at time T' = 2.5 (with M = 2).

Iterations Ly Error L, Error CPU in seconds Figure#
0 3.729710x 1073 1.484552x1073 5.3 -
1 3.653351x1073 1.462222x1073 8.4 -
2 3.648984x 1073 1.459424 %1073 11.3 1
3 3.649800x 103 1.459893x 1073 15.0 -
4 3.649687 %1073 1.459830x 1073 18.2 -
5 3.649702x 1073 1.459838x 1073 21.5 -
10 3.649700x 1073 1.459837x1073 37.6 -

smooth manner without introducing any artifacts. In terms of the number of iterations used,
we observe that two iterations were enough in the algorithm, with a minimal cost of 11.3 CPU
seconds.

Initial
12 Analytic
: E— ELLAM
t=0
i T
1=0.83
t=1.67
v t=2.5
08F i
06F .
04F 1
0.2 i
ok
—0.2 I I I I I I
0 0.5 1 15 2 25 3

Figure 1: Solutions of Experiment I at various times

Example 2. To observe the performance of the method for problems with discontinuous
initial conditions and steep analytical solutions, we consider in this example the transport of
a diffused step function over a spatial domain of [0,6]. The initial condition is a box function
of a unit height supported on the interval [0.35, 0.65]
|1, ifz€]0.350.65] C (0,6)
o () = { 0, otherwise. (4.4)
We simulate using a constant velocity field of V' (z,¢) = 1 and the relatively small diffusion of
D(z,t) = 107* over a time interval of [0,5]. The analytical solution for equation (2.1) with
initial condition (4.4) is given by
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where 5 .
erf(x) = —/ exp(—s?)ds
(z) N (—s7)

denotes that standard error function. The source and sink term is zero.

Table 2: Results of Experiment II at time T = 5.0 (with M = 3).

Iterations L5 Error L1 Error CPU in seconds Figure#
0 2.453164x107° 2.983214x10~° 8.1 -
1 2.261420%x102 2.503061x 102 12.0 -
2 2.248619%x 102 2.472792x10° 15.9 2
3 2.250118 %102 2.475962x 103 20.1 -
4 2.249953%x 1073 2.475616%x 1073 24.0 -
5 2.249973%x 1073 2.475655%x 1073 26.8 -
10 2.249968x 1073 2.475649%x 1073 45.3 -

In the test runs we decompose the domain into six equally spaced subdomains (i.e. M = 3)
each of unit length. Then using a mesh of sizes Ax = ﬁ and At = % we carry several
runs with different number of iterations in the method. The results of several of these runs
including the L, and the L; norms of the error and the CPU time used are presented in Table
II. Furthermore, we present in Figure 2 the ELLAM solution (solid line) and the analytical
solution (dotted line) at several time instances of the simulation. In this figure we observe that
the ELLAM solution accurately captures the solution and its steep fronts without introducing
any numerical artifacts. From Table IT we observe that the solution stabilizes as we increase
the number of iterations, while only two iterations were enough to provide the solution with
the least error (measured by the L, and L; norms). The results in this example conform to

the results of the previous example.

Initial
1.0 Analytic
’ E— ELLAM
t= t=1 t=2 t=3 t=4 t=5
1 |- R - ﬂ -
o8 = 1
06 B
04 4
o2F 1 .
0
_0.2 I I I I I
0 1 2 3 4 5 6
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Figure 2: Solutions of experiment II at various times using 6 subdomains

Example 3. In an attempt to cover the variety of standard test problems used widely to
test advection-diffusion codes, we consider in this example the transport of diffused step and
triangle functions over a spatial domain of [0, 8]. The initial condition we use is

1, if0.1 <z <04,
—0.55
Uo(z) = :COT‘ —1, if0.5<z <06, (4.6)
0, otherwise.

We use a velocity field of V(z,t) = 1 and a diffusion coefficient of D(z,t) = 107*. The
analytical solution to equation (2.1) using these parameter and the initial condition (4.6) is
found assuming a homogeneous source and sink term.

Table 3: Results of Experiment III at time 7' =6.8 (with M = 2).

Iterations L> Error L1 Error CPU in seconds Figure #
0 1.787892x 103 2.738425x 1073 10.1 -
1 1.724342x1073 2.646041x1073 14.6 -
2 1.719773x1073 2.636059%x 1073 19.1 3
3 1.720241x1073 2.637064x1073 23.9 -
4 1.720202x 1073 2.636994x 1073 27.8 -
5 1.720206x 1073 2.637002x1073 33.0 -
10 1.720205%x 1073 2.636999x 1073 55.7 -

151 Initial
Analytic
e ELLAM
110, t=2.3 t=4.59 1=6.8
oL
-05r -
-1F —
0 1 > 3 2 5 s 7 8
X—axis



Figure 3: Solutions of experiment III at various times using 4 subdomains

In a similar manner to the earlier examples, we decompose the spatial domain [0, 8] into
four equally spaced subdomains (i.e. each of two units length). Then using a mesh of sizes
Ax = 0.01 and At = .0425 we carry several runs varying the number of iterations. We present
in Figure 3 the ELLAM and the analytical solutions generated at several time instances while
in Table 4 we present the results of some of these runs at the final time of the simulation 7" =
6.8. We observe that the ELLAM solutions generated using two iterations in the algorithm
are very accurate and capture all the details of the solution in an accurate manner without
any artifacts.

5 Summary and Discussion

In this paper we base on an Eulerian-Lagrangian localized adjoint method (ELLAM) to de-
velop an Eulerian-Lagrangian nonoverlapping substructuring domain decomposition method
for the solution of unsteady-state advection-diffusion transport equations. The method turns
out to be a type of Dirichlet-Neumann domain decomposition algorithms, but is different
from the standard Dirichlet-Neumann algorithm which was originally proposed by Bjorstad
and Widlund [5, 20] in the development of nonoverlapping domain decomposition methods for
elliptic equations. Rather, the method is related to the Adaptive Dirichlet-Neumann (ADN)
and the Adaptive Robin-Neumann (ARN) nonoverlapping domain decomposition methods in
[10, 13, 15, 22] in that they all choose the interface matching conditions based on the the
local flow direction. But in the ADN and ARN methods a standard finite difference, finite
element, or finite volume method is still used to solve the governing transport equation on each
subdomain. In the current method, we use the flow information both on selecting the correct
interface matching condition and on setting up an ELLAM scheme to solve the advection-
diffusion equation. Numerical results show that the developed domain decomposition method
generates accurate numerical solutions without noticeable artifacts.
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