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Abstract

We study nonlinear approximation in L,(R?) (0 < p < oo, d > 1) from (a) n-term
rational functions, and (b) piecewise polynomials generated by different anisotropic
dyadic partitions of R¢. To characterize the rates of each such picewise polynomial
approximation we introduce a family of smoothness spaces (B-spaces) which can be
viewed as an anisotropic variation of Besov spaces. We use the B-spaces to prove Jack-
son and Bernstein estimates and then characterize the piecewise polynomial approx-
imation by interpolation. Our main estimate relates n-term rational approximation
with piecewise polynomial approximation in L,(R?). This result enables us to obtain a
direct estimate for n-term rational approximation in terms of a minimal B-norm (over
all dyadic partitions). We also show that the Haar bases associated with anisotropic
dyadic partitions of R can be successfully utilized for nonlinear approximation. We
give an effective algorithm for best Haar basis or best B-space selection.

1 Introduction

The theory of univariate rational approximation on R is a relatively well developed area in
approximation theory (see, e.g, [20]). At the same time, the theory of multivariate rational
approximation is virtually not existing yet. A reason for this is that it is extremely hard to
deal with rational functions of the form R := P/(Q, where P and () are algebraic polynomial
in d variables (d > 1). Very little is known about this type of rational functions. It seems
natural to consider approximation from the smaller set of n-term rational functions or atomic
rational functions that is the set of all rational functions of the form

ATy + bk
(zk — o) + 57

n d
R = er with r; of the form r(x) = H

j=1 k=1

(1.1)

As it will be shown in this article, this is a powerful tool for approximation and at the same
time it is more tangible than the former.
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It is also interesting to consider approximation from multivariate rational functions of the
form R = 2?21 rj, where r; are dilates and shifts of a single radial partial fraction such as
r(zr) = 1/(1+ |x|?)*. In [12], we consider such approximation and prove a direct estimate in
terms of the usual Besov norm (exactly the same as the one used in nonlinear approximation
from wavelets or regular splines). To prove this result, we first constructed good bases
consisting of dyadic shifts and dilates of a single rational function and then utilized them to
nonlinear approximation.

In this article, we take a different approach to the problem. We prove an estimate
that relates the multivariate n-term rational approximation to a broad class of nonlinear
piecewise polynomial approximation in L,(R?) (0 < p < o0). In particular, this result relates
the n-term rational approximation to nonlinear approximation from piecewise polynomials
generated by any anisotropic dyadic partition of R?. Then we utilize this relationship to
obtain an estimate for n-term rational approximation in terms of the minimal smoothness
norm (over all dyadic partitions). These estimates extend to the multivariate case results
from [15], [18].

As a consequence of our approach, a substantial part of this article is devoted to nonlinear
approximation from piecewise polynomials over dyadic partitions which are interesting in
their own right. To the best of our knowledge this problem was first posed explicitly in
§5.4.3 of [14]. Note that we consider not one but a collection of approximation processes
each of them determined by a dyadic partition of R¢. The ultimate goal of the theory of
any approximation scheme is to characterize the rates of approximation in terms of certain
smoothness conditions. To characterize the rates of piecewise polynomial approximation
generated by an arbitrary dyadic partition, we introduce a family of new smoothness spaces
(B-spaces) which can be viewed as an anisotropic variation of Besov spaces. We use the B-
spaces to prove Jackson and Bernstein estimates and then characterize the approximation by
interpolation. In [17], we proved that in the univariate case a scale of Besov spaces governs the
the rates of nonlinear piecewise polynomial approximation. Similar Besov spaces have also
been used for characterization of multivatiate nonlinear (regular) spline L,-approximation
in [5] (1 <p < oo)and [7] (p=00), see also [5]. Here we extend and refine these results.

In addition to this, we consider the library of anisotropic Haar bases which are naturally
associated with anisotropic dyadic partitions of R¢. Since every anisotropic Haar basis is an
unconditional basis in L, (1 < p < co) and characterizes the corresponding B-spaces (see §5
below), it provides an effective tool for nonlinear approximation from piecewise constants.
Moreover, as we show in §5, in a natural discrete setting, there is a practically feasible
algorithm for best Haar basis or best B-space selection for any given function. In this way,
the approximation procedure can effectively be completed.

A leading idea in this article is that the classical smoothness spaces are not suitable
of measuring the smoothness of the functions in highly nonlinear approximation such as
multivariate rational or piecewise polynomial approximation. More sophisticated means of
measuring the smoothness are needed. We believe that, in some cases, the smoothness should
be measured by means of a collection of smoothness space scales (like the B-spaces).

The outline of the article is the following. In §2, we introduce the B-spaces and establish
some of their basic properties. In §3, we prove Jackson and Bernstein estimates and then
characterize the nonlinear piecewise polynomial approximation generated by an arbitrary



anisotropic dyadic partition of R?. In §4, we prove an estimate that relates the n-term ratio-
nal approximation to nonlinear piecewise polynomial approximation and, as a consequence,
we obtain a direct estimate for rational approximation in terms of the minimal B-norm.
Section 5 is devoted to the anisotropic Haar bases. We give an algorithm for best Haar
basis or best B-space selection. In §6, we present our view point on some of the principle
questions concerning nonlinear approximation and pose some open problems. Section 7 is
an appendix, where we give the proofs of some auxiliary statements from §2 and the lengthy
proof of an interpolation result from §3.

Throughout this article, the positive constants are denoted by c,c;,... and they may
vary at every occurrence, A & B means c; B < A < ¢, B; Il denotes the set of all algebraic
polynomials in d variables of total degree < k. For aset E C R?, 1 denotes the characteristic
function of E, and |E| denotes the Lebesgue measure of E.

2 B-spaces

In this section, we introduce a family of smoothness spaces (B-spaces) which will be used
for characterization of nonlinear piecewise polynomial approximation (§3, §5) and in n-tem
rational approximation (§4). These spaces can be defined on R (d > 1) or on an arbitrary
box Q in R?. For convenience, we shall only consider the case when || = 1 and € is with
sides parallel to the coordinate aces. We shall define the B-spaces by using local polynomial
approximation over boxes from nested anisotropic dyadic partitions of R? or €.

e Anisotropic dyadic partitions of R? or Q2. We call

P=J Pn

mes
a dyadic partition of R? with levels {P,,} if the following conditions are fulfilled:

(a) Every level Py, is a partition of R?: R? = J,.p 1 and Py, consists of disjoint dyadic
boxes of the form I = Z; x ... x Iy, where each Z; is a semi-open dyadic interval
(Z; = [(v = 1)2#,v2")), and |I| =27

(b) The levels of P are nested, i.e., P41 is a refinement of P,,. Thus each I € P, has
two children, say, Ji, J; € P41 such that I = J, U Jy and J, N Jy, = ().

(c¢) For any boxes I', I" € P there exists a box I € P such that I'UI" C I.

Also, we call P =, ,~, Pm a dyadic partition of Q (|Q2] = 1) if Py := {2} and the levels
{Pun}m>1 satiffy conditions (a)-(b) from above with R? replaced by €.

The next few remarks will help to understand better the nature of dyadic partitions. First,
condition (c) above is not very restrictive but it prevents P,, from possible deteriorations as
m — —oo. This condition implies that in each dyadic partition P of R? there is a single tree
structure with respect to the inclusion relation.

We note that the two children, say, Ji,Jo € P,q1 of any I € P, can be obtain by
splitting I in two equal subboxes in d (d > 1) different ways. Therefore, there is a huge
variety of anisotropic dyadic partitions P of R? or (.



A dyadic partition of any box can easily be obtained inductively (by successive subdi-
viding). For instance, suppose we want to subdivide 2. Assume that the levels {P;}o<j<m
have already been defined. We now subdivide each box I € P,, by "halving” I in one of the
d coordinate directions, thus obtaining two new dyiadic boxes which we include in P, ;.
We process in the same way all boxes from P, and as a result obtain the next level P, of
dyadic boxes.

To construct an anisotropic partition P of R?, one can proceed as follows: First, cover R?
by a growing sequence of dyadic boxes Iy C I, C ..., || = 27, R? = |J,5, 1;, starting from
an arbitrary dyadic box I, and growing the consecutive boxes infinitely many times in all
four directions. Second, subdivide each box I; and its sibling (contained in ;) as above.

A typical property of the anisotropic dyadic partitions is that each level P,, of such a
partition P consists of dyadic boxes I with |/| = 27™ and at the same time there could be
extremely (uncontrolably) long and narrow boxes in P,,.

e Local polynomial approximation. Fix a box I C R and let f € L,(I). Then
Bu(f.D)y = inf |11 = Pl 2.1

is the error of L,(I) approximation to f from II;, the set of all algebraic polynomials of
degree < k. The modulus of smoothness wy(f, ), is defined as usual by

wi(f, D) := sup [|A(f, )|, (2:2)

heRd

where AF(f,z) is the kth difference with step h € R? and AF(f,z) := 0 if the segment
[z, x + kh] is not entirely contained in 1.
We shall need the fact that Ej(f, ), and wi(f, ), are equivalent:

Ex(f, D) = wi(f, 1)y (2.3)

with constants of equivalence depending only on p, k, and d. Equivalence (2.3) follows from
the case when I = [0,1)? by a simple change of variables; the upper estimate is Whitney’s
theorem (see [2] if p > 1 and [22] if 0 < p < 1) and the lower estimate follows by the fact
that AF(P,z) =0 if P € Tl4.

We shall often use the following lemma which establishes the equivalence of different
norms of polynomials over different sets.

Lemma 2.1. Suppose R := 1\ J, where J C I and I, J are dyadic bozes in R or J = (.
Let I' C R be also a dyadic box with |I'| = |I|/2. Then, for each polynomial P € 11}, and
0<7,p<L oo,

1P|,y = |1Pllz,cry 2 | PllL, ) (2.4)

and
1P, i) = |R[Y™ 7| IPlLyr) (2.5)

with constants of equivalence depending only on p, 7, k, and d.



Proof. This lemma follows immediately from the obvious case I = [0,1)¢ (all norms of a
polynomial are equivalent) by change of variables. O

We find useful the concept of near best approximation which we borrowed from [8]. A
polynomial @) € IIj is said to be a near best L,(I) approximation to f from II; with constant
Aif

If = QllL,) < AER(f, 1)p.

Note that if p > 1, then a near best L,(I) approximation ) := Q;(f) from II; can be realized
by a linear projector.

Lemma 2.2. Let 0 < ¢ < p and let Q; be a near best Ly(I) approzimation to f from Ilj.
Then Qr is a near best L,(I) approzimation to f from Ilj.

Proof. See [8]. O

e Definition of B-spaces on R%. Let P be an arbitrary anisotropic dyadic partition of
R? (d>1), «>0,0<p,q<o00,and k> 1. We define the B-space BSy(P) as the set of all
functions f € L,(R?) such that

I llsgeery = QLD (17wl £, Dp)P17) 0 = (3127 D wn(f, DP)MP1)Y (2.6)

meZ 1€Pm me IePn,

is finite, where the /,-norm is replaced by the sup-norm if ¢ = oo as usual. From (2.3), it

follows that
1 llmgsmy & N(FP) i= (3213 (1B (f 1), 1) e, (2.7)
meZ I[€Pmy,

We now introduce the linear piecewise polynomial approximation generated by P. Let
Sk := 8k (P) be the set of all piecewise polynomials of degree < k on boxes I € P,,, that
is, S €Sk it S=37,.p 1, P, where P; € 1. Evidently, ... c 8", cSfc Sfc.... We
denote

L, :=L,(P,k) == | ] Sk,

mel

where the closure is taken in L,(R?). Evidently, L, is a subspace of L, and
L, =span {1, - P, : P, € II}, ] € P},

where “span” means “closed span in L,”. We denote by Sk (f), := S&(f,P), the error of
L, approximation to f from S, i.e., Sk (f), := infgcse || f — S|, Clearly, if f € L,, then
f €L, if and only if lim,, ,» S¥ (f), = 0. It may happen that L,(P, k) # L,. However, if
sup{diam (I) : I € P,,} — 0 as m — 0, then L, (P, k) = L,.
Clearly, by (2.7),
NuU(f,P) = (D7 Sh(f, P))")Ye. (2.8)

meZ

Therefore, the B-spaces B2 (P) are approximation spaces generated by {S%(f,P),} (com-
pare with the definition in (3.6)).

By (2.8), if f € B&¥(P), then S}, (f,P), — 0 as n — —oo, which together with condition
(c) on dyadic partitions implies that || f[[ggr(py = 0 if and only if f =0 a.e. (see the proof of
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Theorem 2.4 in the Appendix). Therefore, || - ||ngk(p) is a norm if p,q¢ > 1 and a quasi-norm
otherwise. For the remainder of this article, “norm” will stand for “norm” or “quasi-norm”.

Let Q;,(f) be a polynomial of near best L,(I) approximation to f from II; with some
constant A (the same for all 7 € P). Note that Q;,(f) can be defined as a linear projector
if n > 1. Then 15, ,,(f) := Ty (f,P) := 3 jep, 11+ Q1 is a near best L, approximation to
f from SF. We define

tma(f) = tmn(f, P) = T (f) = Tin—r,0(f)- (2.9)
We now introduce a new norm in Bj¥(P) by
No(f,P) = (D 2™t (HI))?, where 0 <5 <p. (2.10)
mez
Lemma 2.3. The norms || || pgr(p), Ni(+), and Na(-) are equivalent with constants of equiv-

alence independent of P.

Proof. The equivalence of || - [[pg(p) and Ni(-) has already been indicated in (2.7).
Now, we show that N;(-) &~ Na(:). Let Ni(f) < oo. By Lemma 2.2, Q;,(f) is a near
best L,(I) approximation to f from II; and hence ||f — T,,,(f)|l, < ¢S¥ (f),. Therefore,

tma(Dllp < lf = Tang(Dllp + el f = Tnmra(Nllp < S (Hp + eSi1 (£

This implies Na(f) < eNy(f).
In the other direction, if Ny(f) < oo, then it is easily seen that

oy /A
S SN =Tl < (D2 Itaall)) 0 A= mingp, 1}, (2.11)

j=m+1

To complete the proof, we need the following discrete Hardy inequality: If {z,,}mez and

E}g{m}mez are two sequences of nonnegative numbers such that y,, < (3272, 2})*, A >0,
en
> @™ yw) < e (2Mwn), o,q >0, (2.12)
mez mes

where ¢ = ¢(\,«,¢). This inequality follows easily by Hoélder’s inequality. We use (2.8),
(2.11), and (2.12) to obtain Ny (f) < ¢Nao(f). Therefore, Ny (f) ~ Ny(f). O

e The B-spaces B_,‘f‘k (P) on RY. For the purposes of nonlinear piecewise polynomial and
n-term rational approximation, we shall only need a specific class of B-spaces, namely, the
spaces B*(P). Therefore, for the rest of this section, we focus our attention exclusively on
these specific B-spaces.

We shall always assume that 0 < p < oo, @ > 0, k > 1, and 7 is defined by 1/7 := a+1/p.
We shall briefly denote the B-space B**(P) by B (P) or simply by B®. By the definition
of B-spaces in (2.6), we have

1 lsereey = (1 wr(f, D))" (2.13)

IeP



and, using Lemma 2.3,

1 lligsry =~ Nof, P) i= (I ean (DI i 0<n<r,  (214)
IeP
where t;,(f) == 1; - ty,(f) if I € Py, m € Z.

In some instances, the B*-norms from (2.13)-(2.14) are not quite convenient since the
L.-norm which they involve is not very friendly when 7 < 1. This is the case when the
smoothness parameter o > 1. We next show that this drawback of the above norms can be
overcome. We introduce the following new B-norms: For f € L,, 0 <n < p, we set

Non(£,P) = O (TP g (f, 1)) (2.15)
and
Noa(£,P) = O (M= Mty (A1) )Y (2.16)

where t7,(f) == 1r - ty,(f,P) if I € Py, m € Z (see (2.9)). Note that N, (f,P) =
| f | g (py- Using (2.5) and the relation 1/7 = « + 1/p, we readily obtain

Nig(F,P) = O ()17 (2.17)
Iep

The following embedding theorem will be important for our further developments.

Theorem 2.4. If f € L,, 0 <n < p < oo, and Ny, (f,P) < oo, then
f= Ztmm(f) a.e. on R? (2.18)
meZ
with the series converging absolutely a.e., and
11l < 1D Tt (Dlllp < eNeg (£, P), (2.19)
meZ
where ¢ = c¢(a, k,p,d,n).
We shall deduce this theorem from the following more general embedding theorem:

Theorem 2.5. Let 1 < p < co. Suppose {®,,} is a sequence of functions on R® with the
properties:
(i) @, € Lo, supp @, C E,, with 0 < |E,,| < oo and
1@rmlloo < c1|Epn| 2| @rn ]l

(ii) If x € By, then
Y. (B/IEDY < e,

Ejdz, |Ej| 2| Eml

where the summation is over all indices j for which E; satisfy the indicated conditions. Then

we have
||Z|‘1> Wy < O N2l 7, 0<7<p,
J

where ¢ = ¢(p, T, ¢1).



To avoid nonnecessary technicalities at this early stage, we shall give the proofs of The-
orems 2.4-2.5 as well as the one of the next theorem in the Appendix.

Theorem 2.6. The norms || - || ar(py, Nuy(,P) (0 < n < p), and Ny (-,P) (0 <n <p),
defined in (2.13) and (2.15)-(2.16), are equivalent with constants of equivalence depending
only on «, k, p, d, and 1. Furthermore, the equivalence of || - || garpy and Ny, (-, P) is no
longer valid if n > p.

e B-spaces on Q. We shall only define the B-spaces B (P) on €2 which we need in nonlinear
piecewise polynomial and rational approximation. The more general B-spaces B;,“qk(P) on 2
can be introduced in a obvious way.

We again assume that 0 <p < oo, a >0,k >1,and 1/7:=a+1/p. Let P =, >, P
be an arbitrary dyadic partition of Q (|2 = 1). We define the space B® := B®(P) as the
set of all f € L,(£2) such that

[flsereey = (17w (f: 1)) < oo, (2.20)

1eP

Evidently, |f + P|pa = |f|pa for P € II; and hence |- |po is a semi-norm if 7 > 1 and
a semi-quasi-norm if 7 < 1.

By Theorems 2.7-2.8 below, if f € B (P) then f € L,(2). Therefore, it is natural to
define a norm in B (P) by

1 lBer Py = I fllzp0) + 1 flBerp)- (2.21)
Similarly as in (2.8), we have
1 lsercry = N1l + (D (2285 (£, P)) )Y, (2.22)
mez

where S¥ (f,P), is the error of linear piecewise polynomial approximation, defined similarly
as in the case of B-spaces on R? (see the definition above (2.8)).
In analogy to (2.15), we introduce a more general norm by

N (fP) = Ifllp + Q1P e (f, D)), 0 < < . (2.23)

IeP

Also, similarly as in the definition of B-norms on R? (see (2.9), (2.14)), we define the oper-

ators: Qf,ﬂ(f)a Tm,ﬂ(f) = Tm,n(fa P), tmﬂ?(f) = tmﬂ?(fa P) (m > 0), and tfﬂ?(f)a fe LW(Q)a
with the natural modification 1, ,(f) = 0, i.e., to,(f) := To,(f) == Qa,(f). We define
another norm by

Nea(F,P) = QUM gD % Qo NNV 0<n<p. (2:24)

1eP 1eP

Theorems 2.4 implies immediately the following analogue of Theorem 2.5:



Theorem 2.7. If f € L,(R?), 0 <n < p < oo, and Ny,(f,P) < oo, then

F= twn(f)  absolutely a.e. and ||f]y < | [tma())lllp < cNiy(f, P).

m>0 m>0

We proceed similarly as in the proof of Theorem 2.6 (see the Appendix) to prove the
equivalence of the above defined B-norms:

Theorem 2.8. The norms || - ||parpy, Nuy(,P) (0 <n < p), and Ny (-,P) (0 <n <p),
defined in (2.21)-(2.24), are equivalent with constants of equivalence depending only on «, k,
p, d, and 1.

e Comparison of B-spaces with Besov spaces. We first recall the definition of Besov
spaces on £ = R, E = [a,b] or on a Lipschitz domain E C R? (d > 1). The Besov space
B(Ly,) := B;(Ly(E)), s > 0,1 < p,q < o0, is defined as the set of all functions f € L,(E)
such that

0 dt\ 1
flogen = ([ antr o)) <o (2.25)

with the L -norm replaced by the sup-norm if ¢ = oo, where &k := [s] + 1 and wi(f, ), is
the k-th modulus of smoothness of f in L,(£). The norm in B;(L,) is usually defined by
| fllBsz,) == Ifllp + | flBs(z,)- It is well known that if in (2.25) k is replaced by any other
k > [s] + 1, then the resulting space would be the same with an equivalent norm. However,
the situation is totally different when p < 1 and this is the reason for introducing %k as a
parameter of the Besov spaces with the next definition. We define the space

Bi*(Ly) == B*(Ly(E)), 0<p,q<oo, s>0,k>1, (2.26)

as the Besov space B;(L,(£)) from above, where the parameters k& and s are already set
independent of each other.
For the theory of nonlinear (regular) spline approximation in L,(E), 0 < p < 0o, one can
utilize the Besov space
BIK(Ly) 2= BN (L ()

with parameters set as elsewhere in this article: £ > 1, a > 0, and 1/7 := o+ 1/p (see [17]
when d = 1, and [5], [7] when d > 1). Since B%*(L,) is embedded in L,, it is natural to
define a norm in Bf**(L,) by || fl| yaar, ) = [Ifllp + |f] ek, ). In the following, we shall

restrict our attention to the case £ =R? (d > 1).

We call a dyadic partition P of R? regular if there is a constant K > 2 such that for each
box [ =:T; X ... x I, from P we have K ' < |Z,|/|Z,| < K, 1 < v, pu < d.

Now, if P is a regular dyadic partition of R? and f € BI**(L,), then f € B®*(P) and

[ lserpy < ell Fll per )

which easily follows using the following equivalence:
1
alt.DFx s [ [ Ak dedn, T, (2.27)
1 o, g S

9



where Iy, :=={x € [ : [x,x+ kh] C I} and ¢(I) is the maximal side of I or diam (/) (see [20]
for the proof of (2.27) in the univariate case; the same proof applies to the multivariate case
as well). Notice that the smoothness parameters of B-spaces and Besov spaces above are
normalized differently. Thus the B-space B2*(P) corresponds to the Besov space BS*(L,)
with s = da.

Using the idea of the proof of Theorem 2.6 in the Appendix, one can easily prove that,
for a regular dyadic partition P,

Bk (L, (R")) = B*(P), if 0<a<1/p, (2.28)

with equivalent norms, and this is no longer true if o > 1/p, B®*(P) is much larger
than B (L, (R?)) in this case. A key fact here is that, for each I € P and a > 1/p,
|Ls]| paak () = 00, while at the same time |[1;[[gar(p) ~ | Ls][,- The same is true if 1; is
replaced by P-1;, P € ll, P # 0.

Suppose now that P is an arbitrary dyadic partition of R?. As we mentioned in §2,
extremely long and narrow boxes may occur at any level and location of P. Straight-
forward calculates show that, for such a box I € P even if 0 < o < 1/p and « is as
small as we wish (fixed), [|Lz|| gaar /[ Ls][p can be enormously (uncontrolably) large, while
| 11|l pak ) /|| 11|, = 1. This is why the Besov spaces are completely unsuitable for the theory
of piecewise polynomial approximation generated by anisotropic dyadic partitions (see also
the results of §3 below). The situation is quite similar when comparing two B-spaces over
completely different dyadic partitions.

3 Nonlinear piecewise polynomial approximation

In this section, we shall use the B-spaces introduced in §2 to characterize the nonlinear
piecewise polynomial approximation generated by an arbitrary dyadic partition P of R?.
The same results with almost identical proofs hold on any box (2.

We let ¥5(P) (k > 1) denote the nonlinear set consisting of all piecewise polynomial

functions
o= 1,-P,
IeAn

where P; € IIy, A, C P, and #A,, < n. We denote by o,(f, P), := ok(f,P), the error of
L, approximation to f € L,(R?) from XF(P):

on(f, P)p = wEiEI}’%f(P) |f — (PHP'

We next prove Jackson and Bernstein estimates for the above nonlinear approximation. Then
the desired characterization of the approximation spaces follows immediately by interpola-
tion. Throughout this section, we assume that P is an arbitrary dyadic partition of RY,
O<p<oo,a>0,k>1 and 1/7:=a+1/p.

Theorem 3.1. If f € B**(P), then
Un(f,P)pSCn_aHfHng(p), n:1,2,...,
with ¢ = ¢(«a, p, k, d).

10



Proof. By Theorem 2.4, f can be represented in the form

f= Ztl a.e. on R (3.1)

IeP

with the series converging absolutely a.e., where t; = 1; - P; with Py € I (t; := 1y -ty if
I € Py, 0<n<p). In addition to this, by Theorem 2.6,

1F et cpy = Q)™ = N(f).

IeP

Case I: 1 < p < co. We define J, :={I € P : 27*N(f) < ||ts]l, < 27PN (f)}. Clearly,

£, < 27, (3.2)
We define
Gui= Y tr, gp=Y |tl, and Gu:=) g,
IeJ, IeJ, pn<m

We have G, € X (P) with M =37 _ 2~
(as in the proof of Theorem 2.5) to obtain

BT = ¢2™7. We use (3.1), (3.2), and Lemma 7.1

wlsPh < 1 D < Yo gl < Y gl
TeP\U, < T p=m-+1 p=m+1
< e ) 2PN(NH#T)P S N(f) Y 2T
p=m-+1 p=m+1

< N(f)2 AT = MUTRA(f) = MW ()

which implies the theorem in Case 1.

Case II: 0 < p < 1. We let |[t1, ]|, > ||t |lp > - .. be a nonincreasing rearrangement of the
sequence {||t7]|,} and define

pi=Y t,, @€eI(P)
j=1
To estimate || f — ]|, we shall use the following simple inequality: If z; > 2o > ... > 0 and
0 <7 <p, then

( i x;;)l/p < nl/pfl/r i 1/7-
Jj=n+1 =1
We obtain
o o o
1F=elle < 11D Tl < D Nt 197 < en'/P747( Z e M) < en™®l| fllperpy. O
j=n+1 j=n+1 j=1
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Theorem 3.2. If p € X5(P), then

[l Barry < en®lell (3.3)
with ¢ = ¢(a, p, k, d).

Proof. Let o = > ;.\ 17 - Pr, where P; € II;, A C P, #A < n, n > 1. To prove (3.3), we
shall use the natural tree structure in P induced by the inclusion relation: Each box I € P
has two children (boxes Ji, J, C I such that I = J, U .J, and |J;| = |Jo| = (1/2)|I]) and one
parent in P. Let Iy € P be the smallest box containing all boxes from A and let 7 be the
minimal binary subtree of P containing A U {Ip}. So, T is the set of all boxes in P which
contain at least one box from A and are contained in ;. We introduce the following subsets
of T:

(i) 7' the set of all final bozes in T (boxes not containing other boxes from 7,

(ii) 72 the set of all branching bozesin T (boxes with both children in 7") and, in addition,
we include I in 772,

(iii) 772 the set of all children of branching bozes in T,

(iv) T* the set of all chain bozes in T (boxes with exactly one child in 7), excluding Iy
if I has only one child in 7.

Obviously 7! € A and hence #72 < #7*' < n and #7° < 2n. Note that #7* can be
much larger than #A.

The sets A and T generate a natural subdivision of I into a union of disjoint rings.
By definition, R is a ring if R = I\ J with I € P and J € P or J = (). We say that
R =1\ Jis a mazimal ring if (a) I € T and J € T or J = (), (b) R does not contain boxes
from A which are smaller than I, and (¢) R is maximal with these two properties (R is not
contained in another such). We denote by R the set of all maximal rings (generated by A).
For R € R, we denote by Ir and Ji the defining boxes of R, that is, R =: Ip \ Jx with
Ir € T and Jg € T or Jgp = (. Going further, we denote R,, := {R € R : |[Ig| = 27}.
Then R = {J,,cy, Rm. Clearly, R consists of disjoint subsets of Iy and Iy = (Jper B It is
readily seen that for each R € R, we have Ip € T'or Ir € T2 or I € TN A or Iz = I,.
Therefore, #R < #T1 + #T° + #A < 4n.

Also, we introduce subrings (of maximal rings). Suppose R € R and R = Iy \ Jg with
Ir € Pe, Jp € Poyy (0> 1). Clearly, for each £ < m < £+ p, there exists a unique I' € P,
such that Jp C I' C Ig. We now define the subring Kg,, of R by Kg,, == I' \ Jg. In
addition, we define pp := 1g - and Yrm = lk,,, ¢ = lgg,, ~erfor £ <m < {+p
and ¢r, = 01if m < £ orm > ¢+ u. Note that pp is the restriction on R of a polynomial
of degree < k and @g,, is the restriction of the same polynomial on Kg,, C R. Denote
Kn:={Re€R:Kpgyu #0}. 1t is easily seen that if I C Iy, I € P, (m € Z), and ¢ is not a
polynomial on 7, then

I= |J RUU U Kim (disjoint sets), (3.4)
RER,RCI RCKpm, RNI#D

where the union on the right contains exactly one subring or none.

We need to estimate wi (g, I), for every I € P. There are two possibilities for I € P:

) IfINIy=0or I C Iybut I CR for some R € R, then ¢ is a polynomial of degree
< k on I and hence wi(p,I), = 0.

12



(ii) If ¢ is not a polynomial on I and I € P,, (m € Z), then we have, using (3.4),

oo
o, Dy <ol <e Y D Nerli+e D llermllr

v=m+1 RER,, RCI R, RNI#D

where the second sum contains one element or none. We use this estimate to obtain

|90|Tng(P) = Z2amT Z wi(p, I)7

mEZ IEPm
o0
<e .27 Y Y Merlli+eY 27 Y lermll; = S+ e
meZ v=m+1 RER, meZ REK,

Applying inequality (2.12) to the first sum above, we find

Ei<ey 2 Y lerlly < e ) llerll,

mez RERm ReER

where we used that [|ogl, < |RIY"7?||@g|l, < 27 ||@kllp, R € Ry, by Holder’s inequality.
We shall estimate ¥y using the following inequality:

Y Nermly < cllerlly, ReR. (3.5)

meZ

To prove this inequality, suppose that R = Iy \ Jg with Iz € Py and Ji € Pyy,. Using
Lemma 2.1, we obtain

loresilly < KR Il < el KrersPIRIT P lorlly < 2P llorll,, 0<j<p,

which implies (3.5).
As above, by Holder’s inequality, ||¢rm|r < 27™%||@rml|p- This and (3.5) imply

S2<e Y > Normlly D0 llermlly < e llerll,

MmEZ REK RER meZ RER
where we switched the order of summation. From the above estimates for X; and X5, we get
ol ek py < ¢ Y Ml < e Nerl) PH#R) TP < en Pl = en® [|erll;,

RER RER
where we used Holder’s inequality and that I is a disjoint union of all R € R. O

We define the approximation space A7 := AY(L,, P) as the set of all functions f €
L, (P, k) such that

170l = Ul + (o Pyt ) " < oo (3.

with the /,-norm replaced by the sup-norm if ¢ = co as usual.

13



We now recall some basic definitions from the real interpolation method. We refer the
reader to [1] as a general reference for interpolation theory. Suppose X and B are two
quasi-normed spaces and B C X. The K-functional is defined by

K(f,1) = K(f.t: X, B) := i (|lf — gllx +tllglls), >0.
The real interpolation space (X, B)y, with 0 < A <1 and 0 < ¢ < oo is defined as the set
of all f € X such that
1/q

o, = ([ 02K L0 5) " < .

where the L,-norm is replaced by the sup-norm if ¢ = oo.
The Jackson and Bernstein inequalities from Theorem 3.1 and Theorem 3.2 yield (see
[6], [20]) the following characterization of the approximation spaces A7:

Theorem 3.3. We have, for 0 < v < a and 0 < q¢ < 00,
AZ(LP, P) = (LD (Pa k): Bﬁk(lp))“r/ayq
with equivalent norms.

We next show that in one specific case the interpolation space as well as the corresponding
approximation space can be identified as a B-space. The analogue of this result for Besov
spaces is well known (see [8]).

Theorem 3.4. Suppose P is a partition of R:, k > 1,1 < p < oo, and 1/7 := a+ 1/p. Let
O0<a<pfandl/X:=p+1/p. We have

(Lo(P. R, BY(P)) = BI*(P) = A (L, P)

with equivalent norms.

This theorem can be proved by using the machinery of interpolation spaces (see [8]). Here
we take another route by employing the approximation from piecewise polynomials directly.
This approach will enable us to reveal more deeply the intricacies of nonlinear piecewise
polynomial approximation. In order to streamline the presentation of our results, we give
the proof of this theorem in the Appendix.

e Approximation scheme for nonlinear piecewise polynomial approximation. We
assume that f € L,(R?), 0 < p < 0o, and P is an arbitrary dyadic partition of R?. The proof
of Theorem 3.1 suggests the following approximation procedure:

Step 1. Use the local polynomial approximation to represent f as follows:

f= Ztm,n(fap) = Ztl,n(f)a

meZ 1eP

where t;,(f) =1, -ty (f,P) if I € P, and n < p (see Theorem 3.1).

14



Step 2. Order {||t;,(f)||p}rep in a nonincreasing sequence ||t;, ,(f)llp > [[trn(F)llp > -
and then define the algorithm by

A, Py =D t1ya(f).

By Theorem 3.1 and its proof, it follows that
1f = Au(Fplly < en™(|fllparcpy, for f € BRE(P).

Using this result, one can show that A, (f,P), achieves the rate of the best n-term piecewise
polynomial approximation generated by P.

e Nonlinear approximation from the library {Z*(P)}p. We denote
an(f)p = i%fan(fa P)pa

where the infimum is taken over all dyadic partitions P. The following theorem is immediate
from the Jackson estimate in Theorem 3.1:

Theorem 3.5. If infp || f|| gar(py < 00, then
0uF)p < om0 | flLszscr

with ¢ = ¢(a, k, p, d).

In §5, we shall show that, in a natural discrete setting, there exists an effective algorithm
for finding a partition P* which minimizes B®*(P) over all dyadic partitions P.
It is an open problem to characterize the approximation spaces generated by {o,(f),}-

e Remarks. There exists another technique that can be employed for the proof of Theo-
rem 3.1. This method is called “splitting and merging” and has been introduced in [4] and
used for nonlinear approximation of functions from the space BV (R?). It was further used
in [11]. Also, the modulus W(f,t),,, used in [11] which is a generalization of a characteristic
from [16] (d = 1), can be generalized and utilized for anisotropic partitions P.

4 Relation between n-term rational and piecewise poly-
nomial approximation

e n-term rational functions. We denote by R, the set of all n-term rational functions

on R? of the form .
R = Z 7"]',
7=1

where each r; is of the form

d
ax Ty + by J
= , , b, g, eR, 0, = e e R*. (4.1
r(z) 1!_'1 (r — an)? + 72 Ay, by, o, By, B # x = (11 Tq) (4.1)
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Evidently, every R € R,, depends on < 4dn parameters and R, is nonlinear. We denote by
R, (f), the error of Ly-approximation to f from R,:

Rn(f)p = Rien%n If - RHp-

Our first goal is to show that the rate of n-term rational approximationin L, (0 < p < 00)
is not worse than the one of nonlinear n-term approximation from piecewise polynomials over
nested box partitions of R%.

e Piecewise polynomials over almost nested families of boxes. We denote by J
the set of all semi-open boxes I in R? (not necessarily dyadic) with sides parallel to the
coordinate axes (I =Z; X ... x I,).
Suppose =, C J,n=20,1,...,is a sequence of sets of boxes which satisfy the following:
(i) #=, < 2™
(ii) For each n > 1 there exists a set {2, consisting of disjoint boxes from J such that
Q) U{I:TeQ}=U{{:1€=,UZ, 1},
(b) for each I € Q,, and J € Z, UZ,,_; either I C Jor INJ =0, and
(C) #Qn S Cl2n.
Thus €, is a set of “small” disjoint boxes which cover the boxes from =, U Z,_;. Now,
we denote by S¥(Z,,) the set of all piecewise polynomials of degree < k on the boxes from
En, ie., ¢ € S¥(E,) if ¢ = 3,2 17 - P, P € I, We denote by S5.(f), the error of L,
approximation to f € L,(R?) from S*(Z,), i.e.,

S5u(f)p = S5u(f,E)p = _inf )||f — ¢llp-

PeSk(Z,

e Main results. Our primary goal in this section is to prove the following theorem that
relates the n-term rational approximation to the above described piecewise polynomial ap-
proximation:

Theorem 4.1. Let f € L,(RY), 0 <p<oo, a>0, and k > 1. Then

R (1) < 2 (2S5 + I71) " = mindp.1), (4.2)

v=0
with ¢ = ¢(p, k, o, d, ¢1), where ¢y is from the properties of {=,}.

We now apply the result from Theorem 4.1 to the more particular situation of nonlinear n-
term piecewise polynomial approximation associated with any dyadic partition P, developed
in §3.

Theorem 4.2. Suppose [ € L,(R?), 0 < p < oo, a« >0, k > 1, and P is any anisotropic
dyadic partition of R. Then
-« . 1 a _k o o Ln :
Bo(f)y < en™ (3 —[mob (AP, +IF1E) 0 pni=min{p 1}, (43)
m=1

where ¢ = ¢(p, k, a, d).
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Corollary 4.3. Suppose infp || f||gorpy < o0 with « > 0, k > 1, and 1/7 := o+ 1/p,
0 < p < oo, where the infimum is taken over all dyadic partitions P of RY. Then

Ra(f)y < en @ inf £l o),

where ¢ = c(a, p, k,d).

e Proof of the main results. For the proof of Theorem 4.1, we shall utilize some ideas
from [15] and [18]. We let S*(J) denote the set of all piecewise polynomials of degree k
on n disjoint boxes in R?, i.e., ¢ € S(J) if ¢ = >, 17 - P, where A, is any collection
of n disjoint boxes from J and P; € II;. The approximation will take place in L,(R?),
0<p<oo.

Theorem 4.4. For each ¢ € S (J), m > 1, and n > 1, there exists R € R,, such that

lp = Rlly < et exp (—ea(n/m)'?) [loly, (4.4)
where ¢y = cy(p,d, k,cy) > 0.

D. Newman [13] proved the remarkable result that the uniform nth degree rational ap-
proximation of |z| on [~1,1] is of order O(n™¢V"). The following lemma rests on Newman’s
construction.

Lemma 4.5. For each v >0, 0 < 6 < 1, and v a positive integer, there exists a univariate
rational function o such that dego < clu(e +1/8)In(e +1/7) + 4v and

0 < 1—o0o(t)<ny, if |t]<1-9,

1 4v
0 < oty<y-(——) , if =1,
< o<1 () « 72
0 < o(t)<1, te (—o00,00),

where ¢ 1s an absolute constant. Moreover, o has only simple poles and, evidently, if o =
P/Q, then deg P < deg Q.

Proof. It follows by Lemma 8.3 of [20] (see also [18]) that there exists a rational function
o which satisfies all the conditions of Lemma 4.5 eventually except for the last one (simple
poles). Evidently, adding a suitable sufficiently small constant to the denominator of o in its
representation as a quotient of two polynomials will ensure the last condition of the lemma
without destroying the other conditions. O

For the proof of Theorem 4.4, we shall use the Fefferman-Stein vector valued maximal
inequality (see [10] or [21]): If0 < p < 00, 0 < ¢ < 00, and 0 < s < min{p, ¢}, then for any
sequence of functions fi, fa,... on R?

1O IM )OI, < CII(Z FAQIORL (4.5)

j=1

where ¢ = ¢(p, q, s,d) and

(M f)(z) = sup (|17| / |f(y)|sdy>1/s, v e R

IeJ,I>x
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Lemma 4.6. Suppose ¢ := 1;- P with [ € J and P € llg, and let \,s > 0. Then there
exists a rational function R € Ry with £ < ¢In* (e 4+ 1/)\) such that

le = Rllp < cAllell
and
|[R(2)| < AT P|lollp (ML) (), = € RAL
where ¢ = c(k,p, s,d).
Proof. It is easily seen that

(ML) (2) = [[Milz) (@), I=Tix...xI (4.6)

1=1

(product of univariate maximal functions).

We shall prove the lemma in the case when I = @ := [—1,1)% The general case follows
by change of variables. Let 0 < A < 1 (the case A > 1 is obvious). Since P € IIj, then all
norms of P are equivalent and this yields

1
|P(2)] < cllpllplL, (1 + [z])f, =€ Rd\{gQ}a (4.7)
where ¢ = ¢(p, k,d) and £Q = [—3, 3)%.

Let o be the univariate rational function from Lemma 4.5, applied with v := A, §
min{\?,1/2}, and v := [3(k + 1/s)] + 1. We define R := xP with «(z) := [T, o(z).
By Lemma 4.5,

dego < cln(e +1/M\)In(e +1/A) +4v < cln®*(e + 1/A), c= c(k,p,s),
and o has only simple poles. Therefore, R € R, with ¢ < cln®*(e + 1/)). Obviously
0 < r(z) <1,z € R Tt is readily seen that

d
0<1—k(z) < Z(l —o(x;)) <d\ forz € Qs:=[-1+6,1— 4L

i=1
Therefore,

1o = Rllzy@0 = 1P = 8)[| @5 < cAll@llp-
and, using (4.7),

lo = Rllz 0000 < cllollp|@\Qs] ' < cd'7[lgll, < eAllgll,.

Finally, by (4.6) and (4.7), we find, for z € R¥\@Q,

|R(z)| < C)\||<P||pH<1+1|xi|> _

< Mol ] [M L) (@) = eAllell (M, 1o) (),

1=1
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where we used that 4v — k > 1/s and hence

0= (2" (2N wsn o
2 L) e

Proof of Theorem 4.4. Suppose ¢ € 8§ (J) (m <n)and p =%, ., 1;- P, Ay C J.
Let A := exp (— (n/m)l/Qd) and s := zmin{p,1}. We apply Lemma 4.6 to each function

@y := 17+ P; to conclude that there exist rational functions R; € R, with ¢ < cln2d(e +1/))
such that
lor = Rillp < el

and
|Ri(z)| < eMllerllp| ] /P (ML) (), =€ RI\L

We define R := ZIGAm R;. Obviously, R € R,y C Ren. We have
lo=Rll, < eQ_ller = Rally, ()" + Al Y Il (ML) O]l
I I

< AQ Neal)? + el Y lledllpl 1777211 C)llp < eAllelly,

where we used (4.5) with ¢ = 1 and s = fmin{p,1} < min{p,1}. Theorem 4.4 follows.
0

Proof of Theorem 4.1. Case I: p > 1. Evidently, there exists ¢, € S*(Z,) such that
lf — ¢ullp = Sov(f),. We define ¢, := ¢, — ¢py—1, ¥ > 1, and ¢y := ¢p. Then we have, for
v>1,

leully < 1 = Sullp + 1f = dually = S (F)p + Sao1(f)p  and [[olly < S1(f)p + [ f]lp-

From the properties of {=;}, there exists a set of disjoint boxes €2, C J such that m, :=
#Q, < 12" and ¢, € S¥(Q,).

We fix 5 > 0. Now, foreach v = 0,1, ..., 7, we apply Theorem 4.4 with ¢ := ¢,, m :=m,
(from above), and n := N, := [A2(a(j — v))*] + 1, where A := ¢;(In2/cy)*, ¢, is from
Theorem 4.4. We obtain that there exist R, € Ry, such that, for v > 1,

N\ /2 .
ley = Rullp < 3" exp <_62 ( ) > ) loully < 270 (S5 (f)y + So-1(f)p)  (4.8)

012’/

and
o0 = Rollp < c27[lollp < 2% (S1(f)p + [1£1l1)- (4.9)
We define R := >’ _| R,. Obviously, R € Ry with

J J
N = ZN,, = Z(Aa2d2j(j — ) 4 1) <2, ez =cs(pk,d,a,c).
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From (4.8) and (4.9), we find

J J
1f = Bully < 1f = &5llp + D lloow = Rully < 27D 2%San()p + [1£1]p)-
v=0

v=0

Estimate (4.2) follows from above by a suitable selection of j (depending on n).

Case II: 0 < p < 1. The proof is similar to the one from Case I. The only difference is
that, in this case, one should use the p-triangle inequality (|| > g;[[5 < >~ ||gsl[5, 0 <p < 1)
instead of Minkovski’s inequality. O

Proof of Theorem 4.2. We may assume that ¢, € X%, (P) are such that ||f — ¢,[|, =
o9 (f,P)p, v = 0,1,.... Suppose ¢, =: > ., 1;- P, where P € II, A, C P, and
#A, < 2. From the proofs of Theorem 3.2 and Theorem 3.4, it follows that the sequence
{#A,} satisfies conditions (i)-(ii) of {=,} and, therefore, (4.2) holds with S&,(f), replaced
by ok, (P) which implies (4.3). O

Proof of Corollary 4.3. This corollary follows immediately by Theorem 3.1 and Theo-
rem 4.2. O

e Sharpness of the results. It is rather easy to see that the estimates of this section are
sharp with respect to the rate of approximation. For a given n > 1, consider the function

d
fol(z) == (H sinTw,) « Liganjxfoage-1(2), @ := (11,...,7q) € R?.

v=1

Since sin 7z oscillates 4n times on [0, 4n]| and every n-term rational function can oscillate
< 2n times on any straight line parallel to the z;-axes (has no more than 2n — 1 zeros),
then R, (f.), > c|lfull, = en/P,0 < p < oo. On the other hand, evidently, if & > 0 and
1/7 = a+1/p, then [[fu| gaar ) < en'/™, where BY*(L.) is the Besov space defined in
(2.26). Therefore, SUP| ], o, <1 R, (f)p > en™® and hence the estimate from Corollary 4.3

is sharp, and similarly for the other estimates.

5 Nonlinear n-term approximation from the library of
anisotropic Haar bases and best basis selection

An anisotropic Haar basis is naturally associated with each anisotropic dyadic partition P of
a box Q in R? (or R?). For the sake of simplicity, we shall consider Haar bases only on a box
Q with sides parallel to the coordinate axes and |[Q2] = 1. Then P = J°_, Py. Let I € P
and I =: Z; x ... x Zy. Suppose [ is split (in P) by dividing in half the vth (1 < v < d)
side of I. Then we define H; := 17, X ... x Hg, x ... x 1z,, where Hz, is the univariate
Haar function supported on Z, and normalized in L.,. In other words, if I € P and Ji, Jo
are the two children of I in P (properly ordered), then Hy := 1, — 1,,. We need to add the
characteristic function of €2 to the collection of the above defined Haar functions. To this
end we denote I° := I, := Q and include both I° and I, in Py and P. So, there are two
copies of © in P. We define Hjo := 1;0 and P° := P\ {I°}.
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Thus Hp := {H; : I € P} is the Haar basis associated with P. We let H := {Hp}p
denote the collection (library) of all anisotropic Haar bases on (2.

Clearly, the following is valid for a fixed partition P: (i) Hp is an orthogonal system in
Ly(€) and it is an orthogonal basis for Ly (P) := Ly (P, 1). (ii) The linear space S} of all
piecewise constants over the boxes from P, (see §2) is spanned by {H; : I € |J_, P, }.

Other anisotropic Haar bases which involve products of Haar functions can easily be
constructed, too. We do not consider such constructions in this article since it does not
change the essence of the problems.

e Hp is a basis for L,(P) and B>'(P).

Theorem 5.1. For each dyadic partition P of 2 the Haar basis Hp is an unconditional
basis for L,(P), 1 < p < oo.

Proof. The proof can be carried out exactly as the proof in the case of the univariate Haar
system due to Burkholder (see [24]) and we shall skip it. O

Throughout the rest of this section, we shall assume that 1 < p < oo, @ > 0, 1/7 :=
a+ 1/p, and P is an arbitrary dyadic partition of {2. We naturally have (see (2.20)-(2.21))

11l g2y = 1 lzp + (D HI™Twn(f, )P

1epe

We next characterize the B-norm of function in B*!(P) by means of its Haar coefficients
using Hp.

Theorem 5.2. Every f € B»'(P) can be represented uniquely in the form

f= ch(f)HI a.e. on Q with ¢;(f) = |I|7" [, fHi, (5.1)

where the series converging absolutely a.e. and unconditionaly in L,. Moreover,

1fllperpy = N Hp) = O T llei(F)HAIDY

1eP

= QI Mer(NINYT = (Y ler(HHIR)Y (5.2)

IeP IeP

with constants of equivalence depending only on p, «, and d.

Proof. Let f € B% B® := B*!'(P). By Theorems 2.7-2.8, f € L,(Q) and hence, using
Theorem 5.1, f has a unique representation in the form (5.1). We shall next prove that

N(f, Hp) < cllfllse- (5.3)

Case I: 7 > 1. This case is trivial because we obviously have
(DI =1 [ S1< Ul and nP = 117 [ $H < U1 1) i1 2T
I I
which, in view of (5.2), imply (5.3).
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Case II: 0 < 7 < 1. Clearly,
1221 e (N Hpoll7 < Ifllzsi) < Ml (I =1).
By Theorem 2.7 with n = 7 and k£ = 1, f can be represented in the form
f= T0+Zt _T0+ZZtI a.e. on
Jj=1IeP;

with the series converging absolutely a.e., where t; :=t; . (f) :=1; — Tj_1, T; :== T; . (f,P),
and t[ = 1[ . tj if I € Pj.

Fix I € Py, (m >0), I #1°. Evidently, |lc;(f)Hillx = |ec()I] < [|f = ¢l for every
constant ¢. Therefore,

le (N Hilly < N1 = Tllzaa) < Z 14511z, )

j=m+1
which readily implies
1 Tler (N HF = 17 T ler(DHT < Y )
j*m—l—l
<P YS Y liE Z > (/DL
j=m+1JEP;, JCI j=m+1JeP;, JCI

with y:=a—1/7+1=1-1/p > 0, where we used that 7 < 1. We now proceed similarly
as in the proof of Theorem 2.6 (see the Appendix). We substitute the above estimates in
the definition of N'(f, Hp) in (5.2) and switch the order of summation to obtain (5.3).

In the other direction, the Haar basis Hp obviously satisfies the conditions of Theorem 2.5
and hence

1D ler(N) Hi()llly < eN(f, Hap). (5.4)

IeP
On the other hand, by Theorem 5.1, Hp is an unconditional basis for L,(P). Therefore,

f:ch(f)HI a.e. on )
IeP

with the series converging absolutely a.e. and unconditionally in L,. Using (5.4), we infer
1fllp < eN(f, Hp). We utilize the above representation of f to obtain

SuPr I = 3 el < Q1D el = QU lerHillDY )
[1]>2-m j=m I€P; j=m IeP;

with A := min{7, 1}. Now, exactly as in the proof of Theorem 2.6 (see the Appendix), we
use this in (2.22) and switch the order of summation to obtain ||f||ga < eN(f,Hp). This
completes the proof of the theorem. O
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e n-term approximation from a single basis Hp. For a given partition P, we denote
by 3, (P) the set of all functions ¢ of the form

¥ = Z aIHla

IeA,

where A, C P and #A,, < n. The error 0,(f, Hp), of nonlinear n-term L,-approximation
to f from Hp is defined by

On(f, Hp)p = Lnfp) 1 = ¢lle,@)-

PEXL(

~

Clearly, ¥,,(P) C X9,(P) and hence o09,(f,P), < 0,.(f,Hp),- The approximation spaces

A\g = Ag(Lp,Hp) generated by the n-term approximation from Hp are defined similarly
as the approximation spaces A} (see (3.6)). The problem again is to characterize the ap-

proximation spaces A\g which reduces to establishing Jackson and Bernstein inequalities and
interpolation.

Theorem 5.3. Suppose P is an arbitrary partition of Q2 and let 1 < p < oo, a > 0, and
1/7:=a+1/p. Then the following Jackson and Bernstein inequalities hold:

Gulf, 1)y < on “fllperpy, € BI(P), (5-5)
[Pl perpy < enllelli,, ¢ €BulP), c=cla,p,d). (5.6)

Therefore, for 0 < v < a and 0 < g < 00,
ALy, Hp) = (Ly(P), B (P))yja = A7 (Ly, Hp) (5.7)

with equivalent norms (see Theorem 3.3).

Proof. The Jackson estimate (5.5) can be proved, using Theorem 5.2, exactly as Theorem 3.1
was proved. The Bernstein inequality (5.6) follows by Theorem 3.2. An easier proof can be
given by using that Hp is an unconditional basis for L, (1 < p < o0). The characterization
of A7 in (5.7) follows by (5.5) and (5.6) (see [6], [20]). O

e “Algorithm” for n-term approximation from Hp. We note that a near best n-term
L,-approximation from Hp (1 < p < 00) to a given function f € L,(P) can be achieved
by simply retaining the biggest (in L,) n terms from the representation of the function
f in Hp (see [23]). This result suggests the following “threshold algorithm” for n-term
L,-approximation from Hp (1 < p < 00):

Step 1. Find the Haar decomposition of f in Hp: f =3 ,.pcr(f)H.

Step 2. Order the terms of {||c;(f)H||,}1ep in a nonincreasing sequence ||cp, (f)Hyp, ||, >
ller, (f)Hp,||, > - - - and then define the algorithm by

n

An(fiPYy = er (£)H,.

J=1
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From the above observation, ./Zl\n( f,P), provides a near best n-term L,-approximation to f
from piecewise constants generated by P.

e n-term approximation from the library H := {#p}. We denote by 7,(f), the error
of n-term approximation of f € L, from the best basis in H, i.e.,

on(f)p == i%f&\n(f, Hp)p-

The following theorem is immediate from the Jackson estimate (5.5):

Theorem 5.4. If infp ||f||B$’1(P) < 00, then
on(f)p <en™® i%f 11 ey

with ¢ = ¢(p, «, d).

Our approximation scheme for nonlinear n-term approximation of a given function f €
L,(€?) from the library H := {#p} of all anisotropic Haar bases consists of two steps:

(i) Find a basis #(f) € H which minimizes the B®!-norm of f.

(ii) Run the above threshold algorithm for near best n-term approximation from #(f).
The most significant fact in this part is that, in a natural discrete setting, there is an effective
algorithm for best Haar basis selection, which we present below.

The above approximation scheme requires a priori information about the smoothness
« > 0 of the function f (which is being approximated) with respect to the optimal B®!-
scale. We do not have an effective solution for this hard problem. Of course, one can get
some idea about the optimal smoothness « of a given function experimentally.

e Best Haar basis or best B-space selection. We next describe a fast algorithm for
best anisotropic Haar basis or best B-space selection in the discrete case of dimension d = 2.
This algorithm is well known (see, e.g., [9] and the references there in). Also, this algorithm
is somewhat related with the algorithm for best basis selection from wavelet packets (see
[3]). Both algorithms rest on one and the same principle.

We consider the set &, of all functions f : [0,1)? — R which are constants on each of the
2™ x 2" “pixels”

I=[(—1)2"2")x[j-1)2",2"), 1<ij<2"

Denote by D,, the set of all such pixels on [0,1)2. We let P, denote the set of all dyadic
partitions P of [0, 1)2 such that P,, = D,, and we shall consider P terminated at level 2n.
Thus P = U, Py Clearly, X, = S} (sce §2).

Motivated by the result from Theorem 5.4, our next goal is to find, for a given f € A&,
a dyadic partition P* := P*(f) € P, which minimizes the B-norm N (f,P) from (5.2).
Evidently, for P € P,,, Hp is an orthogonal basis for the linear space X, and, therefore,

F= Y with () =0 [ g

I€P I

24



We briefly denote d(I,P) := [I|7%|c;(f)|". Also, we set do(I) := d(I,P) if I is subdivided,
say, horizontally in P, and d,(I) := d(I,P) if I is subdivided vertically in P. Then we have,
for the B-norm from (5.2),

N(f,P)" =) d(I,P)=:D(P).

IeP

For a given dyadic box J, we denote by P, the set of all dyadic partitions P, of J which are
subpartitions of partitions from P,. Similarly as above, we set

D(P;) =Y _d(I,Py).

IePy

We next describe a fast algorithm for finding a partition P* € P, which minimizes the
B-norm N (f,P). The idea of this construction is to proceed from fine to coarse levels
minimizing D(P,) for every dyadic box J at every step. More precisely, we use the following
recursive procedure. We first consider all boxes J with |J| = 272"+ Each box J like this is
the union of two adjacent pixels and, hence, it can be subdivided in exactly one way. Thus
P; is uniquely determined. Now, suppose that we have already found all partitions Pj of
all dyadic boxes J with |J| < 27# (0 < g < 2n) which minimize D(P,) over all partitions
P; € P;. Let J be an arbitrary dyadic box such that |J| = 27#%1. There are two cases to
be considered.

Case I: One of the sides of J is of length 27". Then there is only one way to subdivide
J and, hence, P} and min D(P;) = D(P;) are uniquely determined.

Case II: Both sides of J are of length > 27". Then J can be subdivided in two possible
ways: horizontally or vertically and, therefore, J has two sets of children. Let us denote by
J; and J3 the children of J obtain when dividing J horizontally and J] and Jj the children
of J obtain when dividing J vertically. The key observation is that

n%in D(P;) = min{ D(PJ.) + D(Pje) + do(I), D(P];) + D(Pj;) + di (1)}

Therefore, if minp, D(P,) is attained when J is first subdivided horizontally, then P} =
Je UPj U{J} will be an optimal partition of J and P} = WPy U {J} will be optimal
in the other case. We process like this every dyadic box of area 27#! and this completes the
recursive procedure. After finitely many steps we find a partition P* of €2 which minimizes
D(P)=N(f,P)".
Every f € X,, belongs to any (discrete) space B*!(P) and we have, by Theorem 5.4,

Om(f)p <em™@ ggﬁfb’n 1fllgerpy, m=1,2,....
Once the smoothness parameter o« > 0 is fixed, the above algorithm provides a basis which
minimizes the B®-norm of f. It is a problem to find the optimal smoothness « of f.

Several remarks are in order: (i) For a given function f € Aj,, the number of all coefficients
cr(f) (or Haar functions Hy) that participate in the representations of f in all anisotropic
Haar bases is < 2V, where N := 22" is the number of the pixels. Moreover, these coefficients
can be found by O(N) operations.
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(ii) For a given function f € A, and fixed indices o and 7, only O(N) operations are
needed to find a Haar basis #(f) which minimizes the B*!-norm N (f, P).

(iii) Other O(NInN) operations (mainly for ordering the coefficients) are needed for
finding a near best n-term approximation to f from the best Haar basis H(f).

Evidently, the library of anisotropic Haar bases with the above threshold algorithm can
be used for image compression. Especially, hybrid methods which utilize combinations of
good biorthogonal wavelets and the library of Haar bases look promising.

The above idea for best basis selection can be utilized for best B-space selection, namely,
for the selection of a partition P* which minimizes the B-norm || || gax(p) of a given function
f when k > 1. Indeed, precisely as above we can find a partition P* € P,, which minimizes
[ | ek () OF an equivalent norm.

6 Concluding remarks and open problems

Our results from §4 show that the set of n-term rational functions is a powerful tool for
approximation. The n-term rational functions that we consider, however, depend on the
coordinate system. It is natural to consider the more general n-term rational functions of
the form R =37, r;, where each r; is of the form r(Az) with r from (4.1) and A any affine
transform. The set of all such rational functions is independent of the coordinate system.
Here we do not consider such more general approximation because our approximation method
is limited by the conditions on the maximal inequality we use (see §4). We believe that n-
term rational approximation should be considered as a special case of the more general
n-term approximation from the collection (dictionary) of all functions of the form p(uj2z; +
V1, .o, UgZg + Vg), OF p(Ax), A an affine transform, where ¢ is a fixed smooth and well
localized function such as o(x) := e~1*". The ultimate goal of the theory of n-term rational
approximation (of any type) is to characterize the corresponding approximation spaces. This
article does not solve that problem but shows that the smoothness spaces which govern n-
term rational approximation are fairly sophisticated ones.

We now turn to the fundamental question in nonlinear approximation (and not only
there) of how to measure the smoothness of the functions. In [17], we showed that all
rates of nonlinear spline approximation are governed by the scale of Besov spaces B&*(L,)
(1/7 := a+ 1/p). For more sophisticated multivariate nonlinear approximation, however,
the Besov spaces are inappropriate. This is clearly the case when the approximation tool
contains functions supported on long and narrow regions or have elongated level curves like
the piecewise polynomials and rational functions considered in this paper (see the end of
§2). It is crystal clear to us that for highly nonlinear approximation such as multivariate
piecewise polynomial approximation there does not exist a single super space scale (like
the Besov spaces) suitable for measuring the smoothness. We believe that in many cases
the smoothness of the functions should be measured by means of an appropriate collection
of space scales which should vary with the approximation process. To illustrate this idea
we return to the piecewise polynomial approximation considered in §3 and §5. For this
type of approximation, a function f should naturally be considered of smoothness o > 0 if
infp || f|| per(py < 0o which means that there exists a partition P* such that || f|| gak(p-) < c0.
Then the rate of the n-term piecewise polynomial (of degree < k) approximation to f is

26



O(n~%) (roughly).

Clearly, in nonlinear piecewise polynomial or rational approximation there is no satu-
ration, which means that the corresponding approximation spaces A7 are nontrivial for all
v > 0. Therefore, it is highly desirable that the smoothness spaces we use characterize the
approximation spaces A7 for all 0 <y < oo. This was a guiding principle to us in designing
the B-spaces in this article. Notice that all our approximation results from §3-85 hold for each
« > 0. To make this point more transparent, we shall next briefly compare our results with
existing ones, which involve Besov spaces. We first note that the situation in the univariate
case is quite unique, since the scale of Besov spaces B&*(L,) (1/7 = a+1/p) governs all rates
of nonlinear piecewise polynomial approximation (see [17]). Therefore, there is no reason for
introducing B-spaces in dimention d = 1. They would be equivalent to the corresponding
univariate Besov spaces and hence useless. Besov spaces are also used in dimensions d > 1
(see [5], [7], and [11]), but they are not the right smoothness spaces even for nonlinear piece-
wise polynomial approximation generated by regular partitions. It follows by the discussion
at the end of §2 (see (2.28)) and by Theorems 3.1-3.3 that the Besov spaces B%*(L,) can
do the job when 0 < a < 1/p and they fail when o > 1/p. Of course, this range for « is
wider when approximating from smoother piecewise polynomials (see [5], [7]). In a nutshell,
the Besov spaces are the right smoothness spaces for characterization of nonlinear piecewise
polynomial approximation in dimensions d > 1 only for regular partitions and for a limited
range of approximation rates, and they are completely unsuitable in the anisotropic case.

Another important element of our concept is to have, together with the library of spaces,
a companion library of bases which are (unconditional) bases for the spaces of interest. Such
a library of bases should provide an effective tool for nonlinear n-term approximation. As
in this paper, we conveniently have the library of anisotropic Haar bases {Hp}p which are
unconditional bases for {L,(P)}p and characterize the B! (P)-spaces.

An open problem for bases is to construct libraries of anisotropic bases consisting of
smooth functions.

Next, we pose some more delicate problems about the library of anisotropic Haar bases H.:
The ultimate problem is to characterize the approzimation spaces generated by {7, (f),}. The
difficulty of this problem stems from the highly nonlinear nature of the approximation from
the library H. This problem is intimately connected to the problem for existence of a near
best (or best) basis: For a given function f € L,, does there exist a single Haar basis

H(f) € H such that

Ten(f,H(f))p < ciﬂn%&n(f,?’{)p for all n > 1 (¢ = constant) ?
S

The answer of this question is not known even for p = 2. If the answer of the latter question
is “Yes”, then the approximation of any f € L, from the library of anisotropic Haar bases
H could be realized by approximation from a single basis #(f) and characterized by the
interpolation spaces generated by B (P*), where P* is determined from Hp- = H(f).

7 Appendix

Al. Proof of Theorems 2.4 - 2.6.
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For the proof of Theorem 2.5, we need the following lemma:

Lemma 7.1. Suppose {®,,} satisfies conditions (i)-(ii) from Theorem 2.5 and p > 1. Let
F=3 5 1@, where #F, < n, and |||, < A for j € J,. Then

1] < cAn'/?
with ¢ = ¢(cy).

Proof. Using (i), we have

1E < 0 ) 12500 e, ()l < crAll Y 1B 177 L, (-

J€In J€In

We define

= U E; and A(z):=min{|E;|:j€ J,and E; >z}, zv€k.
JEITn

Evidently, property (ii) yields > ., |E;| /P15, (z) < e1A(z) 7P, » € R Therefore,

I1Fl < eAlne) P, =ea( [ A@) tdo)

E

< cA(Z |E5] 1/ g () d x)l/p = cA#T)VP < cAn'?. O

JE€EIn

Proof of Theorem 2.5. The theorem is trivial if 0 < 7 < 1. Let 7 > 1. Then p > 1. Let
{®7}52, be a rearrangement of the sequence {®;} so that [[®7]|, > [|®3][, > .... Obviously,

151, < J7"N, where N := (Z 1@,][2)M7. (7.1)
J

We define J,,, := {j : 27"N < [|®]l, < 27N} Then U,,,, T = {7 : |24l > 27N}
and hence, using (7.1), -

#Tm < H#() T) <2 (7.2)

psm

We denote Fy, := 3., [®;]. Using Lemma 7.1 and (7.2), we obtain

||Z|‘1> My < ZIIF IIpSCZ #Tm) P2 ’”N—cNZ2 mrl/rlp) < N O

m=0 m=0 m=0

Proof of Theorem 2.4. Case I: 1 < p < oo. We introduce the following abbreviated
notation: T, := Ty (f), tm := tiy(f), and t; := 17 - t,,, if I € Py, m € Z (see (2.9)). By
(2.17), we have

Noa(£,P) = (Y lItallp)M™ = N (S). (73)

IeP
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Clearly, the sequence {t;},;cp satisfies the conditions of Theorem 2.5 and hence

I 16Ol < N (). (7.4)

JEZL

We define g(z) := Ty(x) + 372, tj(x), € RY. By (7.4), 32,4 |tj(x)] < oo for almost all
r € R and hence ¢ is well defined. Clearly, g := T}, + ZJ ma1 bj €. on R¢, for each
m € Z, with the series converging absolutely a.e. From this and (7.4), we infer ||g — T}, ||, <
I Z;’imﬂ ti()|ll, — 0 as m — oo. On the other hand, since f € L,, ||f — Tp||, 1) — 0 as
m — oo for each I € P. Therefore, f = ¢ a.e. and hence

~Tn= > t; ac. onR!, mez, (7.5)
j=m+1
where the series converges absolutely a.e., and in addition to this f € L, (P, k).
We shall next show that there exists a polynomial P € II; such that

Tn—P= Y t; in Ly(RY), meZ (7.6)

Indeed, using Lemma 2.1 and (7.4), we obtain
il < 17PNt M,y < 2Pl < 27PN(S), T € Py,

and hence [/t;||,... rey < ¢27/PN(f). Therefore,

Z 1| Lo (rey < 00, m € Z. (7.7)

j=—00

Fix I € P. If —m is sufficiently large and p < —1, then T}, —T;,,,, is an algebraic polynomial
of degree < k on I and

m m
1T = Tosllzwy = 1 D tillewy € D Ml =0 as m — —oo,
Jj=m+p+1 j=m+u+1

where we used (7.7). Therefore, there exists @@y € IIj such that

lim ||Tm - QIHLoo(I) =0.
m——o0

From this and (7.7), it readily follows that there exists a unique polynomial P € II; such
that lim,,, o [T — P||rey = 0. This and (7.7) imply (7.6). In going further, (7.4)-(7.6)
yield

f—-P= Z t; a.e. on R’ (7.8)

meZ
with the series converging absolutely a.e., and

1F =Pl < 1D 150l < eNi (£, P) < oo (7.9)

JEZ
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Now, since f € L,(R%) and f — P € L,(R%), then P =0, and (7.8)-(7.9) imply Theorem 2.5
in Case I.
Case II: 0 < p < 1. Since p < 1 and 7/p < 1, we immediately obtain

I ONE =13 1t ONE < > Nl < Qo el < ell £l

JEL IeP IeP IeP

This replaces (7.4) and everything else is the same as in Case 1. We shall skip the details.
O

Proof of Theorem 2.6. The equivalence of N, (-, P) and N, (-, P) can be proved exactly
as Lemma 2.3 was proved and we skip its proof. If 0 < n < 7, then the equivalence of
| - | e (p) and Ny, (-, P) follows by (2.14).

The estimate || f|| gar(py < Noy(f,P), for 7 < n < p, is immediate by applying Holder’s
inequality. It remains to prove that, for f € B2*(P),

Non(f, P) < N (f, P) = | fllarepy, i 7 <n<p. (7.10)
Since f € B®(P), by Theorem 2.4 (with n = 7), f can be represented in the form
f= th =: Z Z t; a.e. on R? (7.11)
jEZL JEZ IEP;

with the series converging absolutely a.e., where P € Iy, t; :=t;.(f), and ¢; := 1, - t;, if
I € Pj, and
Now(£,P)7 = 3 It
Iep
Evidently, w(t;,J), = 0 for J € P, and j < m. We use Lemma 2.1 to obtain, for
J € Py and j > m,

11
rlty DY el e 30 Ilg<e S0 P,

1ePj, ICJ 1ePj, ICJ

Set A := min{n, 1}. Using (7.11), we have, for J € P,,,

o0 o0

Wrlfo D)y < O3 wlty, IV < e 3" 1Y (G P,
j=m+1 j=m+1 IeP;, ICJ
Therefore,
Now(£,P) = (I mwn(f 0)g)"
JEP
+1_1y - r
< OSSN ST RN
meZ JEPm j=m+1 Ier,ICJ

I DRI SR stk ke

MEL JEPm j=m+1 I€P;, ICJ

_ Cz Z[Z Z A2 Y(i—m)n /\/nT/A sz T/A

MEZ JEPy j=m+1 I€P;, ICJT MEZL JEPm
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where A; := |[I|7%||t;||, and v := a + % —1=:- 117 > 0. We now want to shift the order of
summation. So, this is a Hardy inequality type situation. We first estimate S, ; by using
Hoélder’s inequality. Choose 71,72 > 0 such that 73+, = v and set s :=n/\, 1/¢' :=1—1/s.
We obtain

Sy = Z 9= (F=m)Ag—72(j—m)A Z AWA/H

j=m+1 IeP;, ICJ
oo oo
< [ Z (2—71(j—m))\)s’]1/s’[ Z 2 Y2 (j—m)A Z Aﬂ )x/ﬂ l/s
j=m+1 j=mt1 1P, ICJ
00 00
<C(ngum Z Anz\/n<0227um7 Z AT,
j=m-+1 IeP;, ICJ j=m+1 IeP;, ICJ

where we used that 7 < 7. Combining this result with the previous estimates, we obtain

IIE S S5 Sl SEST RIS SRy

meL JEPy j=m+1 IeP;, ICJT
7j—1
T —y2(j—m)T T T
< DN AT YT 2T <> TN AT = N P)
JEZ IEP; m=—00 JEZ IEP;

where we switched the order of summation. Thus (7.10) is proved.

The following simple example shows that the equivalence of ||-|| gar (p) and N, , (-, P) is not
valid if n > p. Let f := 1 for some I € P. It is readily seen that || f|| par(p) = 1I1MP = || fl,
and at the same time N, ,(f, P) = oo if n > p. O

A2. Proof of Theorem 3.4.
We first prove that, for f € B2, B® := B*(P),

[Fllae < el fllBe- (7.12)
By Theorem 2.6 and (2.17), || f{|5e &~ D2 jcp ltrll; with ¢ := tr,(f) := 11 -y (f) if I € Pry
(0 < < p). Therefore, if ||t ||, > ||trll, > -+ is a nonincreasing rearrangement of the

sequence {||¢/]|,}, then
o
e = D 2Nt -
v=0

On the other hand, Theorem 2.4 implies (||f||, < 00)

o[ Py < el Y It llly-

j=m+1

Evidently, the sequence {t;};cp satisfies the conditions of Theorem 2.5 and, therefore, we
can apply Lemma 7.1 to obtain

27 +1
oo (f, P), < CZ 1Y It llly < CZWH% I, if1<p < oo. (7.13)
Jj=v =241
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Clearly,

op (f,PE < Y Mt lp < e 2t |, if0<p<l. (7.14)
£=27+1 Jj=v

We insert (7.13) or (7.14), respectively, in the definition of ||f||4e (see (3.6)) and apply
inequality (2.12) to obtain (7.12).
We next prove that if f € A?, then f € B and
1fll5e < cllfllae- (7.15)

Case I: 7 < 1. We may assume that ¢, € XF (P) are such that ||f — onll, = om(f, P),-
Since f € A%(L,,P), then o,,(f, P), — 0 and hence

F=o1+) (g —ppm) inL, (7.16)
v=1
On the other hand, since ||por — @ov-1||, < cogu-1(f),,

el + D e — ool < WFIG+ 1 = @ullls + D llpar — oo |ff
v=1

v=1

< fllE+ e o (£ P < FIlL + ¢ o (£, P)y < cllfl[he < oo
v=0 v=0

with p := min{p, 1}, where we used that 7 < p. Therefore, the series in (7.16) converges
absolutely a.e. on R? as well. From this, we readily obtain (7 < 1)

1/ 1Be < llerlle + Z [z — pav-1] o

v=1
Applying the Bernstein inequality from Theorem 3.2 to each term above, we get

o0

1B < ellelly +ed 2 llpe — pailly)

v=1

< el +ed (20w (f,P),)" < ellflhe.
v=0

This completes the proof of (7.15) in Case L.
Case II: 7 > 1. Then p > 1. This case is more complicated and will require more careful
analysis. We may assume that ¢, € X% (P) are such that ||f — omll, = om(f, P),. Let

Om =: Z 17- Py, where A, CP, #A,, <m, and P, ; € Il;.
IeAn,

Set A3, = ;o Aoi. We have

Aj CAjn and AR <> 27 =2""1—1 forv=1,2,....
7=0
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In this part, our construction is quite similar to the one from the proof of Theorem 3.2. Let
I,» € P be the smallest box containing all boxes from A3, and let 7* be the minimal binary
subtree of P containing A%, U {I,o}. The set Aj, induces a natural subdivision of R? into
a union of disjoint maximal rings. By definition, R is a ring if R = I\ J, where I € P or
I=R*and J € PorJ =0 Wesay that R =1\ J is a mazimal ring generated by A}, if
() I € Tyor I =R"and J € 7,7 or J =0, (b) R does not contain a box smaller than /
from Aj,, and (c¢) R is maximal with these two properties. We let p! denote the set of all
maximal rings generated by AJ,. We have the following possibilities for a ring R € p}, with
R=:T\J: (i) I is a final box in 7,7 and J = 0; (ii) J € A3, or J is a branching box in 7;;
(iii) I = R? and J = I,5. Therefore, #p! < 3#A% +1 < 6-2”. Note that p}, is a collection
of disjoint rings such that
R'= ] R

Rep;

Also, since A3, C A, for each R € p;.,, we have either R € p; or R C K for some
K € p}. Thus {p}} is a sequence of nested rings.

For each ring R € pf, we denote by Ir (the mother box of R) the smallest box from P
containing R and by I}, the largest box from P contained in R. Note that [}, is uniquely
determined and is one of the two children of I in P. Also, we define Py € Il by the identity

I f = Prll,m,) = Plé%k 1f = Pz, = Ex(f, Ik)p-
It is easily seen (using Lemma 2.1) that

If = Prllz,r) < clr(f, R)p. (7.17)

Now, we set o3, := > pc . Lg - Pg. It follows, from Ay C A3, and (7.17),

1F = @3 llp < ellf = @2 llp = cour (£, P)y- (7.18)

By the definition of 5., if R € p; and K € p;_; with Ip = I, then R C K and ¢35, = ¢},
on R. We let p¢ (v > 1) denote the set of all rings from p} \ p5_; which do not share mother
boxes with rings from p} , and set p{ := pj. Note that p’ is a collection of disjoint rings.
From the above arguments, every two sets from the sequence {p¢}2° ; are disjoint and

Py —Ph = lp-Pp=1» ®p, v>1 (7.19)
Repf Repg
Note that, using (7.18),
1D Prlly = lles = ¢hilly < cowmi(f,P)y, v 2 1. (7.20)

Reps

Let R e Uj2 py and R =: I\ J with I € Py and J € Py, for some ¢ € Z and p > 1. For
¢ < m < €+ p, there is a unique I* € P,, such that J C I* C I. We define Prpy =1 - Pp
and set ®p,, i =0if m <Llorm > {+ p.
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Since || f — 3 ||, < cf|f —@or|l, = 0 and f € AY(Ly, P), similarly as in Case I (see (7.16))
we have

f=e1+ Z Py — Pp-1) I Ly (7.21)

with the series converging absolutely almost everywhere as well.

We denote by R,, the set of all rings R € p® := U2 p5, such that Ir € P,, and let K,
be the set of all rings R € p® with R=:1\J such that |J| < 27™ < |I|. Clearly, R,, UK,,
is a set of disjoint rings. From this, (7.19), and (7.21), it readily follows that (7 > 1)

Yownlf D7 < Y Y ekl el Y Pl

IePn, p=m+1 ReR, ReKm,
C i T
= [ Y (D NPT e D (1 Prumllf
pu=m+1 RER, ReKy,
Therefore,
Il = D 22" > wnlf. )]
meZ 1€Pm
o0
am T L T amT T
< ey 2 Y (D Rl +e ) 2 Y [ Prgllf = S+ Do
meZ p=m+1 RER, mez REK

We apply inequality (2.12) to the first sum above to obtain

Si<ey 2 Y |IklF < e Y [kl

mez RER, Repe

where we used that ||®g||, < [Ix|Y""Y?||®g|, = 27| Pgl|,, R € Ry, by Holder’s inequal-
ity.

We shall estimate 3, by using the inequalities: (a) || Pgml/r < 27%"||®g,m ||, which follows
by Hoélder’s inequality as above, and (b) >, [|Prmll] < c|®rl]], R € p°, which can be
proved exactly as (3.5) was proved. Applying these inequalities, we find

Zased D I®amllp e} DI ®rall; < D 12kl
meZ REK ., Rep® meZ Rep®

where we switched the order of summation.
Combining the above estimates for ¥; and X5, we obtain

1Fle < e X l1@rlly <ed D Ikl

Rep® v=0 Rep?
00 00

< e (D NeRID) P FHo5) T < gty + e Y2 Noh — @l
v=0 Reps v=1

< dlflly+eY 2700 (f, P)y < ell fll e,
v=0
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where we used (7.20) and Holder’s inequality. This completes the proof of (7.15) in Case II.
O
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