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Abstract. We combine an Eulerian-Lagrangian approach and multiresolution analysis to de-
velop unconditionally stable, explicit, multilevel methods for multidimensional linear hyperbolic
equations. The derived schemes generate accurate numerical solutions even if large time steps are
used. Furthermore, these schemes have the capability of carrying out adaptive compression without
introducing mass balance error. Computational results are presented to show the strong potential of
the numerical methods developed.
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1. Introduction. Advection-reaction partial differential equations (PDEs) model
the reactive transport of solutes in subsurface flows, fluid dynamics, and many other
important applications [11, 15]. These equations admit solutions with moving steep
fronts, which need to be resolved accurately in applications and often cause severe
numerical difficulties. Standard finite difference or finite element methods tend to
generate numerical solutions with severe nonphysical oscillations. While upstream
weighting methods can eliminate or alleviate these oscillations, they introduce exces-
sive numerical dispersion and grid orientation effects [11, 15]. Most improved methods
are explicit, and so are local, relatively easy to implement, and fully parallelizable.
It is well known that there are no explicit, unconditionally stable, consistent finite
difference schemes (or virtually any schemes with fixed stencils) for linear hyperbolic
PDEs [5]. Consequently, explicit methods are subject to the Courant-Friedrichs-Lewy
(CFL) condition and have to use small time steps in numerical simulations to maintain
the stability of the methods [11]. On the other hand, implicit methods are uncon-
ditionally stable, and so allow large time steps to be used in numerical simulations
while still maintaining their stability. But they require inverting a coefficient matrix
at each time step in order to generate numerical solutions. The time steps in implicit
methods cannot be taken too large not due to the stability constraint but for the
reason of accuracy. Local truncation error analysis shows that in implicit methods
the temporal errors and spatial errors add up. Thus, the resulting solutions are very
sensitive to the time step size.

In recent years, there is an increasing interest in the application of wavelet tech-
niques to develop efficient numerical schemes for various types of PDEs [3, 7, 14].
For hyperbolic PDEs, the existence of moving steep gradients separating smooth
structures is a clear indication that these techniques can be helpful in the design of
efficient numerical techniques for the solution of hyperbolic PDEs. Motivated by these
observations, we combine an Eulerian-Lagrangian approach and wavelet techniques
to develop unconditionally stable, explicit schemes for multidimensional advection-
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reaction PDEs, including single level schemes, multilevel schemes, and adaptive mul-
tilevel schemes. These schemes generate accurate numerical solutions even if large
time steps are used. Computational results are presented to show the strong poten-
tial of the schemes developed.

The rest of this paper is organized as follows. In section 2, we derive a refer-
ence equation for the initial-value problems of advection-reaction PDEs in multiple
space dimensions. In section 3, we briefly review multiresolution analysis and wavelet
decompositions. In section 4, we develop CFL-free, explicit numerical schemes. In
section 5, we prove the unconditional stability of these schemes. In section 6, we per-
form numerical experiments to observe the performance of the schemes and to verify
their unconditional stability. In section 7, we outline the extensions of the schemes
to the initial-boundary value problems of advection-reaction PDEs. In section 8, we
summarize the results in this paper and draw some conclusions.

2. A Reference Equation. We consider the initial-value problem for linear
advection-reaction PDEs

u + V- (vu)+ Ru =q(z,t), (z,t) €R?x(0,7],

(2.1)
u(z,0) = wup(x), x €RY

where v(z, t) is a fluid velocity field, R(z, t) is a first-order reaction coefficient, u(x, t)
is the unknown function, ¢(x,t) and ug(x) are the prescribed source term and initial
condition, respectively. We assume that ug(x) and g(x,t) have compact support, so
the exact solution u(z,t) has compact support for any finite time ¢ > 0.

We define a uniform partition of the time interval [0,T] by ¢, := nAt for n =
0,1,...,N, with At := T/N. If we choose the test functions w(z, t) to be of compact
support in space, to vanish outside the interval (¢,,—1,t,], and to be discontinuous in
time at time ¢,_;, the weak formulation for Eq. (2.1) is written as

tn
/ u(z, t,)w(x, t,)de — / / u(wy + v - Vw — Rw)(z, t)dzdt
R4 tn_1 JRA

(2.2) tn
:/ u(m,tn,l)w(w,t:{fl)dw—i—/ / q(z, t)w(zx, t)dedt,
R4 th_1 JRd

where w(z,t} ;) := lim, v w(x,t) takes into account the fact that w(x,t) is dis-

continuous in time at time ¢,, 1.

To reflect the hyperbolic nature of Eq. (2.1), we follow the ELLAM framework of
Celia et al. [1] to choose the test functions w in Eq. (2.2) from the solution space of
the adjoint equation of Eq. (2.1)

(2.3) wy+v-Vw— Rw = 0.
Along the characteristic r(6; &, ) defined by

dr

(2.4) =

r,0), with r(6;&,{),_; = &,
Eq. (2.3) is rewritten as the following differential equation

w(r(6;z,%),0) — R(r(0;&,1),0)w(r(d;z,

(2.5) 0 ; t),0) =0,
w(r(6; z,t),0)|

0=t — w(ivt)'
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Solving this equation yields the following expression for the test functions w

(2.6) w(r(0;&,1),0) = w(z, e~ Jo RPOZONDGY gy | 1§, &R
Choosing (&,f) = (z,t,), we see that once the test functions w(z,t,) are speciﬁed at
time t,, they are determined completely on the space-time strip R? x (t,, 1,t,] with

an exponential variation along the characteristic r(6; x,t,) for 0 € [t,_1,t,].
In the numerical schemes we use an Euler or Runge-Kutta formula to approximate
the characteristic r(6; &,f) and use the following approximate test functions w instead

(2.7) w(r(0;®,t,),0) = w(z, t,)e BE =0 g el 1], xeR
To avoid confusion in the derivation, we replace the dummy variables  and ¢
in the second term on the right—hand side of Eq. (2.2) by y and 0 and reserve x for

the variable in R? at time ¢,. For any y € R?, there exists an & € R? such that
y =r(0;z,t,). We obtain

/ /R , ,0)dydb

0;x,t,
/ / 02,1, O)w(r(6; m,t),8) | 2%t | oy
(28) R4 617
= /d q(x, [/ e @)=\ da + By (q, w)
R
=/dA(a: bo)ae (e, ) de -+ By (a,).
R
Here ‘%‘ is the Jacobian determinant of the transformation from x at time

tn, to 7(0;z,t,) at time 6.

1— efR(iE,tn)At

(2.9) A@,t.):={  R(z,t,)
At, otherwise,

if R(z,t,)#0,

or(0;x,t,)
(2.10) /Rd/ r(6i@ t), 9)‘ ox B

—q(w,tn)] (x,t,)e FB@:tn)(tn=0) gl g,

Incorporating Eq. (2.8) into Eq. (2.2), we obtain a reference equation

(2.2)
(2.11) /R e bl ) = /R“ Sw(e,th_y)de
+ /R d

(:17 tn 1
Az, tn)g(x, tn)w(z, ty)de + E(w),
where
tn
= / / u(wy + v - Vw — Rw)(z, t)dedt + E1(q, w).
Rd

Previously, the so-called ELLAM schemes were developed by using finite element basis
functions in the reference equation (2.11). These schemes symmetrize the governing
transport PDEs, and generates accurate numerical solutions even if very coarse spatial
grids and time steps are used.
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3. Multiresolution Analysis and Wavelet Decompositions. To develop
numerical schemes based on the reference equation (2.11), we need to define the trial
and test functions at time ¢,,. To do so, we briefly recall multiresolution analysis and
wavelet decompositions.

3.1. Multiresolution Analysis. In the standard Fourier analysis, L?-functions
are represented by linear combinations of sines and cosines. In 1910, Haar studied
the representation of L2-functions by step functions taking values £1 [12]. In the
1980’s, these ideas were explored and developed further into the theory of wavelets.
The first wavelets were introduced in early 1980’s by Stromberg [21] and Morlet et al.
[18]. Multiresolution analysis, which is one of the best ways of constructing wavelets,
began in image-processing [20, 22] and was introduced into mathematics by Mallat
[16]. Daubechies used multiresolution analysis to construct compactly supported or-
thogonal wavelets with arbitrary smoothness, which include the Haar wavelets as the
simplest case [8]. We refer readers to the survey article [10] for detailed reviews.

A sequence of closed subspaces {V;};ecz (Z-the set of all integers) of L?(R) is a
Multiresolution Analysis if

(a) these spaces are nested: V; C V;41 for Vj € Z;

) these spaces are dense in L?(R): UjezV; = L*(R) and NjezV; = 0;
(c) Vo is invariant under integer shifts: f € Vo = f(- — k) € Vo, Vk € Z;

) V; is obtained from Vy by dilation: f(-) € V; <= f(277) € Vo, Vj € Z;

) Vo is generated by a single (scaling) function ¢ and its translates {¢or : k €
Z} where

(3.1) pjn(x) =222z — k), j kel

Because Vy C V1, the scaling function ¢ € V is also a member of V. Hence, the
following refinement relation holds

(3.2) ¢ = Z hid1,k-

kEZ

In general, the sum has infinitely many terms and convergence in (3.2) is understood
in the L?(R)-norm. Daubechies first discovered a family of compactly supported
orthogonal wavelets [8], so their filters hj have only of finite length. The Coiflets
developed subsequently have improved symmetry and regularity [9]. In this paper we
use compactly supported orthogonal wavelets.

Let P; : L*(R) — V; be the orthogonal projection operator, we have

(33)  Pf =Y ealf) i with cu(f) = / F(2)é; 4 () da.
kez R

Let W;_1 be the orthogonal complement of V;_; in V;. Then we have the following
decomposition

Vi =Vi10Wj1=...

4 L
(3.4) =V, @W;, W1 ®...dWj_1, for j> j..

It is proved that the spaces W; can be generated by a single (wavelet) function ¢
[8, 9]. In other words, ¥ and its integer translates g x, with v,  being defined by

(3.5) Pik(x) = 2922z — k), j ke,
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constitute an orthonormal basis for Wy. Hence, for each fixed j, the ¢, (k € Z)
form an orthogonal basis for W;. Since 1 € Wy C Vi, it can be expressed as

(3.6) = gkb1k-
keZ

A permissible choice for the filter gy is given by gx = (=1)*"*h_,_; [9].
Let Q; : L*(R) — W, be the orthogonal projection operator

37 Qf =Y dik(f) Gy with dip(f) = / F (@) (@) da.

keZ

For f € L?(R), the telescoping sum

Jjr—1 Jjr—1
(3.8) Pisf =Pif+ > (Piprf =Pif) =Pif+ > Q;f
Jj=Jec J=Jec

represents the projection P;, f € V;, of f at a fine level j; as a direct sum of P;_f € Vj,
of f at a coarse level j. and the elements in a sequence of refined spaces W; ®&W;, 11 ®
... © Wj, 1 that provide progressively improved resolution at different scales.

3.2. Cascade Algorithm. The Cascade algorithm provides an efficient ap-
proach for decomposition and reconstruction [9]. Using the refinement equation (3.2)
and the definition (3.1) of ¢; (), we see

bi_1k(z) = 2(]’*1)/2(]5(23'*156 — k)
=20 D2 " h2' 2 ¢(2(2 w — k) — 1)

Iz
(3.9) =223 (2w — 2k — 1)
=7
= Z hi¢j 112k ()
Iz
= hiorgji(2).
Iz
Similarly, we have
(3.10) Vi 1k(@) =Y g 2wdi(@).
lez

In the decomposition process, the Cascade algorithm shows how to calculate the
scaling coefficients c; 1,1 (f) and the wavelet coefficients d; 1 x(f) at a coarser level
j — 1 from the coefficients ¢; ;(f) at a finer level j

cioiilf) = /R F(2)¢;1 4 (@)de _ /R F() S oy (w)de

lez

= Zhlf%/Rf(x)Qsj,l(x)diU :ch,l(f)hlfzka

lEZ lEZ
(3.11)

il = [ Fe)san(e)is = [ 1@ antyi(w)ds

leZ

=S g / F@)su@)de =3 cu(f)gizar.

lez lez
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In the reconstruction process, the cascade algorithm shows how to calculate the
scaling coefficients c; 1 (f) at a finer level j from the scaling coefficients ¢; 1,(f) and

the wavelet coefficients d; 1 (f) at a coarser level j — 1. Using Equations (3.3),
(3.7)—(3.10), we have

() = [ f@onle)dn = [ Pif@)osula)da
_ /R [Pioaf(2) + Qi f(@)] 65.0(w) e
:/]R [chl,l(f)Qsj1,l($)+zdj1,l(f)¢j1,l($)] )k (z)dz

ez lez

:gcg‘l,l(f)/]R¢j1,l(x)¢j,k($)d$
di_ - . d
(3.12) +é j 1,l(f)/R¢y 1,1(2)dj k(x)dx

= ch—u(f)/ lz hi—zlfﬁj,i(w)] ¢k (z)dz
l€Z R liez
+Zdj—1,l(f)/ lz gi—2l¢j,i($)] ¢jr(z)dx

l€Z R ez

= Z Z cj—1,0(f)hi-26ik + Z Z dj—1,1(f)gi—210ik
€2 icl leZ iel

= Z ci—1,1(f)hr—a + Z di—1,1(f)gr—2-
= ez

Here §; i is the Dirac Delta function, §; ; = 1 if ¢ = k or 0 otherwise.

4. Unconditionally Stable, Explicit Schemes. For simplicity, we assume
that the support of the solution u(x,t) is contained inside the spatial domain 2 :=
(a1,b1) X ... x (a4, bq) during the time period [0,T]. We will outline the extensions of
the schemes developed in this section to initial-boundary value problems of advection-
reaction PDEs in section 7.

Let No,m, € N (m =1,2,...,d) be the numbers of intervals in the mth coordinate
directions. We define spatial grids at the coarsest occurring level 0 by

bm — Gy

(4.1) 2™ := am + khom, With gy, = ——-"
’ NO,m

0<k<Nom, 1<m<d.

Using the scaling function ¢(z) in (3.1), we define

(m)
m _ r—x
(42) %;@wz%%%<—aii>,

to be the scaling functions at the level 0 that are associated with the grids xé",? in

the mth coordinate direction. We then define the corresponding functions and grids
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at level j =1,2,...,J

Nj,m = 2Nj71,m = ... = 2jN0’m,
hj’m = %hj,Lm =...= 27Jh07m,
(4.3) 2" = + kR,

o\ (x) = 2026070 (Px — k),
0<k <Njn, 1<m<d, 1<j<J,

where level 0 and J denote coarsest and finest occurring discretization levels.

4.1. A Single-Level Scheme. We define finite-dimensional spaces S;({2) at
level j by

(4.4) S;(9) := span {‘ij,k(m)}

kij ’

where the scaling functions ®; p.(z), with = (z1,...,4), and the index sets w; at
level j are defined by

d

o, k@) =[] &% (@m),

m=1

wj = {k =k, ke) €N|O < o < Ny, 1 <m <},

(4.5)

Replacing the exact solution w in Eq. (2.11) by the trial functions U(x,t,) €
S7(2) and dropping the error term E(w) in Eq. (2.11), we obtain

ScHEME I. Seek U(x,t,) € S;(€2), the space of the scaling functions defined on
the finest occurring discretization level J, with

(4.6) Uz, tn) = Y 12, k@),
kEWJ

such that the following equation holds for any w(z,t,) = ® ;g (z) with k € w.

/ Uz, t,)w(x,t,)dx
Q

:/QU(w,tn,l)w(w,tz_l)da}—|—/QA(a:,tn)q(a:,tn)w(w,tn)dw.

(4.7)

This scheme is explicit, since choosing w(w, t,) = ®; () in Eq. (4.7) reduces its
left-hand side to

(4.8) /QU(a:,tn)w(a:,tn)da: = C?,k'

The evaluation of the second term on the right-hand side of (4.7) is standard in
wavelet methods for elliptic and parabolic PDEs [3, 6, 7, 14]. However, the evaluation
of the first term on the right-hand side of (4.7) in nonconventional, due to the definition
of w(z,t} ;) that in turn results from the characteristic tracking. In the current
context, we adopt a modified forward tracking algorithm [19] to evaluate this term.
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We would enforce a Simpson or fifth-order Newton-Cotes integration quadrature on
each cell (or dyadic subcells) at time step ¢, 1, which only needs the dyadic values

of the wavelets that can be obtained a priori. To evaluate w(z, ¢, ), we track these

discrete quadrature points @, along the characteristics defined by (2.4) forward to
time step t,, and obtain &, = r(t,; x4, t,—1). We then use (2.7) to evaluate

(49) U)(Iliq,t:’;71) = w(:i:q,tn)efR(wq’tn)At_

Note that &, is not necessarily a dyadic point in general. We compute w(&q,t,) by
an interpolation based on its values at neighboring dyadic points.

4.2. A Multilevel Scheme. Notice that as in the case of Fourier series, when
the exact solution u(x,t,) is smooth its wavelet coefficients

n,Ee _ e
dj,k (u)—/ﬂu(a:,tn)\llj’k(a:)da:

decay rapidly as the level j increases [9, 10]. Here the wavelets \Il‘_zk (z) are defined
by 7
d l1—em, em
(4.10) w8 @) = [T (V0 (@) (v (@n)) ", VeeE,
m=1

where E = {0,1}¢ = {e = (e1,---,eq) | e; = 0,1} is the set of vertices of the
d-dimensional unit cube, E = E \{0}, and

(m)
(m) 12, [T T Tok
(111) You () %m¢< o )’

W (@) = 220 (20— k).

For example, when u(z,t,) is differentiable we have

dzf(u)‘ :/Q (@, t0) U (2)d
(112) —inf | [ [ute.t) — ] ¥y (@)

I /\

Inf [lu(e, tn) — CHLZ(ka)

< 02*9'/2HVU(:B,tn)HL2(Qek),
i

with Q?k = supp(‘Il;_3 k:) By using a multidimensional analogue of expansion (3.8),

we have the following multiresolution expansion for U(z,t,) € Sy, (Q2)

Jn—1

(4.13) Uz tn) = Y c o k2o k(@ +Y > Zd"ewe

kew, =0 kew; ecE

We define a CFL-free, explicit, multilevel scheme for problem (2.1) as follows:

ScHEME II. Find U(z,t,) € Sz, (), which is in the form of (4.13) with 0 < J,, <
J, such that Eq. (4.7) holds for any w(z,t,) € S, ().
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Scheme II possesses all the numerical advantages of Scheme I. For example, it
is explicit and is a multilevel scheme. In fact, if we choose w(x,t,) = @ p(x) or
\Ilek( z) for k cwj,ec E,and j =0,1,...,J, — 1, the left-hand side of Eq. (4.7) is
reduced to

/ U(a:,tn)\Iff_zk(a:)da: = d’?’;j, ecE, kcw;, 0<j<J, -1
O 3, 7,
Egs. (4.13) and (4.14) generate a multilevel expression of the solution U(x,t,). Al-
gorithmically, we first compute the coefficients ¢ ;. in Eq. (4.13) at the coarsest level

0. We than compute the coefficients d?’z for e € E and k € w; in the second term

JY
on the right-second of Eq. (4.13) starting from the coarsest occurring level 0 to the
finest level J. Finally, because all the wavelets have at least zeroth order vanishing
moments, adding the wavelet expressions level by level does not affect mass balance.

4.3. A CFL-Free, Explicit Multilevel Scheme with Adaptive and Con-
servative Compression. In applications hyperbolic PDEs often admit solutions
with very localized phenomena, which are typically smooth outside some very small
(but dynamic) regions and could develop steep fronts within these regions. In contrast
to Fourier series expansions where local singularities of the solutions could contam-
inate the decaying properties of Fourier coefficients globally, (4.12) shows that the
wavelet coefficients actually become small when the underlying solution is smooth
locally. Therefore, we can drop the terms with small wavelet coefficients to reduce
number of unknowns to be solved, without introducing large errors. On the other
hand, the wavelet coefficients also indicate where relevant detailed information is en-
countered. This observation motivates the development of a CFL-free, explicit multi-
level scheme with capability of adaptive and conservative compression to fully utilize
these properties.

ScHEME III. This scheme is divided into four steps.
Step 1. Initialization. Project the initial condition ug(x) into the space S;(2) to
obtain its approximation

(415)  Ult)= Y &2 (@) Y ¥ > Ee¥k@)

kecw, =0 kew; ecE

with 087 f and di’;: being computed by

c&k :/Quo(w)q)mk(a:)da:, k € wo,

(4.16)
n,e .
dch = /Quo(m)\llik(a:)dm, kewjecE, 0<j<J-1
We use a time marching algorithm to perform the following steps forn =1,2,..., N:

Step 2. Compression Step. Because the wavelet coefficients in the expression

(4.17) U, ta1) = Y cpl®, (w)+i DR DR HAC)

kew, iI=0kew! 'eck
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would be nearly zero in the smooth regions of U(x,t,_1), and would be noticeable in
the rough regions of U(x,t, 1). Hence we can drop many small wavelet coefficients
~n—1

in Eq. (4.17) without affecting the accuracy of the solution U(z,t,). Here w; = are

the predicted significant coefficient index sets with (32 =wj and @ wj belng defined
below for subsequent time steps.
We define level-dependent thresholding parameters ¢; by

(4.18) i 1= 272 At [Jluoll 2@y + g ta) @)

and perform the following thresholding procedure

nle
d ‘>6J,

=~ dn; 1€ if
(4.19) d =1 Sk

a 0, otherw1se
Equivalently, we introduce the significant coefficient index sets

(4.20) &= {k ean! ‘ Jec E, s. t.

—-1,e
d;k ‘ Z&'j, }

We define a compression ﬁ(m,tn_l) of U(z,t,—1) by

J—1
Iy n—1 Th—l.ere
Bt = Y apia@+ Y Y X T eu @
k i=0 ke 'ecE
(4.21) €Wy J711<:e<;.1J ec
n— 1 n—1,e e
D ST TICES DD I SE T A
kcw, =0 ke 'ecE

Step 8. Prediction Step. The wavelet expansion (4.21) provides a convenient
way to measure the smoothness of functions in terms of various function space norms
as well as locally [9, 10]. Hence, we use it to locate the smooth regions and rough
regions of U (z,t,_1) by determining the significant coefficient index sets &3?71. In
other words, the wavelet expansion itself is a convenient and accurate error indicator
for U(x,tn—1). We predict where the rough regions of U(x,t,) will be at time step
t, by determining the predicted significant coefficient index sets CJ? at level j at time

step t,. In order to locate the latter, we track the index sets @?71 the forward along
the characteristics from time ¢, time ¢,,. We also take into account for the effect of
the source term ¢(x,t) and the reaction term R(x,t) along the characteristics.

Step 4. Solution Step. Once we determine the predicted significant coefficient

index sets @7, we define an adaptive refinement subspace S7(9) € 8;(Q) by

(4.22) S3(9) = Span{{‘l’o,k}kewo’ {‘I’fk}Ziiy osJ'SJ—l}'

Then, we look for U(z,t,) € g’j (), which is in the form

(4.23) U@, tn) = D 82 p(@ +Z >y d VL

kecw, =0 kew! ecKE
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such that the following equation holds for any w(z,t,) € 5? Q)

(4.24)

/QU(:c,tn)w(a:,tn)da:

:/ﬁ(w,tn,l)w(w,tifl)dw—l—/A(w,tn)q(w,tn)w(w,tn)dw.
Q Q

Here w(x,t!_,) and A(z,t,) are defined in (2.7) and (2.9), and below (2.2).
We now briefly discuss the schemes we have developed:
1. Scheme I is a linear and single scheme, in which the number of levels and the

set of wavelet basis functions used at each time step are independent of the
solution being approximated. In scheme II the number of levels could vary
at each time step, depending on the solution being approximated. The first
term on the right-hand side of Eq. (4.13) provides a basic approximation at
the coarsest occurring level 0. The second term provides a finer and finer
resolution at time ¢,, as the level j increases from 0 to J, — 1. Both schemes
I and II are fairly easy to implement.

Scheme IIT is a nonlinear scheme, in which the number of levels and the
set of wavelet basis functions ‘Il;_a k(a:) chosen in the approximation depends

on the solution being approxima’ted [10]. Notice that the significant wavelet
coefficients d?;cl’e, which excess the thresholding parameters in (4.19), are

nonzero onlyjﬁear the moving steep front regions. Hence, with the first term
on the right-hand side of (4.23) as a base approximation, the second term on
the right-hand side of (4.23) consists of terms with significant coefficients and
provides a progressively improved resolution. In this way, scheme III resolves
the moving steep fronts present in the solutions accurately, adaptively, and
effectively.

The distribution of the significant coefficients c/l\;l ;1,6

or equivalently the sig-

nificant coefficient index sets @?71 in (4.20) could be somewhat irregular or
unstructured after the thresholding process (4.19), even though they should
have some correlations. A naive organization and management of these coef-
ficients could compromise the greatly improved efficiency of the scheme. The
tree approximation techniques proposed in [2], in which a node is in the tree
whenever one of its child node is in the tree, allows a more effective organi-
zation/encoding of the positions of the significant coefficients in an optimal
order (i.e. the number of nodes in the tree is a constant multiple of the num-

ber of significant coefficients c?? ;el’e). By tracking the significant coeflicient

index sets 63?71 from time step t,_1 to ¢, along the characteristics we can
obtain predicted significant coefficient index sets LTJ]"- at time step t, fairly
accurately and efficiently.

Because all the wavelet basis functions \Il‘_ak(a:) have at least zeroth order

)
vanishing moments, the compression used in Scheme III does not introduce
any mass balance error.

5. Stability Analysis. In this section we prove the unconditional stability of
the numerical schemes.

THEOREM 5.1. Scheme I is unconditionally stable.

Using Eq. (4.6), we choose w(®,t,) = ®; () in Eq. (4.7). Then we multiply the
resulting equation by C?, k in Eq. (4.6) and add all the resulting equations for Vk € w;
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to obtain

/ U(z,tp)dx = [ Uz, tn_1)U(z,t} |)de
Q

o J
+ /A(:c, tn)q(z, tn)U(z, t,)de.

We use the facts

Or(0;, tn)
— 7 =1 tn — 9 )

(5.2) o +0( )
U(w*,trtfl) = U(ﬂ?,tn)e_R(wvt")At,

with I being the d x d identity matrix and «* := 7(t,—1;2,t,), to bound the first
term on the right-hand side of Eq. (5.1). For convenience, we replace the dummy x
in this term by «* and reserve x for the corresponding variable at time ¢,.

/ Ule*,tn 1)U ("t} })dz"
Q

U(m*a tn—l)U(iB, tn)e*R(iﬂ,tn)At
Q

or(tn—1;2,tn)
oz

/ Uz(:c*, - or(tn_1;2,t,)
Q

8:1:
= LAt L a:atn lQ(Q) L :I:?t‘n 1 lQ(Q) .

dm‘
(5.3)
< (14 LAY U, ) 2o

9 1/2
dm]

Here L represents a generic positive constant, which might assume different values at
different places.

Recall that |[A(z,t,)| < LAt, we bound the second term on the right-hand side
of Eq. (5.1) by

[ A ta)ale, Uz ) s
Q

< LAt[HU(m,tn)nizm) + ||q(:c,tn)lliz(m]-

(5.4)

Substituting Eqgs. (5.3) and (5.4) into Eq. (5.1) we obtain

1
0@ ey < (5 + Lot (1002 t0) B + 10 tms) o)

+LoAtlq(, tn) |72 (),

(5.5)

where Ly is a fixed positive constant.
Adding Egs. (5.5) for n = 1,2,...,N; < N results in the following telescoping
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series
Ny
Z U (2, tn)]72 (0
n=1 . A
< <2 +L0At> Z[IIU(w,tn)llim) + ||U(“3’t"—1)“i2(9)}
n=1
(5.6) +L0||‘I||%(0,T;L2(Q))
< <% +L0At> |:||U(93,tN1)||2L2(Q) + ||U(“”0)||%2(9)}
N;—1
+(1+2LoAt) Y U2, ta)l72() + LollalZ g 1.1 (ay)-
n=1

Canceling the corresponding terms on both sides of (5.6) yields the following
inequality
U@, tn) 720y < (1+2LeAE)|[U(2,0)[[72(q)

(5.7) Ny ) )
+ 4LoAt Z ||U(w7tn)||L2(Q) + 2L0||q||E(O,T;L2(Q))'

n=1
Taking At small enough such that 4LyAt < 1/2, we rewrite (5.7) as follows

Ni1—-1

U@, tn)F2y < 8LoAt Y [[U(@,t0)ll72(q)

(58) n=1
%\ U(e, 02 4Lol|q||%
+ 2” (:13, )||L2(Q) + OHqHL(O,T;Lz(Q))'

Applying the Gronwall’s inequality to (5.8) yields the following stability estimate
(5.9) 10l 0,120y < [l z2c) + lallzagoz:2a |
where ||U(z,0)||z2(q) is bounded by |luo||z>(q), and

10Uz 0,7;22(0)) :ngg‘NHU(a’,tn)Hm(n),

(5.10) [

N 1/2
Ul z20m020) = AtZHU(a’ath%%Q)] -

n=0

Thus, we have proved the unconditional stability of Scheme I.

THEOREM 5.2. Schemes II and III are explicit and unconditionally stable.

The explicitness of scheme III can be shown similarly to that of scheme II in
(4.14), with w; and J, replaced by w; and J,, replaced by (I:? and J, respectively.

We now prove the unconditional stability of schemes II and III. Recalling the
expression (4.13) for U(zx,t,), we multiply (4.7) with w(zx,t,) = @, by ¢, (Un)
for Vk € wq and (4.7) with w(z,t,) = \I/;ek by d;l’lf(Un) for Vk € wj, e € E, and
0 < j < J,—1, and add all the resulting equations, yielding (5.1) again. Even though
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the number of levels J,,_1 at time step t,,_; and that at time step t,, could be different,
the techniques used in theorem 5.1 still works and leads to the stability estimate (5.9).

To prove the unconditional stability for scheme III, we recall the expression (4.23)
for U(x,t,). Multiplying (4.24) with w(z,t,) = (I)o,k: by c(’)L’k(Un) for Vk € wg and

Eq. (4.24) with w(z, t,) = ¥ by d”,‘j(U ) for Vk € @}, e € E,and 0 < j < J — 1,

adding all the resulting equations, we obtain
/ U2 (@, t)de - / (@, tn 1)U (m,t"_,)da
(5.11) Q
+ [ A=, tn)q(, t,)U(, t,)de.

Q
Using the following inequality

IIU(w,tnfl)HZp(m

d’n 1 e )

n1‘+z >y

kewo I=0ke@? ' ecE

= U@, ta-1)l72(0) +Z > >

=0 ke \@: ek

(5.12)
dn 1 e )

> U@, tn-1)lIZ2 (),

we bound the first term on the right-hand side of Eq. (5.11) as in (5.3)

[ T taUia. i )do
Q

1 ~
(5.13) < (5 +Lat) (U@, t)lle@) + 10 (@ ta-1)l32(o)]

1
5+ LAt ([T, ta)l2(0) + U (@, ta-1)l[32(0 |-

IN

We then obtain the estimate (5.5) again. The same technique used in theorem 5.1
concludes the proof of this theorem.

6. Numerical Experiments. We consider the transport of a two-dimensional
Gaussian pulse, with or without a reactive process involved. To gain some basic
understanding of the numerical methods, we compare these schemes with the stan-
dard upwind scheme that has been well understood and widely used in industrial
applications.

In the example runs, the spatial domain is Q := (=1,1) x (=1,1), a rotating
velocity field is imposed as Vi (21, z2) = —423, and Va(z1, 22) = 421. The time interval
s [0,T] = [0,7/2], which is the time period required for one complete rotation. The
initial condition ug(z1, z2) is given by

(x1 — 21c)% + (w2 — x26)2> ,

6.1 = —
(6.1) ug(z1, T2) := exp ( 552

where z1., 3., and o are the centered and standard deviations, respectively. The
corresponding analytical solution for Equation (2.1) with ¢ = 0 is given by

w(zy, T2,t)

(6.2) . (_ (Z1 = 210)° + (2 — 220)° /0 " R(r(6;31,52,0), 9)d9> ,

202
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Fig 1. Surface and contour plots of the analytical solution at T' = 3

where Z1 := x4 cos(4t)+xo sin(4t), Ty := —x1 sin(4t) +x2 cos(4t), and r(0; 1, T2,0) :=
(:Tcl cos(40) — Ty sin(40), T sin(40) + T cos(49)).

This example has been used widely to test for numerical artifacts of different
schemes, such as numerical stability, numerical dispersion, spurious oscillations, defor-
mation, and phase errors as well as other numerical effects arising in porous medium
fluid flows. In the numerical experiments, the data are chosen as follows: ¢ = 0,
1. = —0.5, £ = 0, and o = 0.0447. To observe the capability of these schemes in
handling reactive transport processes, both R = 0 and R = cos(2t) are considered.
When no reaction is present, the analytical solution u(x1,z2,t) after one complete
rotation is identical to the initial condition ug(z1,2), which is centered at (z1¢, Z2c)
with a minimum value 0 and a maximum value 1. The surface and contour plots of the
analytical solution (which is identical to the initial condition) are presented in Figures
1 (a)—(b). For R = cos(2t), the analytical solution given by (6.2) now becomes

(&1 —210)® + (22 = iv2c)2> )

1
(6.3) u(zy, z2,t) = exp <—§ sin(2t) — 572

which is identical to the analytical solution with no reaction at the final time ¢ = 7.
Hence, we can have a fair comparison of errors for both R = 0 and R = cos(2t).

We use the fourth-order Daubechies wavelets with a coarsest occurring level of
grid size hg = % and a finest occurring level of J = 3, a very coarse time step
of At = w/8. This leads to a maximal Courant number of 115. We apply scheme I
(which is identical to Scheme II) at the finest level J = 3 to compute the uncompressed
solution. We then apply scheme III with the coarsest level of mesh size hy = % and
the finest level J = 3 to compute the compressed solutions. In all the schemes, a
fourth-order Runge-Kutta method with a micro time step of At,, = At/4 is used to

track the characteristics. The tolerance (4.18) now becomes
(6.4) gj =277 Ate.

In Table 6.1, we present the L', L?, and L* errors, the maximum and minimum
values, and compression ratios (the number of unknowns in the uncompressed solu-
tion versus that of the unknowns in the compressed solution) of the uncompressed
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(a) The uncompressed solution (b) Contour plot with intervals 0.2
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(c) The compressed solution (¢ = 0.0001) (d) Contour plot with intervals 0.2

Fig 2. The uncompressed and compressed solutions at T' = 7.

(¢ = 0) and compressed solutions at the final step T' = 7 /2 for different choices of
tolerance ¢ and for both R = 0 and R = cos(2t). The contour and surface plots for
the uncompressed solution and the compressed solution with ¢ = 0.0001 at the final
step ' = w/2 and for R = cos(2t) are plotted in Figures 2 (a)—(d). These results
show that the schemes developed in this paper generate very accurate solutions, even
if very large time steps and fairly coarse grids are used. The schemes are explicit,
and are highly parallelizable. We observe that with fairly large compression ratios,
scheme IIT generates a solution comparable to the uncompressed solution. This im-
plies a further improvement in terms of computational efficiency and storage. In the
numerical implementation of these schemes, we focus on the study of the trade-off
between the compressibility and accuracy. We understand that a fine tuning and op-
timization of the implementations will fully explore the adaptivity of Scheme III and
will further improve its CPU performance. Finally, these schemes handle the reactive
effect accurately and generate numerical solutions with about the same errors as the
solutions with no reaction involved.

It is well known that the standard upwind scheme is explicit and fairly easy to
implement, and can generate very stable solutions with correct qualitative physical
trend even for very complex problems. However, the upwind scheme introduces exces-
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TABLE 6.1

17

Statistics of uncompressed (¢ = 0) and compressed solutions for different choices of tolerance

€. The time step is At =
mesh size is hg =

1

s

5 with a micro time step of Aty, =
and the finest mesh size is hy =

1

At

4

used in tracking. The coarsest

8 64
15 Compression Rate ‘ L1-error ‘ La-error ‘ Loo-error ‘ Max ‘ Min ‘ CPU
R(xz,t) =0

0 N/A 2.92x107% | 1.19x1073 | 1.38x10~2 | 0.992 0 1mé6s
10-% 26 2.92x10~% | 1.19x107% | 1.38x10~2 | 0.992 0 47 s
104 42 3.04x10~% | 1.19x1073 | 1.39x1072 | 0.992 0 33s
1073 75 5.91x10~% | 1.85x1073 | 2.41x1072 | 0.985 0 225

R(@,t) = cos(2t)

0 N/A 3.10x10~% | 1.35x1073 | 1.74x10~2 | 0.991 0 1m23s
10-% 27 3.11x10~% | 1.35x1073 | 1.74x10~2 | 0.991 0 1m
104 43 3.21x107% | 1.35x1073 | 1.74x1072 | 0.991 | © 42s
103 75 4.74x107% | 1.66x1073 | 2.13x1072 | 0.987 | 0 3ls

TABLE 6.2

Statistics of upwind schemes at time T = % with R = 0 and different spatial grids and time steps
h At Courant # L1-error La-error Loo-error Max Min CPU
= | 5 0.95 1.85x1072 | 7.02x1072 | 9.21x10~! | 0.080 | 0 4s
= | 355 0.47 1.91x1072 | 7.13x1072 | 9.30x10~! | 0.070 | 0 8s
= 1205 0.24 1.93x1072 | 7.17x1072 | 9.34x10~! | 0.067 0 17 s
3 5455 0.95 1.54x1072 | 6.30x1072 | 8.52x10~! | 0.148 0 38 s
o8 | 1865 0.47 1.61x1072 | 6.48x1072 | 8.69x10~! | 0.131 | 0 1m16s
%6 | 1850 0.95 1.17x1072 | 5.25x1072 | 7.42x107! | 0.258 | 0 | 4m22s
= | e 0.95 7.99x107% | 3.94x107% | 5.90x107% | 0.411 | 0 | 36m 22s
o1 | o850 0.91 5.01x1073 | 2.67x1072 | 4.22x10~! | 0.579 0 5h 42 m

sive numerical diffusion and tends to severely smear the steep fronts of the numerical
solutions. We present the numerical solutions of the upwind scheme with various time
steps and spatial grids. With the base spatial grid size of h = hy = é that was used
in Table 6.1, the time step At = 1355 is the largest admissible step size that meets
the CFL condition (the Courant number is 0.95). The upwind scheme generates an
extremely diffusive solution with a maximal value of only 0.080 that is only 8% of the
height of the true solution, even though it is extremely efficient per time step (it took
only 4 seconds for 1200 time steps). The surface and contour plots of the solution
are presented in Figures 3 (a)—(b). We further notice that with the same spatial grid
size, the errors increase slightly as the size of the time step is further reduced. This
observation can be explained by using the local truncation error analysis, which shows
that the local spatial and temporal errors actually have opposite signs and cancel with
each other. Hence, reducing further the time step size only leads to increased local
truncation error, and so the truncation errors of the numerical solutions of the upwind
scheme. To improve the accuracy of the numerical solutions, we have to refine both
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(a) h =g and At = 0 (b) Contour plot
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(c) h = jg5s and At = 5570 (d) Contour plot with intervals 0.2

Fig 3. The upwind solutions with different grid sizes and time steps at 17" = 7.

the spatial grids and the time steps with the Courant number being close to unity.
With a comparable CPU time which the schemes I-IIT consumed, the upwind scheme
generate a solution using a spatial grid size of h = ﬁ and a time step of At = ;.
However, the resulting solution has a maximal value of only 0.131. The finest grids
used are At = 55055, and h = ﬁ. It took the CPU time of almost 6 hours for the
upwind scheme to generate a solution with a maximal value of 0.579. The surface
and contour plots of the numerical solution are presented in Figures 3 (¢)—(d). We
also observe slight deformation due to the grid orientation effect. These comparisons
shows that these schemes are very competitive and hold strong potential.

7. Extension. We outline the extensions of the schemes developed in this paper
to the initial-boundary value problem of advection-reaction PDEs

u+V-(vu)+Ru =q(z,t), (x,t) €Qx(0,T],
(7.1) u(z,t) =urp(z,t), xz D teo,T],
u(@,0) =w(@), @ €
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where Q := (a1,b1) X ... X (a4, bq) is the spatial domain with the boundary I' = 9.
') and T are the inflow and outflow boundaries identified by

) ={z|xco v-n<0},

7.2
(7.2) o ={z|zcoQ, v-n>0}

The weak formulation corresponding to (2.2) now reads as

tn
/ u(x, t,)w(x, t,)de —+—/ /v(:z:,t) -n(x) u(z, t)w(x, t)dsdt
Q tpn_1JI
tn
(7.3) —/ / w(w + v - Vw — Rw)(z, t)dedt
tno1JQ
tn
:/u(w,tn_l)w(w,t:_l)da:—f-/ /q(:z:,t)w(:z:,t)da:dt.
Q tn_1JQ
Now the characteristic r(6; &,1) is still determined by (2.4)~(2.6), but with an ex-
ception that either (&,7) = (z,t,) for € Q or (&,1{) = (x,t) for £ € T(©) and
t € [tn—1,ts]. Then similar derivation to (2.11) leads to the following reference equa-

tion

/Qu(w,tn)w(w,tn)dw—&—/t:nl /m) v(@,t) - n(e) ul, w(w, t)dsdt

:/Qu(a:,tn,l)w(a:,t:[_l)dw+/QA(a:,tn)q(a:,tn)w(w,tn)dw

(7.4) tn
+ / A (2, t)v(z,t) - n(z)g(z, t)w(z, t)de
tn_1 F(O)
- / / v(z,t) - n(x)ur(z, t)w(z, t)de + E(w),
tn_1 JT(O
with
1 o R@)(t—t"(@,0) .
(7.5) A(l)(m, t) = R(:l:, t) ’ if R(:I:, t) 7é 0,
t—t*(x,t), otherwise,

where t*(x,t) = t,—1 if 7(0;2,t) does not backtrack to the boundary I' or t*(z,t)
represents the time instant when 7(0; x, t) backtracks to the boundary I" otherwise.

Based on the reference equation (7.5), we can define schemes I-III as before. But
now the unknown trial functions U(,t) are defined in Q at time t,, and on the space-
time outflow boundary o [tn—1,tn]. The scaling and wavelet basis functions used
in section 4 might not be orthogonal anymore near the boundary of the domain €.
Consequently, the schemes might not be explicit anymore. Notice that the region
where the basis functions are not orthogonal is of order At. Hence, the derived
schemes are explicit in most of the domain and are implicit near boundary. In other
words, we reduce the space dimension of the implicit scheme by one. Alternatively, we
could utilize the results in [4, 17] to modify the wavelet basis functions near boundary
to make them orthonormal and again lead to fully explicit schemes.

8. Conclusions. The well known Courant-Friedrichs-Lewy (CFL) condition states
that there are no explicit, unconditionally stable, consistent finite difference schemes
(in fact, any schemes with fixed stencils) for linear hyperbolic PDEs [5]. Therefore,
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although explicit methods are relatively easy to implement, are local and are fully
parallelizable, the time step sizes in these methods are subject to the CFL condition.
In fact, explicit methods often have to use very small time steps in numerical simula-
tions to maintain the stability of the methods [11]. In contrast, implicit methods are
unconditionally stable. However, they require inverting a coefficient matrix at each
time step and could be expensive. Moreover, the time step sizes of implicit methods
are still restricted for the reason of accuracy, especially when steep fronts pass by.

In this paper we combine an Eulerian-Lagrangian approach and multiresolution
analysis to develop three unconditionally stable, explicit schemes for multidimensional
linear hyperbolic PDEs. Scheme I is a single level scheme that uses all the scaling
functions at a fine level J as basis functions. It is in the flavor of standard finite
element methods and is fairly straightforward to implement. Scheme II is a multilevel
scheme that uses all the scaling functions at a coarsest occurring discretization level 0
and all the wavelets on all the levels 0,1,...,J, — 1 as basis functions. It is similar to
multigrid methods with a slash cycle, and does not need to go back and forth between
the coarse grids and the fine grids (see [13] and the references therein). Scheme
III uses a thresholding and compression technique to adaptively select the wavelet
basis functions at each successive level 0,1,...,J — 1. It significantly reduces the
number of equations and coefficients that need to be solved, while still has comparable
accuracy to the uncompressed schemes (schemes I and II). Hence, it has a greatly
improved efficiency and storage. The scheme is nonlinear and is related to adaptive
finite element methods. Furthermore, the compression used in the scheme does not
introduce any mass balance error. As we have seen, by using a multiresolution analysis
and orthogonal wavelets with an Eulerian-Lagrangian approach, we are able to obtain
single- and multi- level, explicit schemes. The use of Lagrangian coordinates enables us
to obtain accurate solutions even if very large time steps are used. Moreover, the use of
Lagrangian coordinates defines the stencils adaptively following the flow of streamlines
and the stencils are not necessarily fixed. This is the fundamental reason why we
could develop CFL-free, unconditionally stable, convergent numerical methods for
hyperbolic PDEs without contradicting the well known CFL condition. Our previous
computational results have shown the strong potential of methods developed. The
convergence analysis and error estimate for scheme I can be derived in a more or less
standard way, but the error estimates for schemes II and III require more work. We
will present the theoretical error estimates for these schemes elsewhere.

Acknowledgments. The authors would like to thank the referees for their very
helpful comments and suggestions, which greatly improved the quality of this paper.

REFERENCES

[1] M.A. Celia, T.F. Russell, I. Herrera, and R.E. Ewing, (1990). An Eulerian-Lagrangian localized
adjoint method for the advection-diffusion equation. Advances in Water Resources, 13:187—
206.

[2] A.Cohen, W. Dahmen, I. Daubechies, and R. DeVore, (1999). Tree approximation and optimal
encoding. IMI Preprint Series, Department of Mathematics, University of South Carolina,
1999:09.

[3] A. Cohen, W. Dahmen, and R. DeVore, (2001). Adaptive wavelet methods for elliptic operator
equations: convergence rates. Math. Comp., 70:27-75.

[4] A. Cohen, I. Daubechies, B. Jawerth, and P. Vial, (1993). Multiresolution analysis, wavelets
and fast algorithms on an interval. C. R. Acad. Sci. Paris Series I Math., 316:417-421.

[5] R. Courant, K.O. Friedrichs, K.O., and H. Lewy, (1928). Uber die partiellen differenzen-
gleichungen der mathematisches physik. Mathematische Annalen, 100:32—74.



Development of CFL-Free, Explicit Schemes 21

[6] W. Dahmen, A. Kunoth, and K. Urban, (1996), A wavelet Galerkin method for the Stokes
equations. Computing, 56:259-301.

[7] W. Dahmen, R. Schneider, and Y. Xu, (2000). Nonlinear functionals of wavelet expansions-
adaptive reconstruction and fast evaluation. Numer. Math., 86:49-101.

[8] I. Daubechies, (1988). Orthogonal bases of compactly supported wavelets. Communication in
Pure and Applied Mathematics 41:909-996.

[9] L. Daubechies, (1992). Ten Lectures on Wavelets, Vol. 61 of CBMS-NSF Regional Conference
Series in Applied Mathematics, STAM, Philadelphia.

[10] R.A. DeVore, (1998). Nonlinear approximation. Acta Numerica 7:51-150.

[11] B.A. Finlayson, (1992). Numerical methods for problems with moving fronts. Ravenna Park
Publishing, Seattle.

[12] A. Haar, (1910). Zur Theorie der Orthogonalen Funktionen-Systeme. Mathematische Annalen,
69:331-371.

[13] W. Hackbush, (1985). Multi-grid Methods and Applications. Springer-Verlag, Berlin.

[14] A. Harten, (1995). Multiresolution algorithms for the numerical solution of hyperbolic conser-
vation laws. Comm. Pure Appl. Math., 48:1305-1342.

[15] R.J. LeVeque, (1992). Numerical methods for conservation laws. Birkhdser Verlag, Basel.

[16] S.G. Mallet, (1989). Multiresolution and wavelet orthonormal bases in L2(R). Trans. Amer.
Math. Soc., 315:69-87.

[17] Y. Meyer, (1991). Ondelettes sur I'intervalle. Rev. Mat. Iberoamericana 7: 115-133.

[18] J. Morlet, G. Arens, I. Fourgeau, and D. Giard, (1982). Wave propagation and sampling theory.
Geophysics, 47:203-236

[19] T.F. Russell and R.V. Trujillo, (1990). Eulerian-Lagrangian localized adjoint methods with
variable coefficients in multiple dimensions, in Gambolati, et al. (ed.), Computational
Methods in Surface Hydrology, Springer-Verlag, Berlin, 357-363.

[20] M.J. Smith and D.P. Barnwell, (1986). Exact reconstruction for tree-structured subband coders.
IEEE Trans. ASSP, 34:434-441.

[21] J.O. Stromberg, (1982). A modified Franklin system and higher order spline on R™ as uncon-
ditional bases for Hardy spaces. In Becker et al., editors, Wadsworth Math. Series, pages
475-493, Belmont California.

[22] M. Vetterli, (1986). Filter banks allowing perfect reconstruction. Signal Processing, 10:219-244.



