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We study various approximation classes associated with m-term approxi-
mation by elements from a (possibly redundant) dictionary in a Banach space.
The standard approximation class associated with the best m-term approxi-
mation is compared to new classes obtained by considering m-term approxi-
mation with algorithmic constraints: thresholding and Chebychev approxima-
tion classes are studied respectively. Several embeddings of the Jackson type
hold between the mentioned approximation classes and associated generalized
smoothness spaces. The general direct estimates are based on the geometry
of the Banach space, and we discuss when stronger results can be obtained by
assuming a certain structure of the dictionary. We give several examples of
classical dictionaries where our results give some new Jackson type estimates
and recover some known estimates in LP spaces and modulation spaces.
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INTRODUCTION

Let X be a Banach space, and D = {gi,k > 1} a countable family of
unit vectors, ||gx||x = 1, which will be called a dictionary. A dictionary
with dense span is said to be complete. Our main purpose in this paper is
to study approximation classes associated with m-term approximation,
that is to say classes of elements f € X that can be approximated by m
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elements of D with some (theoretical) algorithm f — A,,(f) at a certain
rate, c.g., ||f - Am(f)”X = O(m—a)'

The structure of the paper is as follows. In Section 1 we introduce the ap-
proximation classes we want to consider and compare; they are the classes
associated with best m-term approximation, thresholding approximation,
and finally Chebyshev approximation. We make a comparison of the classes
and introduce generalized smoothness spaces at the end of the section.

In Section 2, we consider Jackson type embeddings of the smoothness
spaces into some of the approximation classes. Two types of embeddings
are considered in this section; a universal embedding that holds for every
type of dictionary in any space, and a geometric result that applies to
arbitrary dictionaries in Banach spaces with a modulus of smoothness of
powertype. The two types of embeddings are compared at the end of the
section.

Section 3 contains a study of so-called hilbertian dictionaries. We ana-
lyze the smoothness spaces associated with such dictionaries and often we
can give a complete characterization of the smoothness spaces in terms of
sequence spaces. A third type of Jackson embedding is considered, this one
based on the hilbertian structure. At the end of Section 3 we discuss in
detail how the different types of Jackson estimates are related depending
on the structure of the Banach space.

Several examples of hilbertian dictionaries are given in Section 4 to illus-
trate how the Jackson estimate of Section 3 recovers some known results
of nonlinear approximation in LP spaces and in modulation spaces.

In Section 5 we briefly study inverse estimates and show that a Bernstein
inequality along with the existence of an adaptive analysis operator gives
a complete characterization of (all) the approximation classes in terms of
generalized smoothness spaces.

Finally there is a conclusion where, among other things, encoding of
generalized smoothness spaces is discussed. An appendix concludes the
paper, in which we study structural properties of generalized smoothness
spaces and of approximation classes.

1. APPROXIMATION CLASSES

Below is a description of the approximation classes we consider and com-
pare in this paper. The first class is the benchmark for the rest; the class
associated with best m-term approximation.
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1.1. Best m-term approximation

The (nonlinear) set of all linear combinations of at most m elements from
Dis

Y (D) = { Z kG, Im CN, | Iiy] < mycp € (C} . (1)

kel,,

For any given f € X, the error associated to the best m-term approximation
to f from D is given by

o (1. D)x =, int | =] 2

Best m-term approximation will serve as a benchmark for the various other
approximation algorithms that we will consider in this paper. The best m-
term approzimation classes are defined as :

A2(D,X) = {f € X, fllag ox) = Ifllx +1flagm. <00} (3)

where | - [4a(p,x) = [[{om(f, D)X}mzlng;/a is defined using the Lorentz
(quasi)norm, see e.g. Section A.1 in the appendix. The class Ag (D, X) is
thus basically the set of functions f that can be approximated at a given
rate O(m~?%) (0 < a < o0) by a linear combination of m elements from the
dictionary. The parameter 0 < g < oo is auxiliary and gives a finer classi-
fication of the approximation rate. It turns out that AZ (D, X) is indeed a
linear subspace of X, and the quantity || - || 42(p,x) is a (quasi)norm, see

e.g. [DL93, Chapter 7, Section 9].

1.2. Thresholding approximation

Computing the best m-term approximant to a function f from an over-
complete dictionary is usually computationally intractable [DMA97, Jon97].
It may be much easier to build m-term approximants in an incremental
way :

fm (7T7 {ck}> D) = Z CrGmy (4)
k=1

where # : N — N is injective. In [KT99], greedy approzimation from
a (Schauder) basis D = B is compared to best m-term approximation.
Greedy approximants can be written as f,, (7, {cf}, D) where ¢ = cx.(f)
is a decreasing rearrangement of the (unique) coefficients {cg (f)} such that
[ =Y e, ck(f)gr. They are obtained by thresholding the coefficients of
f in the basis. In the recent paper [DKKTO01], greedy approximants from
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a Schauder basis are compared to best m-term approximants with the re-
striction that only coefficients obtained from the dual coefficient function-
als are used (i.e., a weaker notion than best m-term approximation), see
[DKKTO1] for details. This leads to the concept of almost-greedy bases.

In a redundant dictionary, we can generalize the notion of greedy ap-
proximants by considering approximants of the form fp, (7, {c}}, D) where
{lc;|} is decreasing. To avoid confusion with a different notion of “greedy
algorithm” [FT74, Hub85, Jon87, DT96, Tem00], we will rather use the no-
tion of thresholding algorithm and define thresholding approzimation classes
that generalize the “greedy approximation classes” G¢*(B) that we defined
in [GNO1] :

700, X) = {1 € X, fllraiox) = Ifllx +|flremx) <0}, (5)

with

0 1/q
|f|7—q“(’D7X) = 771?3;} ( Z ([ma”f - fm(Tra {cz}ap)nx]ql)) ) (6)
TURE Tm=1

m

for 0 < ¢ < oo, where {|c}|} is required to be nonincreasing. In the case
q = oo we simply put

o= 8, (sl = st . D)

Remark 1. 1. Notice that the sum in the expression defining the quan-
tity | f|7a (p,x) is closely related to the Lorentz norm of {||f —fu (7, {¢; }, D) x }m>1

in (/% with the twist that the sequence {||f — f (r, {¢5}, D)l x }m might
not be decreasing.

1.3. Chebyshev approximation

For each m the Chebyshev projection Py, (rp)f of f onto the (closed)
finite dimensional subspace

Vi (m, D) := span(gny s -+, 9r,,) (7)

is at least as good an m-term approximant to f as any incremental ap-
proximant fp, (7, {ct}, D) € Vin(w, D). We define Chebyshev (incremental)
approximation classes as

e (D, X) = {f € X, If lesp.x) = Iflx + Fleg o) <00} (8)
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where

| fleg (0.x) = f [[{[[f = Pyl x } oz [l 1o 9)

with the obvious modification for ¢ = co. It turns out, and we prove it in
Section A.3 in the appendix, that C3(D, X) is indeed a linear subspace of
X, and the quantity [| - [|ca(p,x) is a (quasi)norm.

1.4. Characterization of the approximation classes
So far we do not claim that the quantity || - [|7a(p,x) Is, in general, a

(quasi)norm, nor do we claim that the corresponding classes are in general
linear subspaces of X. However the following set inclusions hold

T, (D, X) CCHD,X) CAF(D,X) C X (10)
together with the inequalities
| las@,x) S 1+ leam,x) S|+ [72(0,%) (11)

where the notation |-|w < |-|v denotes the existence of a constant C < oo
such that |f|w < C|f|v for all f. The value of the constant may vary from
one occurrence in an equation to another. Throughout this paper we will
use the notation V — W, whenever V.C W and |- |w < |- |y. Let us
insist on the fact that V' (resp. W) is the subset of X where the functional
|-|v (resp. |-|w) is finite, which need not be a (semi)-(quasi)normed linear
subspace of X.

Remark 1. 2.

L. In most of this paper, Ag (D, X) will be denoted for short by Ag (D),
and similar shorthands will be used for the other classes.
2. We will reserve the notation | - ||y to the “nondegenerate” case when

Ifllv =0= f=0.

In a very special case Stechkin, DeVore, and Temlyakov have shown
that all the above approximation classes are indeed identical and have a
nice characterization.

THEOREM 1.1 ([Sted5, DT96]). If B is an orthonormal basis in a Hilbert
space H then, for 0 <7 = (a+1/2)71 <2 and 0 < ¢ < o0,

A2(B,H) = T (B, 1) = K (B, H) (12)

with equivalent (quasi)norms, where

Ky 8, H) = { £ € 1\ flcgman = MF g0 bzl <00} (13)
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In our previous paper [GNO1], this result was extended to B a quasi-
greedy basis in a Hilbert space (e.g. a Riesz basis), and similar results
[KP01, DKKTO01] were obtained whenever B is an almost-greedy basis in a
general Banach space. We refer to [KT99, Woj00] for the notions of (quasi)-
greedy bases and to [DKKTO1] for the notion of almost-greedy bases.

Theorem 1.1 essentially characterizes the approximation classes in terms
of the decay (or sparsity) of the coefficients {c;(f)} of f in a well struc-
tured basis. For B an orthonormal wavelet basis the decay properties (for
q = 7) are directly related to the smoothness of f in certain Besov spaces
BX(L™(R)) [DJP92]. For B a local Fourier basis [CM91] with a certain
restriction on the partition of the time axis, the decay (for ¢ = 7) corre-
sponds to smoothness measured in terms of modulation spaces M. [GS00].
Modulation spaces were originally introduced by Feichtinger in the context
of Gabor analysis and are discussed in details in [Gr500].

1.5. Abstract smoothness spaces

For general redundant dictionaries, there is not a unique decomposition
[ = > rck(f)gr, and it is not obvious what should be a good measure
of the sparsity of “the” coefficients of f. For frames in a Hilbert space,
there is a simple representation f = Y, cx(f)gr where ¢ (f) = (f, gr) with
D = {gi} the dual frame. It is a well known fact [DS52] that the analysis
coefficients (or frame coefficients) {(f, gx)} minimize the ¢? norm over
all possible expansions f = ), crgr. However, analysis coefficients are in
general not adapted to the aim of characterizing approximation classes in
terms of sparsity. This is illustrated with the following simple example.

ExampPLE 1.1. Let B; and By two orthonormal bases in a Hilbert
space H, and D = By U By. Then D is a tight frame with the analysis
coefficients ¢ (f) = (f, gx) /2. On the one hand, as A7 (D) is a linear space
[DL93], it is clear that it contains at least AJ(B1) + AJ(Bz). On the other
hand, for f € H to be sparse in terms of analysis coefficients, f has to be in
Ky (B, H)NKT (By, H) = Ag (B1) NAG (B2) which shows there is, in general,
no chance of getting a characterization of A7 (D) in terms of sparsity of the
frame coefficients.

It is thus preferable to define sparsity in terms of the best (i.e. sparsest)
synthesis coefficients for f. Following DeVore and Temlyakov [DT96],
we will measure sparsity using abstract smoothness classes ICqT(D, X)) which
are defined as follows. For 7 € (0,00) and ¢ € (0,00] we let K7 (D, X, M)
denote the set

closx {f S X,f = chgk,.[ C N,|I| < OO;”{CI@}I@ZlH(; < M}
kel
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Then we define K7 (D, X) = Un>0K75 (D, X, M) with

|f|lC;('D,X) = lnf{Maf € K;(DaXaM)}

Remark 1. 8. It will be shown in the appendix (Proposition A.9) that
| [z (p,x) is & (semi)-(quasi)norm on K (D, X).

The goal of this work is to generalize Theorem 1.1 to some redundant
dictionaries. Based on examples in [GNO1] we know that we need to re-
quire some structure of D. In this paper, we focus our attention on the
identification of the structure required to get continuous embeddings of the
Jackson type

K (D, X) = TH(D, X) (14)

with 7 = (a+1/p) ! for some 1 < p < oo. In a forthcoming paper [GN02a],
we will discuss the Bernstein type

A%(D, X) < Kj(D, X) (15)

with 7 = (a + 1/r)~! for some p < r. Examples from [GNO1] show that
it may not be possible to match p and r. We may even have to replace T
with one of the larger classes C or A in the Jackson-type embedding, or 4
with one of the smaller classes in the Bernstein-type one.

2. GENERAL JACKSON-TYPE EMBEDDINGS

In this section we are interested in getting Jackson embeddings
Ky (D) = A7 (D), a=1/r—1/p (16)

for some p. First we will see that a universal Jackson embedding holds
(Theorem 2.1) with p = 1 for any space X and any dictionary D. In a
second step we will discuss embeddings of the Chebyshev-Jackson type

K:(D) = C%(P), a=1/T=1/p (17)

with some p > 1 that is given by the geometry of the unit ball of X.
These embeddings hold for any dictionary in X and they imply standard
Jackson embeddings. However, DeVore and Temlyakov [DT96] remarked
that they seem to be restricted to 0 < 7 < 1 and we will prove this fact
(Theorem 2.2).

2.1. Universal Jackson embedding

For any dictionary D in any Banach space X, the following standard
Jackson estimates holds.
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THEOREM 2.1. For any 7 < 1 and q € (0,00], there is a constant C =

C(1,q) such that for D an arbitrary dictionary in an arbitrary Banach space
X and any f € K (D)

Ifllas(p) < Clflkz(py — witha=1/7—1. (18)

Proof. Let f € K7 (D) and fix M an integer. Let e > 0, and ¢ a finite
sequence such that ||T'c — f|lx < eon(f,D)x and ||clle; < (1+€)|flxcr()-
For any 1 <m < M, let ¢, the best m-term approximant to ¢ : we have
the estimate

om(f,P)x < [[Tem = fllx < Tem —Tellx +|Te - fllx

<
< llem —elle + eon (£, D) x <llem —¢ller + eom(f, D) x

which gives (1 — €)op,(f, D)x < om(c,B)p with B the canonical basis in
¢'. Taking partial sums we get

M 1/q
m®on(f,D)x]?
(1-9 (Z #) < lelagsm < Cllelly; < CO+) ez

m=1

with a =1/7—1 and C = C(7,q) given by the Hardy inequality. Letting €
go to zero, then M go to infinity, we eventually get | - |Ag(D) <C|- |K;(D).
We notice that, because 7 < 1, |l.x <[ [kr(p) < |- |kz(p), which gives
the result. O

The universal Jackson embedding guarantees that any function with (ab-
stract) smoothness 7 < 1 can be approximated with a rate of approximation
at least @« = 1/7 — 1. This is depicted graphically on Figure 1. As often
(see [DeV98]), it is convenient to use 1/7 rather than 7 as a coordinate on
the horizontal axis. For 1/7 > 1, the universally guaranteed « is given by a
line of slope one. For 1/7 < 1 we might find some space X, some dictionary
D and some f € KZ(D, X) for which « is arbitrarily close to zero, this will
be demonstrated in Theorem 2.2. It is clear that the Jackson inequality
given by Theorem 2.1 may not be the best possible since the result is too
general. In the following sections we will improve the embedding in cases
where there is more structure either of the space X or of the dictionary D.

2.2. Geometric Jackson embedding
When the space X in which the approximation takes place has some
geometrical structure, a series of known results provides with improved
Jackson-type estimates for arbitrary dictionaries. Maurey [Pis81] proved
the Jackson inequality

om(f,D)x < Cm™flczp), m=21,  a=1/r=1/p  (19)



NONLINEAR APPROXIMATION WITH DICTIONARIES (I). 9

rate of approximation
2 T

1.5¢
3 1
0.5
00 0.5 1 1.5 2
1k sparsity

FIG. 1. The universal Jackson embedding line & = max{1/7 — 1,0}, with slope 1
that is valid for any Banach space X and any dictionary D.

for D an arbitrary dictionary in X a Hilbert space, p=2and 7 =1 (a =
1/2), and Jones [Jon92] proved that the relazed greedy algorithm reaches
this rate of approximation. DeVore and Temlyakov [DT96] extended this
Jackson inequality to 0 < 7 = (a +1/2)7! < 1 (i.e. @ > 1/2), for D an
arbitrary dictionary in a Hilbert space. They also made the interesting
remark that for o < 1/2 “there seems to be no obvious analogue” to this
result. This comment can be made rigorous; we have the following theorem
that will be proved in Section 2.3.

THEOREM 2.2. In any infinite dimensional (separable) Hilbert space H
there exists a dictionary D such that the Jackson inequality (19) fails for
every T > 1.

Temlyakov [Tem00] obtained a Jackson inequality (19) for D an arbitrary
dictionary in a Banach space X, 1 < p < 2 the powertype of the modulus
of smoothness of X (see e.g. [LT79, Vol. I]), and 7 = 1 (a« = 1 — 1/p).
Later on, the same autor extended this result to 0 < 7= (a+1/p)~t < 1
(ie. a>1-— 1%) using an idea from the proof of [DT96, Theorem 3.3],
see [Tem01, Theorem 11.3]. Temlyakov’s technique is constructive and
uses a generalization of the orthogonal greedy algorithm, the so-called weak
Chebyshev greedy algorithm.

THEOREM 2.3 (Temlyakov). Let X a Banach space with modulus of
smoothness of powertype p, where 1 < p < 2. For any 0 < 7 < 1, there
exists a constant C = C(7,p) such that for any dictionary D in X, there
is a constructive algorithm that selects, for any f € KT(D), a permutation
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w(f) such that

If = Py, x5)p)fllx < Cm™%[fliz(p)s m>1
with oo = 1/7 —1/p. (20)

Note that the Jackson inequality (20) is not standard: the left hand-side
is not 0., (f,D)x, but the error of approximation using what Temlyakov
calls the weak Chebyshev greedy algorithm. Thus, the result is stronger
than a standard Jackson inequality. To mark the difference we will call it
a Chebyshev-Jackson inequality.

Using the easy fact that, for 0 <7 <1, ||| x S| |kr(p), Temlyakov’s
result can be restated in terms of a Chebyshev-Jackson embedding

KI(D) = C% (D), a=1/Tr—1/p, 0<r<1 (21)

with 1 < p < 2 the powertype of the modulus of smoothness of X.

Remark 2. 1. FEquivalent norms on X. The Chebyshev-Jackson in-
equality proved by Temlyakov is of a geometric nature : it holds for any
dictionary, but is intimately connected to the geometry of the unit ball
of X. Notice that, if we replace the original norm || - ||x by an equiva-
lent norm ||| - |[|x, the approximation spaces A% (D), T,%(D), and C3(D)
do not change, and their “norms” are simply changed to equivalent quan-
tities. As for the smoothness spaces K7 (D) their definition only involves
the topology of X, hence their “norm” remains identical under a change
of equivalent norm on X. On the other hand, a change of norm on X can
change drastically the powertype of its modulus of smoothness, as can be
seen in finite dimension where all norms are equivalent but may have very
different smoothness. Hence the powertype should be understood as the
largest powertype over all equivalent norms on X.

Keeping the above remark in mind, we have the following definition.

DerINITION 2.1.  We define P,(X) to be the largest real number such
that some norm ||| - ||| x equivalent to || - ||x has modulus of smoothness of
powertype p for all p < P;(X).

Remark 2. 2. Any Banach space has powertype 1, so Py (X) > 1 always.
It is also known [LT79, Vol. II, Theorem 1.e.16] that if X has type p; < 2
then 1 < Py(X) < pt.

Figure 2 illustrates the improvement that can be obtained (compared to
the universal Jackson embedding) from taking into account the geometry
of the space X. If P;(X) > 1 then for any 1 < p < P,(X) the space X
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has a modulus of smoothness of powertype p and we have the embedding
line @« = 1/7 —1/p for 0 < 7 < 1, which improves the generic embedding
line & = 1/7 — 1. Notice that the value of « is improved by the amount
1—1/p, i.e. taking into account the geometry of X made it possible to
gain an extra factor m~(~1/P) in the rate of approximation for any given
smoothness 0 < 7 < 1. Note also that the embedding line is limited to the
region where 1/7 > 1, which is a consequence of Theorem 2.2 as we will
see in the next section.

rate of approximation
2

1.5/
s 1
05 P x) -
9 7
% 0.5 1 15 2

1k sparsity
FIG. 2. The geometric Jackson embedding line « = 1/7 — 1/p for 0 < 7 < 1 (with
1 < p < Py(X)) compared to the generic embedding line o = 1/7 — 1.

2.3. Limitations of the geometric embedding

The fact that the Chebyshev-Jackson estimate is restricted to 0 < 7 < 1
could seem an artifact of the technique used to prove it, and one could
wonder if a result giving a “complete” embedding line is possible. However,
we have already mentioned Theorem 2.2 which shows that 0 < 7 < 1 is
an essential limitation. For the proof of Theorem 2.2, we will need the
following lemma.

LEmMMA 2.1. Let D = {gi} a dictionary in an arbitrary Banach space
X and assume g € X is an accumulation point of D (i.e. for every neight-
borhood B of g in X, there exists infinitely many values of k for which
gr € B). Then for all T > 1, |g|x-(p) = 0.

This lemma shows in particular that if the dictionary has at least one

accumulation point, then | - |x-(p) can at most be a semi-(quasi) norm.

Proof of Lemma 2.1. By standard arguments, there exists a sequence of
{kn}n>o0 such that ||g — gz, ||x < 27". Note that ||gi|]|x =1,k > 1 implies
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llgllx = 1. For all N > 1

1 & 1
- = < .
lo- 5 Lol < 5
It follows that |g|k-(p) < N'/7=1for 7 > 1 and all N, hence the result. 0.

Proof of Theorem 2.2. Let B = {e;}72, an orthonormal basis of # and
Vj := span{eyj, ezj1}. Let D := {gjn,j,n > 0} where for each j {g;n}n>0
is a sequence of unit vectors from Vj. Clearly, {gjn}n>0 has at least one
accumulation point g; € Vj,[|g;l| = 1 for each j and, by Lemma 2.1, for
any 7 > 1 and j, |g;|k-(p) = 0. For any % sequence ¢ = {¢;};>0, one can
properly define f := 3}, c;g; and check that |f|c-(p) = 0. On the other
hand, o0,,(f, D)y can decrease arbitrarily slowly, as one can check that
on(f; D) = om(f,{9;,5 2 0})n = onlc, B)4, where B is the canonical
basis of £2. d

Remark 2. 3. Notice that the above arguments also show that the
Jackson inequality (19) cannot be “repaired” for 7 > 1 by replacing |-|x-(p)

with [| - [[x + |- [kz(p)-
Theorem 2.2 shows that a “complete” embedding line KZ(D) — A% (D)

cannot be expected in general unless we assume some structure on the
dictionary D. Structured dictionaries are discussed in the next section.

3. HILBERTIAN DICTIONARIES

In this section, we will see that no complete Jackson embedding can be
obtained with p > 1 without assuming that D has a hilbertian structure.

DEFINITION 3.1. A dictionary D is called £7-hilbertian if for any se-
quence ¢ = {¢g}r>1 € Kg, the series ZkZI crgr is convergent in X and

IS cxgnll < llell; (22)

E>1

Remark 3. 1. Note that the convergence of )", crgx in Definition 3.1
is necessarily unconditional provided that £; is not one of the extremal
nonseparable space such as £°°. Also notice that any dictionary is £7-
hilbertian for 0 < 7 < 1.

First, we study hilbertian dictionary in more details and give a simple
representation of the abstract smoothness class K7 (D) for such dictionaries.
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Then, we will use this representation to prove a strong Jackson embedding
of the type K7 (D) — 7, (D) and get the following theorem

THEOREM 3.1. Let D a dictionary in a Banach space X, and p > 1.
The following properties are equivalent

Vr<p Vg, Va<l/t—1/p Ky (D) = T2(D), (23)
Vr<p, Vq Va<l/t—1/p Ky (D) = C(D), (24)
Vr<p, Vg Ya<l/t—1/p Ky (D) = A7 (D), (25)

V1T<p D is ¢] — hilbertian.  (26)

At the end of this section we will compare the embeddings provided by
the geometry of X to the ones obtained from the structure of D.

3.1. Properties of hilbertian dictionaries
For any dictionary D = {g,} it makes sense to define the operator

T :{ck}— Z Ck Yk (27)
K

on the space £° of finite sequences ¢ = {cx}. Some of the structure of D
can be studied through the properties of T'. In particular, the condition
for D to be {j-hilbertian can easily be verified to be equivalent to the
requirement that 7' can be extended to a continuous linear operator from
¢; to X'. Notice that the ¢ -hilbertian property of D does not change under
a change of equivalent norm on X. For the purpose of further discussion,
we have the following definition.

DEFINITION 3.2.  For any dictionary D we define

Py(D, X) := sup{p : D is ¢{-hilbertian} € [1, o0].

Remark 3. 2. It is easy to deduce directly from the definition of cotype
of a Banach space (see [LT79, Vol. II, Sec. 1.e.]), that if X has cotype
pe > 2, then 1 < Py(D, X) < pe.

EXAMPLE 3.1. In a Hilbert space H, ¢*-hilbertian dictionaries are
simply called hilbertian dictionaries. For any hilbertian dictionary, the
operator T : {2 — H has a dense range provided that D is complete. If D is
complete and hilbertian, the range of T' is closed if, and only if, 7" is onto,



14 REMI GRIBONVAL AND MORTEN NIELSEN

that is to say if the dictionary is a frame [Chr02]. In such a case there exists
a dual frame D = {g} such that for all f € H, ||f|l, < [H{f; gr) }>1ll2 <
{(f,gr) }r>1ll,2 and

ED A ITED RS (28)
k

k

Sometimes these relations extend to other spaces as well: for “nice” shift
invariant systems [ASTO1] there is a dual system D such that for and
any f € TP, 1 < p < oo the expansion (28) converges unconditionally
in LP(R) and ||l = K06 hisll < (G0 besill for “nice”
Gabor systems, a similar result holds where LP(R) is replaced with the
modulation space Mp(R) [Gro00]. More generally, when D can be seen as
a subset of the dual X* and the relation ||f||x =< [[{(f, &) }x>1l|,» holds
true, D is called a p-frame for X [Chr02].

Let us give a simple characterization of dictionaries which are £}-hilbertian.

PROPOSITION 3.1. Let D a dictionary in a Banach space X, and 1 <
p < oo. The following two properties are equivalent:

(i) D is ¢4 -hilbertian.

(ii) There is a constant C < oo, for every set of indices I, C N of
cardinality |I,| < m and every choice of signs

1) £gillx < Cmt/e. (29)

kel,,

Proof.

(i)=(ii) is obvious.

(ii))=(i) Let ¢ € £} and 7 a permutation of N such that ¢} = ¢,,, and
define a sequence f,, = fu(€) := > p_ Ctgre = Dpey CrGmy- By an ex-
tremal point argument (write f, in barycentric coordinates with respect
to the system {)_] +gx,} and use the triangle inequality) and the growth
assumption (29), we can write for every n > m

||fn - fm“X < C(n - m)l/p|0:n|-
By taking m = 2/ and n = 277! with j > 0 we get

| faitr — fosllx < C29/7|ch;|
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hence 3°7° [| foitr — faillx < CX72, |c3,127/7 < Cllel|w. Hence we can
define

o0
Te:= lim for = fi+ Y _(forer — for)
which satisfies ||T'c||x < ||e||e= + C~’||c||gz{ < (14 C')||c||gf. It is easy to
check that indeed T'¢ = lim f,, and the definition of T'¢ does not depend
on the choice of a particular decreasing rearrangement of ¢. Now, for ¢;
and ¢; two finite sequences and A a scalar, it is clear that T'(¢c; + Ac2) =
Tc1+ AT 'ca, hence T, restricted to the dense subspace ¥ of ¢} consisting of
finite sequences, is linear and continuous. It follows by standard arguments
that T extends to a bounded linear operator from £ to X. O

3.2. Representation of the abstract smoothness class

The hilbertian structure of D makes it possible to get a nice representa-
tion of some of the smoothness classes K7 (D). This representation will be
very useful in the proof of some Jackson-type estimates. The operator T’
below is the one defined at the beginning of Section 3.1.

PROPOSITION 3.2. Assume D is {£-hilbertian, where (2 is reflexive, and
let £ — €%. Then

Ky (D) =Tt (30)
is a (quasi)Banach space which is continuously embedded in X .

In order to prove Proposition 3.2, we need a lemma.

LemMA 3.1.  Assume D is (2-hilbertian, where (2 is reflexive, and let
€)= (2. For all f € K7 (D), there exists some ¢ € (] which realizes the
smoothness norm

[fliczp) = llell; » with f=Te. (31)

Consequently

. = i . 2
| flicz () celI;}ILTCHCHl; (32)

If in addition €7 is strictly convex, then ¢ = c; (f) is unique.

Proof. By definition of K7 (D), for f € K} (D) there exists finite sequences
¢ € £y, n=1,2,...such that [|ep[l,, < [fliy(p)+1/nand ||f —Tenllx <

1/n. The sequence {c,}n>1 is bounded in (7, hence it is also bounded
in (2. As (P is a reflexive Banach space, it is weakly compact and there
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exists a subsequence ¢, converging weakly in ¢£ to some ¢ € ¢£. Applying
Fatou’s lemma twice gives ||c||£; < |flz(o)-

From the weak convergence in 2 and the continuity of ' : /£ — X we
get that T'c,, converges weakly to T'cin X. As we already know its strong
limit in X is f, we obtain f = T'c which gives |f|x:(p) <llelle; .

By the strict convexity of £7, if ¢y # ¢; both satisfy Eq. (31), we get
ll(e1 +co)/2[le; <|flicz(p). As T((co+e€1)/2) = f this contradicts (32). O

Proof of Proposition 3.2. The equality K7 (D) = T'¢] follows directly from
Lemma 3.1. Then we observe that for any f € K7 (D),

-1
|flicz o) = llelle; > llellez > CT7 I fllx

where the last inequality comes from the continuity of 7' : £ — X. The
conclusion is reached using Proposition A.9 proved in the appendix. O

Let us state one simple and straightforward Corollary of Proposition 3.2.

COROLLARY 3.1. Assume Dy and Dy are both (2 -hilbertian dictionaries,
where (8 is reflexive, and let £; — (8. Then for D =Dy UDs

K3 (D) = KI(Dy) + K7 (Ds).

3.3. Strong Jackson embedding

For the standard Jackson embedding (16) to hold for any 0 < 7 < p,
0 <a=1/T—1/p < co with p > 1, the dictionary needs some hilber-
tian structure : this is essentially Theorem 3.1, but we can actually prove
some slightly stronger results. Some of the statements in Theorem 3.1 are
almost trivial : from (10) and (11) it is obvious that (23) = (24) = (25).
Moreover, using the same technique as [GNO1, Proposition 4.1], we easily
obtain (25) = (26) as follows:

Proof. From the double embedding K7 (D) — AL (D) — X, 7 <
(a+1/p)~*, we have || - [|[x $|-|kr(p). Thus we can check for I,,, C N of
cardinality |1,,| = m, || 2., Egrllx < Cm'/™ which by Proposition 3.1
gives that D is ¢{-hilbertian. But as « can be arbitrarily close to 0, 7 can

be arbitrarily close to p and this gives the result. |

Next we will show that not only the ¢7-hilbertian property of D is (al-
most) necessary for any Jackson embedding to hold for all « > 0, it is also
sufficient to get the strong Jackson embedding (23) for all @ > 0. We will
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make use of the representation of K7 (D) given by Proposition 3.2. Notice
that Theorem 3.2 also shows that (26) = (23) which finally completes the
proof of Theorem 3.1.

THEOREM 3.2. For any 7 < p, 0 < g < 00, and 1 < p < oo there is

a constant C = C(1,q,p) such that for any €% -hilbertian dictionary D and
any f € K7 (D)

7o) SITUZCOV Igpy  withT=(a+1/p)""  (33)

where |||L|||§ denotes the operator norm of a continuous linear operator
L:Y - X.

Proof. Let 0 < 7 = (a4 1/p)™" < p, ¢ € (0,00] and f € K} (D). As
7 < p and p > 1 we have, for some small € > 0, {7 — (F7¢ — %, where
1 < p—e. Hence by Lemma 3.1 we can take ¢ € £ a representation of f.
Let {cn} the best m-term approximants to ¢ from the canonical basis B
of the sequence space ZqT : ¢, is obtained by thresholding ¢ = {cg}x>1 to
keep its m largest coefficients. Let f,, (7, {c}}, D) := T'c,, (where {c}} is a
decreasing rearrangement of ¢, see Equation (4)). Obviously for m > 1

If = frn(m 4k}, D)lix = 1Te = Temllx < IT1pom(e, B)e
and ||f]lx < |||T|||§§ ||c||€§;. From standard results (see e.g. [DT96]) we get
lellg + [{m e Bl s [ e < Clelle
where C = C(1,¢q,p). Eventually we obtain

X X
1fll7amy < WTNCliell: = 1TNe Clf kg m)- O

Remark 3. 3. When D is only ¢!-hilbertian, we loose the representation
of K7(D) (Lemma 3.1) because the weak compactness argument breaks
down. Indeed, we have essentially no other description of K} (D) than the
fact that it is the closure of the convex hull of {+g, g € D}, see Example 3.2.
It does not seem possible to extend Theorem 3.2 to p = 1.

Notice that the Jackson embedding provided by Theorem 3.2 is strong :
not only does it show that the best m-term error decays in O(m~%) (this
would be the standard Jackson inequality), indeed there is a “thresholding
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algorithm” that takes as input an (adaptive) sparse representation ¢ of
f € K7 (D) and provides the rate of approximation

m
1f =Y ckompllx Sm I flkrpy,  m>1,  71=(a+1/p) "
k=1
(34)
The above inequality is not a standard Jackson inequality, we will denote
it a thresholding-Jackson inequality. The rate of Chebyshev or best
m-term approximation could be even larger, we would need an inverse
estimate (a Bernstein-type embedding) to eliminate this possibility. This
will be discussed further in Section 5.

3.4. Adaptive analysis operator and atomic decompositions

One should notice that the representation ¢ that yields the rate of thresh-
olding approximation m~% in the thresholding-Jackson inequality (34) may
depend on f in a nonlinear way. A natural question arising from the repre-
sentation of K7 (D) in Lemma 3.1 is whether there exists a (linear) adap-
tive analysis operator U : f — U(f) = {g5(f) }r>1, 95 € X* that gives
(near) sparsest representation of every f. In other words, does there exist
U and, for all 0 < 7 < p,q € (0,00], some C = C(1,q) such that for all
f eK;(D),

||U(f)||qu < C|f|l€;(D)

and TU(f) = f. That is to say, is there a (linear) right inverse U to T that
simultaneously maps K7 (D) to ¢ in the range 0 < 7 < p.

The existence of such an operator is trivial for D a basis, and it is
also known to exist for twice oversampled framelet dictionaries in LP(R)
[GNO02b], p-frames in shift invariant subspaces of LP(R?) [AST01], and Ga-
bor dictionaries in the weighted modulation spaces M’ (R) [GS00]. How-
ever, whether such a U exists certainly depends in general on the structure
of the dictionary D. This question has an important practical impact on
the construction of numerical approximation algorithms that “adapt” au-
tomatically to the sparsity of f (see a discussion on this topic in [GN02b]).

Remark 3. 4. The operator U discussed above is closely related to the
concept, of atomic decompositions for a Banach space Y, and more gener-
ally of Banach frames thereof. A Banach frame is basically defined as an
isomorphic analysis operator induced by a sequence of “coefficient function-
als” (elements of the dual space X*) for which there exists a bounded left
inverse or reconstruction operator, we refer to [Chr02] for more details.
In the case considered above, for 1 < 7 < p, K7 (D) is a Banach space by
Proposition 3.2, and if U : f = U(f) = {g;(f)} maps K7 (D) continuously
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into 7, then for all f = TU(f) € K] (D)
|flicz oy S NUHle; < Clfliczm)

and U is thus isomorphic on K7 (D). This means that (K7(D),{gr}) is a
Banach frame with coefficient space ¢7. Indeed ({gr},{g}}) is an atomic
decomposition of K7 (D).

In the appendix, we discuss the theoretical impact of the existence of
such a U to the interpolation of (abstract) smoothness spaces. Next we
summarize and discuss the Jackson-type results obtained so far.

3.5. Geometry versus structure of the dictionary
Let us now compare the embedding lines obtained so far. First we con-
sider the case where the geometric line “beats” the structural line for 7 < 1.
Later we will consider the opposite situation. We have the following exam-
ple.

ExampLe 3.2.  Let X be a Banach space with P;(X) > 1 [e.g. a Hilbert
space] and D a dictionary with at least one accumulation point g [e.g. such
as constructed for the proof of Theorem 2.3]. Combining Lemma 2.1 and
Proposition 3.2 we see that Ps(D, X) = 1. Thus, in this case the geometric
embedding line is strictly better than the structural one for 1/7 > 1.
Moreover, for 1/7 < 1, no Jackson type embedding makes sense as |- |x-(p)
is only a semi-(quasi) norm.

The leftmost graph in Figure 3 illustrates a situation similar to that of
Example 3.2, with the only difference that the graph depicts the case where
1 < Py(D,X) < Py(X). The structural embedding line is valid for a larger
range of values of 1/7 than the geometric embedding, but the geometric
result is stronger on its range of validity.

Remark 3. 5. The geometric Jackson embedding is given by K7(D) —
C% (D) — AL (D), a = 1/7 — 1/p, and thus restricted to secondary index
q = 00. However for 0 < 13 < 1 < 1 we can easily interpolate to get

(KZ2(D). K7 (D)), = (A% (D), A (D)), = AS(D),

with a = (1 —60)az +6a; (we used the fact that AJ (D) is an interpolation
family, see [DL93, Chap. 7]). Notice that Lemma A.1 (in the appendix)
shows that P(D, X) > 1 ensures that K7 (D) < (K72(D), K] (D))o , With

1/7 = (1—0)/72 + 6/, which gives us the embedding line with a general
secondary index.
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rate of approximation rate of approximation
2 2
1.5¢ 1.5¢
3 1 3 1

1/P_(D,X) 7 1/P (D,X)

05 ap(x) - 05
G0 0.5 1 1.5 2 G0 0.5 1 1.5 2
1 sparsity 1 sparsity

FIG. 3. Comparison of the structural Jackson embedding line and the geometric
one. The leftmost graph depicts a situation where the structural embedding is valid for
a larger range of values of 1/7 than the geometric embedding, but the geometric result
is stronger on its range of validity. The rightmost corresponds to the opposite situation,
where the structural embedding line is better than the geometric line throughout its
domain of validity.

In the same spirit, we interpolate the “extremal” geometric and struc-
tural embeddings and get with 7 <1 —1/P,(X), 1 < p < Ps(D, X)
K5 (D) = (K1(D), K1 (D))

= (X, 45(D)) o = AT(D),

a/rq a/rq

with @ = (1/7 — 1/p)ﬁ < r. In the limit case where the embeddings
hold with r = 1 — 1/Py(X) and p = Ps(D, X), we get the embedding
segment

1 1 1-1/P,(X)
4= (F - PS(D,X)) 1-1/P(D,X)’

The opposite situation, where the structural embedding line is better
than the geometric line throughout its domain, is also possible. This partic-
ular situation is illustrated on the rightmost graph in Figure 3. An explicit
example is given by the following:

ExampPLE 3.3. Cousider a normalized basis B of MRA wavelets
(with isotropic dilation) in X := LP(R?), 1 < p < oo. It is known that
P,(LP(R?)) = min{2, p} [LT79]. Moreover, it can be verified that B is ¢?-
hilbertian (1 < p < 2) or ¢}-hilbertian (2 < p < o0), hence Ps(B,X) = p,
1 <p<oo.

e For 1 < p <2 we have Ps(B,X) = p = P,;(X).
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e For 2 < p < o0, this gives P;(B,X) =p > 2 = Py(X).

Hence for all 1 < p < oo, the structural embedding line for dictionaries of
this type is given by @« = 1/7 — 1/pfor all 0 < 7 < p. For 2 < p <
the structural embedding line is strictly better than the geometric line for
0 < 7 < p, which corresponds exactly to the rightmost graph on Figure 3.

4. EXAMPLES OF HILBERTIAN DICTIONARIES

In this section we will consider the ¢4-hilbertian property of several clas-
sical types of dictionaries, first in L? spaces, and then in other classical
functional spaces (Besov spaces By (L™ (R)), modulation spaces M,’(R)).
This will give further examples where the structural Jackson embedding
result (Theorem 3.2) applies.

4.1. Dictionaries in LP

First we consider a general lemma that will make it easier to check the
(P-hilbertian property for many well-known dictionaries. We denote by {2
some o-finite measure space, and we have the following lemma.

LEMMA 4.1. Let 1 < r < oo and D = {gx,k € N} an {}-hilbertian
(normalized) dictionary in X = L"(Q), and assume that every gy is in
LY(Q). Suppose that for every 1 < p < r there is some constant C = C(p)
such that for every gy, with 6, , = (1 —1/p)/(1—1/r),

,gr‘p
lgrllzr et < Cllgkllee)- (35)

Then Dy := {gi/llgrllLe (), k € N} is an (P-hilbertian dictionary in LP(Q2),
1<p<r.

Moreover, if || < co and D has dense span in L" (), then D, has dense
span in LP(Q), 1 <p <.

Proof. By assumption, T is continuous from £ to L"(€2). Then, as D
is obviously ¢!-hilbertian in L(£2), 7" is also continuous from the weighted
space (' (w) to L'(Q) , where wy = ||gr||11(q). Hence T' is continuous
from the interpolation space (£*(w),£")g, ., to the interpolation space
(LY(),L"(Q))s,.,» = LP(Q) (for details on the real method of interpo-
lation, we refer to [DL93, Chap. 7]). By Stein’s theorem on interpolation
of weighted ¢? spaces [BS88, p. 213], T' is thus continuous from ¢?(w'=%~»)
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to LP(2), hence for some constant C' = C'(p) < oo

||Z

||LP(Q) Cl”{ck/”ngLP(Q)}||£p(w1—sr)},)

||91c||L »(9)

IN

Orp
C'|{ex - Ulgallzz a7 MNarllLo@)Hl
C'Cli{cxler-

IN

The denseness claim follows from standard arguments using Holder’s in-
equality and the fact that, e.g., the continuous functions are dense in both
L"(Q) and LP(Q). O

It is easy to check the assumptions of Lemma 4.1 on classical dictionaries.

1 Wavelet bases and wavelet frames in L?(R?)

Consider D a (Bi)-orthogonal wavelet basis [Coh92, Dau92, Mal98] or a
(tight) wavelet frame [RS97b, RS97a, DHRS01] for L?(R?)

W () =202 2x — k),  1<(<L,jeL kel (36)

As [ oy = 290/27P) 94| Ly gy, ome cam check, for 1< p < oo,

e 1—02,
o ||L1(R;)”¢

e l=f2p _ ojd(1/2—-1 1
||1/}],k|| o =2 @/ /p)||¢ ||L1(Rd) ||1/1€||L

L (R9) kHLP(Rd);

o (35) holds with C(p) = max}_, ||¢€||1L:(9]§)p/||1/1€||m . Thus Lemma, 4.1
applies with 7 = 2, and we get that such systems are £7- hllbertlan in LP(R?)
for any 1 <p <2,

One needs to check in each case whether the LP(R?) normalized system
is actually dense in LP(R?). This may be a highly nontrivial question in
the frame case, see e.g. [Mey92, Chap. 4]. The (bi) - orthogonal wavelet
systems are dense in LP(R?), 1 < p < oo, assuming mild decay of the
generators [Woj99, Pom00].

For D, a (bi)-orthogonal wavelet system normalized in L?(R?), Proposi-
tion 3.2 together with Theorem 3.2 shows that

K7 (Dy, LP(RY)) = T2(D), 7= (a+1/p) ", 1<p<2,

and if D and its dual system have sufficient smoothness and vanishing mo-
ments it is known (see, e.g., [DJP92]) that KT (D,, LP(R?)) can be identified
with the Besov space B¢ (L™ (R?)) for 7 = (a + 1/p)~!
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Remark 4. 1. For wavelet like systems, one can sometimes extend
the result obtained from Lemma 4.1 and show that such systems are ¢4-
hilbertian in LP(R?) for 1 < p < oo using the special structure of the func-
tions and the theory of Calderén-Zygmund operators, see [GN02b, Theorem
4.11].

2 Uniformly bounded orthonormal systems in L?(Q2), |Q] < oo

Let D = {gk,k € N} any uniformly bounded orthonormal system in
L?(Q), |92 < co. A consequence of the Holder inequality is that for 0 <
p < 00, there exist 0 < A, < oo such that

1/Ap <|lgllr) < 4p,  keEN

It follows that such systems satisfy the hypothesis (35) of Lemma 4.1 with
r = 2, and we get that they are ¢P-hilbertian and complete in LP(2) for any
1 < p < 2. The prime examples of such systems are the trigonometric
system and the Walsh system (see e.g. [GES91]) on L?[0,1).

Using Proposition 3.2 and Theorem 3.2 together with the fact that such
a system is simultaneously (quasi)normalized in all LP, 1 < p < 2, , one
easily gets the following result.

ProposITION 4.3. Let D = {gi, k € N} a uniformly bounded orthonor-
mal system in L*(2), |Q] < co. Assume that (] — (*. We have, with
equivalent norms, for all 1 < p < 2 such that € — (7,

K3 (Dy, LP(©)) = K (D, L2(2)) = { 1 € LAQNL* (@), {(F, 0) iz € £ ).
(37)
and it follows that

K7 (D, L*(Q) < T, (D, L*(2)), a=1/T—1/p. (38)

4.2. Dictionaries in LP and modulation spaces

Not all interesting dictionaries live in LP: in the following we concentrate
on time-frequency dictionaries, for which the natural function spaces are
the modulation spaces. We consider the ¢P-hilbertian property of such
dictionaries, first in L? spaces, then in modulation spaces. We refer the
reader to [Gr600, Chapters 11-12] for the basic definition and properties of
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weighted modulation spaces M’(R) with a-moderate weight w(z,y). For
the trivial weight w = 1, we denote M (R) instead of M}’(R).

1 Local Fourier bases in LP(R)

Consider D an orthonormal local Fourier basis [CM91] in L*(R) =
M5 (R). For example, D may be the orthonormal Wilson bases of Daubechies-
Jaffard-Journé [DJJ91] or, e.g., a system of the form

2 . T -«
Gn,m () = 4/ mbn(x) sin (ﬂ-manﬂi—nan)’ ne€Z,meN, (39)

with appropriate “breakpoints” «,, < ay,+1 and “window” functions b,,(z).

Provided that the window sizes a,,+1 — a;, are uniformly bounded from
above and below, the same argument as for the uniformly bounded or-
thonormal systems on L?(2), |Q| < oo applies: for 0 < p < co there exist
0 < A, < oo such that

1/4, < ||gn7m||LP(lR) < A4, n €z, meN,

so that (35) is valid. Lemma 4.1 then ensures that D, normalized in LP(R)
is ¢P-hilbertian for 1 < p < 2. Completeness follows from the fact that the
expansion of f in a local Fourier basis can be rewritten as the expansion
of a locally folded version of f in a standard trigonometric basis, see e.g.
[AWW92]. Combining with Proposition 3.2 and Theorem 3.2, we get the
following result.

PROPOSITION 4.4. Let D = {gnm,n € Z,m € N} be a local Fourier
basis in L*(R), with window size uniformly bounded from above and below.
Assume that 7 < 2. We have, with equivalent norms, for all 1 < p < 2
such that 7 — (P,

}C;— (Dp7 LP(R)) = }C;— (D7 LZ(R)) = {f € LP(R)OLZ (]R)a {<f7 gn,m>}n7m S [g}
(40)
and it follows that

K;(D,L*(R)) < 7,2 (D, L*(R)), a=1/r—1/p. (41)
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2 Local Fourier bases in M’ (R)

The classical LP(R) spaces are not the natural spaces to study nonlinear
approximation with local Fourier bases: one should instead consider them
in modulation spaces. It is known that under some regularity conditions
on the “window” functions by, for 1 < p < oo [GS00, Theorem 2] and
a-moderate weights w, we have the equivalence

||f||M;,”(R) = ||{<f> gn,m>wn,m}n,m||lP(ZxN) (42)

with wy, m = w(an, m) and {g,,m} normalized in L?(R). The
result also extends to 0 < p < 1, [Sam98], but we will only consider the
Banach space case here. It follows that for 1 < p < oo there exist 0 < 4, <

oo such that
Wy,m [Ap < ||gn,m||M;”(R) < Apwnym, ne€zZ,meN,

and for 1 <p < oo, D is an unconditional basis for M’ (R).

Indeeed, D* := {g¥,, := gn.m/l|gn.m|lne ®)} is simultaneously a (quasi)-
normalized greedy basis [KT99] in all M ’(R) spaces : it is both uncondi-
tional and democratic, i.e. for some C' < oo, any choice of signs and any
two sets of indices I, I' C Z x N of same cardinality,

I Z g mllap ) < Cl Z 95 ml v w)-

n,mel n,mel’

From general results on nonlinear approximation with greedy bases [GNO1,
DKKTO01], we recover [GS00, Theorem 3]: with equivalent norms, for all
0<7<pwithl<p<r < oo, we have

A2 (D, MP(R)) = T2 (D, MP(R)) = K (DY, MP(R),  a=1/r—1/p,
(43)
as well as the characterization

Ky (D, ME(R)) = { £ € M (R) N M2 (R), {{F, gnm)0n,m }nm € £ }
For the special case 7 = ¢, combining with (42), we get
A2 (D, MY (R) = T2 (D, MP(B)) = MY(R),  a=1/7—1/p. (44)

For the trivial weight w = 1, denoting M, (RR) instead of M’(IR), this should
be compared to the one-sided relation, valid for 0 < 7 < p with 1 <p < 2,

M-(R) = K7(D,L*(R)) = T(D,LP(R)),  a=1/7—1/p, (45)
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which is obtained by noticing that M,(R) = L?(R) and combining (42)
with Proposition 4.4.

3 Gabor frames in LP(R), 1 <p <2

Consider a Gabor dictionary D consisting of the functions
Gnm () = g(x —na)e?™™* n m e 7. (46)

Provided that g is an appropriate “window” function and (a, b) appropriate
positive numbers (see, e.g., [Dau92, Gro00, Chr02]), D is a frame in L*(R).
It satisfies ||gn,mllzr@) = llgllr@),0 < p < co. Lemma 4.1 then implies
that the associated dictionaries D, are ¢P-hilbertian in LP(R) for 1 < p < 2.
Again, we deduce easily the following result.

PROPOSITION 4.5. Let D a Gabor frame normalized in L*(R). Assume
that £} — 2. We have, with equivalent norms, for all 1 < p < 2 such that
by — P,

K7 (Dp, LP(R)) = K7 (D, L*(R)), (47)

and it follows that

K7 (D,L*(R)) < T, (D, L*(R)), a=1/7—1/p. (48)

4 Gabor frames in M,(R), 1<p<2

As we already mentioned earlier, modulation spaces are better suited
than LP spaces when we consider nonlinear approximation properties of
time-frequency systems. It is easily seen from the relation (42) that for
a given a-moderate weight w, the family of modulation spaces M’ (RR),
0 < p < o0, is an interpolation family [BS88]. As a result, we can copy the
proof of Lemma 4.1 to get an analogue result where LP((2) is replaced with
My (R).

LEMMA 4.2. Let 1 < r < oo and D = {gr,k € N} an (-hilbertian
(normalized) dictionary in X = M*(R), and assume that every gy is in
M (R). Suppose that for every 1 < p < r there is some constant C' = C(p)
such that for every gy, with 6, , = (1 —1/p)/(1—1/r),

1=,
||gk||M1w(fR) < C||gk||M;,v(R)- (49)
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Then Dy = {gk/||gkl|ae ), k € N} is an €P-hilbertian dictionary in M’ (R),
1<p<r.

We apply this in the simplest case where w = 1. Let D = {gy m, n,m €
Z} any Gabor frame generated by some window g € M;(R) N Ma(R).
Using the relation ||gn,m/||a, ®) = [19lla, (®) < 00,1 < p < 2, we can apply
Lemma 4.2 to D because, as a frame, it is hilbertian. We get that D, is
¢P-hilbertian in M,(R), 1 <p < 2.

PROPOSITION 4.6. Let D a (normalized) Gabor frame. Assume that

by = 2. For w = 1, we have with equivalent norms, for all 1 < p < 2 such
that €7 — (P,

and it follows that

Ky (D,Mg(]R)) =T, (D,Mp(]R)), a=1/Tr—1/p. (51)

For a general a-moderate weight w, it is not clear under what condi-
tions on g we can apply Lemma 4.2 to DY a Gabor frame generated by g
and normalized in M3'(R). Moreover we have in general no expression of
K7 (D, M2(R)) in terms of known smoothness spaces.

5 Gabor Banach frames in M;"(R), 1 <p < oo

Proposition 4.6 can be extended and becomes more interesting for Gabor
frames with a bit more structure. Let D = {gp, m, n,m € Z} a Gabor frame
generated by a “nice” window function ¢ and with small enough lattice
parameters (a,b) (see Eq. (46)). From the atomic decomposition theory
for M(R) (see [Gro00, Sec. 12.2.] for details) D constitutes a Banach
frame for M,", that is to say there exist a dual window function g that
generates a dual Gabor frame D = {Gn,m, n,m € Z} such that for all
a-moderate weights w and 1 < p < o0

||f||M;,”(R) = ||{<f>§n7m>wn,m}n,m”1fp (52)

with wy, m = w((m, bm). Moreover, for 1 < p < oo the Gabor expansion

f= Z(f: gn,m>gn,m

n,m

converges unconditionally in the norm of M}’(R) for every f € M} (R),

and the synthesis operator T'c = 37, ., ¢nm ;% is bounded from ¢?
o llarg

to MY, i.e., Dy is £P-hilbertian [Gr600, Theorem 12.2.4].
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By the Gabor expansion, we have M*(R) — K7(Dy,M,’) for Ga-
bor Banach frames and 1 < 7 < p < oo. The converse embedding,
K7 (Dy, M) — MY (R), follows by Lemma 3.1: we expand each f €
KI(DE, MY) a5 f = ¥, g with lleller = |l (py azy) and then
apply the synthesis operator T to the sequence ¢ to recover f.

Hence, for 1 <7 < p < o0,

T

MY (R) = K(Dy, My) = TH(D, M), a=1/T=1/p

where the first equality is with equivalent norms. So in this case Theo-
rem 3.2 gives [GS00, Proposition 3] as a corollary.

5. ON INVERSE ESTIMATES AND COMPLETE
CHARACTERIZATIONS

We have shown with Theorem 3.1 and Theorem 3.2 that the ¢7-hilbertian
property of D in X, with p > 1, is sufficient and almost necessary to get
the following chain of embeddings

Kq(D) = T,/(D) = C; (D) — Ay (D), (53)

withp>1,0<7<p,a=1/7—1/p,and 0 < g < co. In this short section
we briefly discuss some conditions so that a Bernstein type embedding

A3 (D) = K7(D), T=(a+1/r)"? (54)

holds with r = p the same as in (53), in which case the chain of embeddings
(53) collapses as in Theorem 1.1 and we get with equivalent norms :

AF(D)=TH(D)=Ky(D), T=(at+1/p)"

In Section 5.1 we remind the reader that a Bernstein inequality is necessary
to have a characterization of approximations spaces in terms of generalized
smoothness spaces. In Section 5.2 we give some sufficient conditions on D
and X (Corollary 5.1) so that (54) is valid.

5.1. Bernstein inequality

General results of approximation theory [DL93] relate the Bernstein em-
bedding (54) to a Bernstein inequality for K7 (D) with exponent « :

[fmlic; o) < Cm* [Ifllx,  m 21, fm € (D). (55)
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Indeed, as shown by the following proposition, the Bernstein inequality
must hold for (54) to be true.

PROPOSITION 5.1. Let D an arbitrary dictionary in an arbitrary Banach
space X . Suppose that for some a > 0, some 0 < q,s < oo and some T > 0
the embedding Ag (D) — K7 (D) holds. Then the Bernstein inequality (55)
for K (D) with exponent o holds.

Proof. By using A3 (D) — K7 (D) together with the Bernstein inequality
for AS(D), see [DL93, Chap. 7; Theorem 9.3] we obtain for f,, € X,,(D):

|fm|Kl‘j1'(’D) < C||fm| Ag(D) < C"Tna“meX

which is the desired result. O

Remark 5. 1. In [GNO1, Proposition 3.1 | an example is given of a
simple (complete and non-redundant) dictionary for which A% (D) cannot
be embedded in any K7 (D).

Using a general theorem in [DL93, Chapter 7] one can derive from the
Bernstein inequality (55) that for 0 < v < o and 0 < s < oo there is a
continuous embedding

AY(D) = (X,K}(D)) (56)

v/a,s "
Notice that this is not quite the embedding (54) we are looking for, since
it is not clear in general whether the embedding

(X, K5(D)) = KiD), ~y=1/n-1/r (57)

v/
holds true. Next we consider a situation where a complete characterization
is possible.

5.2. Bernstein inequality and adaptive analysis operator

In the special case where we have an adaptive analysis operator U (see
Section 3.4) that maps continuously X into ¢£_, we have the following result
(we leave the proof to the reader, it uses interpolation results that can be
found in the appendix).

COROLLARY 5.1. Let D an ({-hilbertian dictionary in X and U : f
U(f) = {95(f) }r>1, with gi € X* a linear right inverse U to T that maps
X into (%,. Assume that for some 0 <7 <p and 0< g < o0
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1.the operator U maps K7 (D) into .
2.the Bernstein inequality for K7 (D) with exponent a = 1/7—1/p holds;

Then we have, with equivalent norms, for 0 < v < a, 0 < s < o0,
AJ(D)=KXUD), n=@{H+1/p)"
If p > 1, we have in addition, with equivalent norms

AU(D)=T)(D)=KI(D), n=@+1/p)7"

Let us give a few examples.

EXAMPLE 5.1. For D a Schauder basis in X, the only linear right
inverse to 1" is given by gz, k > 1, the coefficient functionals. Assuming
that Ps(D,X) > 1 (for example, it is sufficient to assume that X is super-
reflexive [GGT71]) we have by Proposition 3.1 that for any 0 < 7 < p and any
0 <q < oo, |flezp) = [Hgx(f)}Hle; hence it is clear that U maps Kf (D)
into 7. Moreover for any such 7 and ¢ the Bernstein inequality comes for
free as soon as we assume U : X — (5. Indeed for f,, = > ., g5(f)gk
with |I,| < m we have

| fnlicz () = HgE (D)} leg < m™ ™ PIH{ge(N)}len, < CmY 2] fra x

COROLLARY 5.2. Let D = {gr}r>1 a Schauder basis for X a Banach
space and {g;}r>1 the coefficient functionals. Assume that the “sandwich”
estimate

CHHge (O e, < M1F1lx < ClHgr(f)}Hler (58)

holds for p > 1 and some C' < co. Then we have, with equivalent norms,
for0< 71 <p, 0<q< o0,

A2(D) = TH(D) = K (D), 7= (a+1/p)~" (59)

Remark 5. 2. We refer the reader to [GN01, KP01, DKKTO01] for more
results and examples on nonlinear approximation with Schauder bases. Let
us just mention here that there are examples of Schauder bases for which
the sandwich estimate (58) fails, and for Schauder bases with some spe-
cial structure, there is a converse to Corollary 5.1, that is to say (59)
implies (58).
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The next example demonstrates that an adaptive analysis operator may
exist for redundant systems.

ExampPLE 5.2.  Consider D a (normalized) dictionary of twice oversam-
pled framelets [DHRSO01] in X = LP(R) based on a B-spline multiresolution
analysis. The authors proved in [GN02b] that:

e D is (}-hilbertian in LP(R), 1 < p < oo.

e There is a Bernstein inequality for D which follows from Petrushev’s
results on approximation with free-knot splines [Pet88]. The exponent of
the Bernstein inequality matches that of the Jackson inequality.

e There is an adaptive analysis operator U which follows from the fact

that some “nice” biorthogonal wavelet has a finite expansion in D. It maps
LP(R) to (..

Thus we have, for 1 < p < oo, with 7 = (a + 1/p) 71,
Ag (D, LP(R)) = 7,4(D, LP(R)) = Ky (D, LP(R)).

We refer to [GNO2b] for details and further related results.

Getting a Bernstein inequality is known to be a hard problem in general,
and it is also generally hard to prove the existence of an adaptive analy-
sis operator. Without such an operator, it seems that the interpolation
properties of the family of smoothness spaces K7 (D) are difficult to deal
with. In such a situation, even with a Bernstein inequality at hand, one is
generally limited to getting an inverse result of the type (56).

In the case of Gabor Banach frames in modulation spaces, the adaptive
analysis operator exists (cf Section 4 and [Gro00, Sec. 12.2.] for details),
but no Bernstein inequality has been proved so far (see [GS00]). Also, for
closed finitely generated shift invariant subspaces of LP(R%), there is an
adaptive analysis operator [ASTO01], but no Bernstein inequality is known
except in the special cases where the translates of the generators actually
form a Schauder basis for the space and Corollary 5.2 applies. We will
study Bernstein inequalities for some special structured dictionaries in a
forthcoming paper [GN02a].

6. CONCLUSION

We have introduced and studied approximation classes associated with
m-term thresholding and Chebychev approximation, respectively, with el-
ements from a (possibly redundant) dictionary in a Banach space. The
Chebyshev approximation class has been shown to be a linear (quasi)normed
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space, and the classes have been compared to the benchmark approxima-
tion class associated with the best m-term approximation. Different types
of Jackson embedding results (direct estimates) of generalized smoothness
spaces into approximation classes have been studied in detail. We have
considered three types of direct theorems, and how they are related. A
completely general (and thus weak) estimate that applies to any situation
has been derived, the second type of result is based on the geometry of
the Banach space, while the third type of Jackson embedding relies on
hilbertian properties of the dictionary. From the hilbertian property of a
dictionary, we have also derived a simple representation of the generalized
smoothness spaces. Many examples are given with dictionaries in L? and
modulation spaces, and we have demonstrated how to apply the general
theory to recover several well known results on nonlinear approximation
with wavelet, local Fourier, and Gabor systems, respectively.

However, we should stress that the main attraction of the theory is not
that it can recover already known results, but that it provides us with
direct estimates for many new function classes that are often “bigger” than
the classical smoothness spaces.

Let us use Corollary 3.1 to give an explicit example. From Corollary 3.1
we see that the generalized smoothness space associated with the union
of two ¢£-hilbertian bases B; and B, for a Banach space X will consist of
the vector sum of the two individual smoothness classes, K7 (B1 U Ba) =
Ky (B1) + K7 (Bz). Thus, whenever those individual smoothness classes do
not coincide, we gain by using the redundant dictionary D = By U Bz in
the sense that the domain for which there is a direct estimate is enlarged.
This new larger domain can also (in theory, at least) be efficiently encoded
provided that both K7 (By) and K7 (B;) are “nice”. Recall, that the number
of bits needed to encode a compact class K C X to within a distortion of
€ > 0 is the Kolmogorov e-entropy £°(K), see e.g. [CDDRO1]. For V.C X
normed by || - ||v, denote Bi[V] := {f € V : ||fllv < 1}, and let us
assume that the unit balls B; [K;(Bl)] and B; [K;(Bl)] are both compactly
embedded in X, then it is not hard to verify that Bl[ICqT(Bl U By)] C
B, [K7 (B1)] + B1[K} (B2)] is also compactly embedded in X and it follows
easily that the Kolmogorov e-entropy satisfies

EX(BLK(BLU Ba)]) < E°(B1[Ky (B)]) + 7 (B1 K] (B2))).

Thus, asymptotically as e — 0, the order of £°(K7 (B1 U Bz)) is no worse
than the order of max{&*(K7 (B1)), % (K7 (Bz2)}. So, for the same number of
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bits (in the sense of order) we can in principle encode the larger smoothness
space.

We have also considered the question of completely characterizing the
different types of approximation classes in terms of generalized smoothness
spaces. This question is closely related to obtaining an inverse estimate or
Bernstein inequality. We prove that the existence of an adaptive analysis
operator along with a Bernstein inequality leads to a complete characteriza-
tion of the approximation classes associated with best m-term approxima-
tion in terms of generalized smoothness classes. So, for such dictionaries,
the thresholding algorithm performs nearly optimally in the sense of the
rate of approximation. Finally, we should mention that the problem of
obtaining Bernstein estimates for structured redundant systems is studied
in more detail in the forthcoming paper [GN02a] by the authors.
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APPENDIX

This appendix contains a short reminder on Lorentz spaces and results
with detailed proofs on the structure of the generalized smoothness spaces
and the approximation classes.

A.1. REMINDER: LORENTZ SPACES

First let us recall the Lorentz (quasi)norms, which are defined for 0 <
T < 00 and ¢ € (0, 00] by,

< i [ml/'ra* ]q)l/q 0
- — | , <g< oo
Hambmillz =4 \izp ™ (A1)

Sup,, ey m*/ T ak

m? q = 00,
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where {a}} denotes a decreasing rearrangement of {ax}, i.e. |ag| > |aj, |

forall k > 1. For 1 <¢ <7 <o0, ||l is a norm for the Lorentz space
g = e} = [Hewdlle; < oo}
Notice that || - |ler = || - ||~ It can be verified [LT79, Def. 2.b.8] that for

1 <7 < g, the quasi-norm ||-||¢z can be replaced by an equivalent norm on
¢;. In such a case we always assume that we use the norm on ¢ instead
of the quantity defined by (A.1). For all values of 7, ¢, the Lorentz spaces
¢ are (quasi)normed Banach spaces and satisfy the continuous embedding
KqT} — fgg provided that 71 < 7 or 7 = 71 with ¢1 < ¢2. It is useful to
notice (see e.g. [DL93, Chap. 6]) that the £7 norm of a sequence can be
estimated as

o) ) 1/q
- (27/Ta§j)q> , 0<g< o0
M}l < <§ (A2
Sup;> 27/Ta’2*j, q = oo.

A.2. STRUCTURE OF A(D)

It is known [DL93, Chap. 7, Section 9] that AJ (D) is a linear subspace
of X and || - [|as(p,x) is a (quasi)norm that makes it a complete metric
space. The following proposition shows that if ¢ < oo, it is separable.

PROPOSITION A.7. Let f € AJ(D), with D a dictionary in X a Banach
space X, a >0, and q € (0,00]. Let f,, € X,,(D) a sequence of (near) best
m-term approzimants to f, i.e. for some C < oo and all m > 1,

If = fmllx < Com(f,D)x. (A.3)
If ¢ < oo then || f — meAg(D,X) — 0. For all ¢,{fm} is bounded in AJ (D).
Proof. Let us first prove some simple inequalities. First, we observe that
o (f = fm,D)x SIf = fully <Com (f,D)x, Lm=>1 (A4
Now for any hy € Xk (D), we have — fp,, + hy, € X1 (D) so
Omik (f = fo: D) x S = fm = (=fm + B)ll x = [If = Rl -

By taking the minimum over hy € Xt (D) we get, for k,m > 1,

Omik (f = fm, D) x < ok (£, D)x
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which we can write, forany l=m+k>m+1, m > 1,

g (f - fm;D)X S Ol—m (f: D)X . (A5)

Combining (A.4) and (A.5) we get for ¢ < oo

2m e’}
1 = Tl px) < D10 (f = [ D)1/ 1+ D %00 (f = fm, D) x )11/
=1 1=2m+1
2m (o'}
<D [om (£D) 11+ Y [0 (£, D) x]1/1
=1 1=2m+1
< Cm®o, (£,D)% + Y [(k+m)%ox (£,D)x]"1/(k +m)
k=m+1
< Cluton (10 + Y (S0) o (70
k=m+1
< ClmPom (£,D) )0 +2% > [k% (£, D) x]"1/k.
k=m+1

The right hand side is easily seen to converge to zero as m — oo, be-
cause it is essentially the tail of a convergent series. For ¢ = co we derive
”fm”A;;(uX) <C ||f||Ag(D7X) from the estimate

|lf = fmlae (p,x) X sgpl”al(f—fm,D)

max (sup 1% (f = fm, D), sup (%o(f — fm;D))

1<2m [>2m—+1

k (67
< max (sup laUm(f,D), sup ( ‘I'm) sup kaak(fyp))
1<2m k>m+1 k kzm+1
< 2%sup k%o (f,D) < C ||f||Aa(D,X) 0.
k>m b

A.3. STRUCTURE OF C(D)

The general theory of approximation spaces [DL93] does not seem to
apply to C'(D). In this section, we prove that C*(D) is nevertheless a
linear subspace of X equipped with a (quasi)norm [| - [|ca(p).
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PROPOSITION A.8. Let D a dictionary in a Banach space X, a > 0 and
0 < g <oo. The set C3(D) is a a linear subspace of X, and || - [lca(p) is a
(quasi)norm on C$(D).

Proof. Welet f, g € C¢(D, X) and fix some € > 0. We consider two injec-
tions 7,% : N — N such that ||{||f — PVm(ﬂfD)fH}le”ll/“ < |f|Cf;(’D7X) +€
and a similar relation holds for g and . We define an injection ¢ by in-
duction: ¢; = m1; P2, = ¥y, where m is the smallest integer such that
Ym & {dr, 1 < k < 2n}; papnt1 = mp where m is the smallest integer such
that 7, € {¢pr,1 <k <2n+1}. As Vo, (¢, D) D Vi (m, D) + Vi (¢, D), we
get for 7 > 0

Wf+9-—Pv, o) (f+Dlx < Nf =Py f+9—Pr;n9llx
< Nf =Py fllx 19— Py, (09l x.
Using (A.2) and the fact that || - [|¢; is a (quasi)norm, we get easily that

|f + glea) < CUIf + gllx + [flea(p) + | fles(p))- We conclude by letting
€ go to zero. .

A.4. STRUCTURE OF K(D)
The (abstract) smoothness spaces also have a nice structure in general.

PROPOSITION A.9. Let D a dictionary in a Banach space X, 0 < 7 < o0
and 0 < ¢ < oco. Then |- |1€;(D) is a semi-(quasi)norm on the linear
space K7 (D). Moreover, if |I|lx S - |K;(D), then | - |1€;(D) is actually a
(quasi)norm and K7 (D) is complete.

Proof. It is easy to check |Afxcr(p) = [Al|flxc;(p)- Let us now check

|f1+ felicz () < Cryg (|f1|1c;(v) + |f2|ic;(p)) (A.6)

with C' = C(r,¢) the constant of the (quasi)triangle inequality in £]. Let
e > 0. We can find finite approximants fj = T'¢; to f; from D, such
that [le;lle; < [filiz(p) + €/2 and ||f; — fjllx < /2. Their sum f :=
fl + fg = T(c1 + ¢2) is a finite approximant to fi + fo from D such that
I = (f1 + f2)llx <e¢, and the (quasi)triangle inequality in €7 gives

ller + eall;; < C(lfilicz o) + [ falig o) +€)-

As we can let € go to zero, this shows (A.6). With the additional assumption
that |- [ic;(p) 2 [I'llx, we get |fli;(p) = 0 f = 0. Let us now turn to the
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completeness result. Let {f,} be a Cauchy sequence in K7 (D). Because
|- lkcz(0) 2 |l x> {fn} is also a Cauchy sequence in X. Hence there exists
feX,|[fn—fllx — 0. Let us prove that |f, — f|,¢;(p) — 0. It will
imply that f is the limit in K7 (D) of {f,}.

Let gnt = fnyi — fnand € > 0 : as f, is a Cauchy sequence in K7 (D),
we can find N big enough so that Vn > N,I > 0, |gn7[|](:;(])) < ¢/2. Now
we can find finite approximants T'c,; such that ||gn; — T, lly < 1/ and
||Cn,l||€; < 2|gn,z|ic;(1)) <e. As aresult, for all n > N and p > 0,

||(f - fn) - Tcn,l”x ||(f - fn) - gn,l”X + ”gml - Tcml”X

<
< = Fallx +1/1

It is now clear that, for any fixed n > N, lim;_, o ||(f — fn) — Tenyllx = 0.
Moreover, as ||c,1]|,- < €, we have shown that for all n > N
q

|f - fn|Klj;(’D) <e U

A.5. INTERPOLATION OF SMOOTHNESS CLASSES

We use the results of Section 3 on hilbertian dictionaries to get one-sided
embeddings of K7 (D) into the interpolation space between two associated
smoothness spaces. We use the real-method of interpolation (for details,
we refer to [DL93, Chap. 7]). The notations are that of Section 3.

LEMMA A.1. Assume that Ps(D,X) > 1 and that T is continuous from
ito X,0<m <1 < P5(D,X). Then for any 0 <8 <1, 0 <q < oo we
have with 1/t =(1—=0)/12 +6/71

K;0) = (Kp).kp) < (XKpm) . (A7)

0,q 0,q

Proof. The rightmost embedding follows immediately from K72(D) —
X. Let f € K(D). As 7 <max(r,72) < Ps(D, X) we can use Lemma 3.1
to find ¢ € €7 such that f =Tc and |f[x;(p) = l|c[l¢;. As T is continuous
from £7¢ to K7i(D), @ = 1,2, by interpolation T' is also continuous from

b = (€ 2l 1)9q to Y = (qu(D),qui(D))eq. Hence, |fly = |Tcly <

q27 " q1
Cliclle; = Clflxz(p)- O
Next we show that the existence of an adaptive analysis operator (see
Section 3.4) is sufficient to get that K7 (D) forms an interpolation family.
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LEMMA A.2. Assume U : f = U(f) = {95(f) }i>1, with g5 € X*, is a
linear right inverse to T' on X that continuously maps X into L, and K7
into L7, for somer, T < Py(D,X) and 0 < q < 00. Then for any 0 < s < 00
and any 0 < 6 < 1 such that n < Ps(D,X) with 1/n:=(1—-0)/r+6/1, we
have

(x.65() = K1(D) (A.8)

0,s

Proof. By interpolation U is continuous from Y := (X K (D)) to

0,s

£7. Assuming that n < Ps(D, X), we use the fact that U is a right inverse
toT on X to get forall f €Y C X, f =TU(f) = >, 95(f)gr where
the series is unconditionally convergent in X because U(f) € £} and D is
¢7-hilbertian. It follows that [f|ic;(p) < [lU(f)llez(p) < Clfly- O
Notice by the way that we get that U is adaptive on the intermediate
spaces.
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