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ABSTRACT. The main goal of this paper is to demonstrate connections between the
following three big areas of research: the theory of cubature formulas (numerical
intergation), the discrepancy theory, and nonlinear approximation. In Section 1 we
discuss a relation between results on cubature formulas and on discrepancy. In par-
ticular, we show how standard in the theory of cubature formulas settings can be
translated into the discrepancy problem and into a natural generalization of the dis-
crepancy problem. This leads to a concept of the r-discrepancy. In Section 2 we
present results on a relation between construction of an optimal cubature formula
with m knots for a given function class and best nonlinear m-term approximation
of a special function determined by the function class. The nonlinear m-term ap-
proximation is taken with regard to a redundant dictionary also determined by the
function class. Sections 3 and 4 contain some known results on the lower and the
upper estimates of errors of optimal cubature formulas for the class of functions with
bounded mixed derivative. One of the important messages of this paper is that the
theory of discrepancy is closely connected with the theory of cubature formulas for
the classes of functions with bounded mixed derivative. We have included in the
paper both new results and known results. We included some of known results with
their proofs for the following two reasons. First of all we want to make the pa-
per selfcontained (within reasonable limits). Secondly, we selected the proofs which
demonstrate different methods and are not very much technically involved. Section
5 contains historical notes on discrepancy and cubature formulas, some further com-
ments and remarks. Historical remarks on nonlinear approximation are included in
Section 2. We want to point out that this paper is not a survey in any of the above
mentioned areas. We did not even try to provide a complete list of results in those
areas. We rather wanted to highlight the most typical results in cubature formulas
(Sections 3 and 4) and show their relation to the discrepancy theory.

1. CUBATURE FORMULAS AND DISCREPANCY

Numerical integration seeks good ways of approximating an integral

/Q F(@)dp
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by an expression of the form
Am(faé.) ::ZA]f(€])7 52(517"'75,”7/)7 é.JeQ’ j:17"'7m' (1'1)
j=1

It is clear that we must assume that f is integrable and defined at the points
€L ...,&™. The expression (1.1) is called a cubature formula (A,¢) (if Q@ C R?,
d > 2) or a quadrature formula (A, ¢) (if Q2 C R) with knots £ = (£1,...,£™) and
weights A = (A1,...,Am). For a function class W we introduce a concept of error
of the cubature formula A,,(+,§) by

Am(W,€) = sup | | fdu—Am(f,6)]. (1.2)
few JQ

In order to orient the reader we will begin with the case of univariate periodic
functions. Let for r > 0

F.(z):=1+2 i k=" cos(kx —rm/2) (1.3)
k=1
and
Wy =A{f:f=¢xF, lel,<1} (1.4)

where * means convolution and || ||,, is the standard L,-norm. It is well known that
for 7 > 1/p the class W, is embedded into the space of continuous functions C(T).
In a particular case of Wi we also have embedding into C(T). From the definitions
(1.1), (1.2), and (1.4) we see that for the normalized measure dy = 5-dx

lellp<1

A58 = s o [([ e —ndn= YA€ — )]

=[1- Z)‘jFr(fj =Ml p = ﬁ (1.5)
j=1

Thus the quality of the quadrature formula A,,(-,€) for the function class W is
controlled by the quality of A,,(-,&) for the representing kernel Fi.(z — y). In the

particular case of Wi we have

A (W1, €) = max |1 = 3 A Fi(& - y)l. (1.6)

Jj=1

In this case the function

Fi(x) = 1-|—2Zsink:x =1+ S(z)

k=1

has a simple form: S(z) = 0 for z = Ir and S(z) = # — z for z € (0,2n).
This allows us to associate the quantity A,,(Wi,&) with the one that has simple
geometrical interpretation. Denote by x the class of all characteristic functions
X[0,a](%), @ € [0,27). Then we have the following property.
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Proposition 1.1. There exist two positive absolute constants Cy and Cy such that
for any A (-, ) with a property 3~ A\j = 1 we have

C1Am(x, €) < Am(W1,€) < CaAm(x,§). (1.7)
Proof. We have for any a € [0, 27)
1
X[0,a) (T) = %(G‘FFl(-’B) — Fi(z — a)). (1.8)
Thus using (1.6) we get

—_

which proves the left inequality in (1.7).
Let us prove the right inequality in (1.7). Denote € := A,,(x,&). Then by (1.8)
we get for any a € [0, 27)

—27e < /(Fl(a;) — Fi(z —a))du — A (Fr(z) — Fi(z — a),§) < 2me. (1.9)
T
Intergating these inequalities against a over T we get

| [ Frla)du— An(Fr,€)] < 2me
T

N

This inequality combined with (1.9) implies

We proceed to the multivariate case. For © = (z1,...,z4) denote

= HFr(l’j)

and

MWy ={f:f=pxF, el <1}
For f € MW, we will denote f(") := ¢ where ¢ is such that f = ¢ * F,. The
letter M in the notation MW stands for "mixed”, because in the case of integer r
the class MW/ is very close to the class of functions f, satisfying | £mm)|, < 1,

where f("~") is the mixed derivative of f of order rd. A multivariate analog of
the class x is the class

d
—{XOa H X[0,a,]( a; €0,2m), j=1,...,d}.

Similarly to the univariate case one obtains analogs of (1.5) and (1.6)

A (MW7, 8) = |1 - ZA (6 = )l (1.10)
A (MWL€) = max 11— Z)\ Fi (67 —y)). (1.11)
7j=1

We prove a multivariate analog of Proposition 1.1.
3



Proposition 1.2. There exist two positive constants C1(d) and Ca(d) such that
for any A, (-, &) with a property 3°. A\;j = 1 we have

Cr(d)Am(x*,€) < Am(MWY,€) < Co(d)Am (x*,6). (1.12)

Proof. First we prove the left inequality. Denote € := A,,, (MW, £). Then by (1.11)
we have

—e<1-) MNF(-y)<e  yeT
p=1

Take any subset e C [1,d] and integrate the above inequality against y;, j ¢ e, over
Té—lel. We get

—e< 1—ZAHHF1(§;-L—yj) <e.
p=1

jEe

Thus for any e C [1,d], e # 0, and any z;, y;, j € e, we have

> (IR —2) - [ — )| < 26
p=1 j€e jEe

This inequality and the representation (1.8) imply the left inequality in (1.12).

We prove the right inequality in (1.12) by induction. In the case d = 1 it
follows from Proposition 1.1. Assume we have it for all dimensions d’ < d. Denote
€ := A (x%, €). For a subset e C [1,d] we denote

£(e) i=(€'(e),- -, EM(e), €M) eRC, H(e); =&, jee

Consider the class y!¢! (e) that is the class x'¢! corresponding to the coordinated x;
with 7 € e. It is clear that we have

A (x¥(e),€(e)) < e.

Therefore, by the induction assumption and by (1.11) we have for all e C [1,d],
le] < d, that

=Y M][FE —y) <Cld)e, y €T, jee (1.13)
pn=1

Jjee

It is easy to see that for functions of the form

fa,y(m) = H(X[O,aj](wj - yj) - %)



where X[0,q,(z; — y;) is 27 periodic we have

[Am (fay, §)| < C(d)e.
Using this estimate and the representation (1.8) we obtain
d
A ([] (P2 — Fi(z; —y; —a;))] < C(d)e
7j=1

what means

m d
< Z H gu _yJ
+ 3 S NI FE ) [Py - ap) < Cla)e.

e:le|]<d p=1 Jjee jie

Integrating against a over T¢ we get from here
m d
D AR v+ D (= d”z)\ [T P —yj)l < Cld)e.
p=1 j=1 e:le|<d jee

Using (1.13) and the identity

we obtain .
D> ] R =) — 1] < Cd)e
p=1 7j=1

We complete the proof by applying (1.11).

The classical definition of discrepancy (in the convenient for us form) of a set X
of points z!,...,z™ C [0,1]% is as follows

d m
1
D(X7 m, d)oo = ag[l(?j(]d | r_[la] - E lem,a](wli”'

It is clear that
D(X,m,d)oe = Ay (x4, 20X) with A\ =--- =)\, = 1/m.

Thus by Proposition 1.2 the classical concept of discrepancy is directly related to

the efficiency of the corresponding cubature formula for a special function class

MWi. 1t is well known that the Wi is very close to the class of functions of
5



bounded variation and the MW7 is very close to the class of functions with bounded
variation in the sense of Hardy-Vitali. In the beginning of 20th century D. Vitali and
G. Hardy generalized the definition of variation to the multivariate case. Roughly
speaking, in the one-dimensional case the condition that f be of bounded variation
is close to the condition ||f’||s < co. In the multidimensional case the condition
that a function have bounded variation in the sense of Hardy-Vitali is close to that
requiring ||f( ||y < oo, where f(1+1) is a mixed derivative of f.

In the thirties in connection with applications in mathematical physics, S.L.
Sobolev introduced the classes of functions by imposing the following restrictions

g, <1 (1.14)

for all n = (n1,...,nq) such that ny +--- + ng < R. These classes appeared as
natural ways to measure smoothness in many multivariate problems including the
numerical integration. It was established that for Sobolev classes the optimal error
of numerical integration by formulas with m knots is of order m ®/¢. Assume
now for the sake of simplicity (to avoid fractional defferentiation) that R = rd,
r natural number. At the end of fifties, N.M. Korobov discovered the following
phenomenon. Let us consider the class of functions which satisfy (1.14) for all n
such that n; <r, j=1,...,d (compare to the above classes MWI’,") It is clear
that this new class (class of functions with dominating mixed derivative) is wider
then the Sobolev class with R = rd. For example, all functions of the form

d
f@)=T] fitz), I£” N <1,
Jj=1

are in this class, while not necessarily in the Sobolev class (it would require, roughly,

I f](Td) lp < 1). Korobov constructed a cubature formula with m knots which guar-

anteed the accuracy of numerical integration for this class of order m~"(logm)"?,

i.e. almost the same accuracy that we had for the Sobolev class. Korobov’s discov-
ery pointed out the importance of the classes of functions with dominating mixed
derivative in fields such as approximation theory and numerical analysis. The con-
venient for us definition of these classes (classes of functions with bounded mixed
derivative) is given above (see the definition of MW).

In addition to the classes of 2w-periodic functions it will be convenient for us to
consider the classes of nonperiodic functions defined on 4 = [0, 1]¢.

Let r be a natural number and MW, (€4), 1 < p < oo denote the closure in
the uniform metric of the set of rd-times continuously differentiable functions f(x)
such that

<1,

1 lwgen = D

0<n; <r
j=1,....d

gl = (Ld\g(w)\pdm>l/p.
6
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It will be convenient for us to consider the subclass M W;; (Q4) of the class
MW (€4) consisting of the functions f(z) representable in the form

f(z) = / B (to)p(t)dt,  lolp <1,

where
d 1
By (t,x) = [ [((r = 1)1) " (¢ — 2)
i=1
t,x € Qq, (a)+ = max(a,0).

In the connection with the definition of the class M W; (©q) we remark here that
for the error of the cubature formula (A,§) with weights A = (A1,...,\;) and
knots &€ = (£1,...,€™) the following relation holds. Let

‘Am(fag)_ 0 f(m)dw = Rm(Aagaf)a

then similarly to (1.5) and (1.10) one obtains (p' =p/(p — 1))

A (MW7 (R4),6) = sup  Rn(A6f) =

fEMW;(Qd)
m d def
= Y ABet e =TI/ = DA md)y. (1.15)
p=1 j=1 .

The quantity D, (§,A,m,d), in the case r =1, A = (1/m,...,1/m) is the clas-
sical discrepancy of the set of points {£#}. In the case A = (1/m,...,1/m) we
denote D, (¢,m,d)q := D, (§,(1/m,...,1/m),m,d), and call it the r-discrepancy.
Thus the quantity D,.(§,A,m,d), defined in (1.15) is a natural generalization of
the concept of discrepancy. This generalization contains two ingredients: general
weights A instead of the special case of equal weights (1/m,...,1/m) and any nat-
ural number r instead of r = 1. We note that in approximation theory we usually
study the whole scale of smoothness classes rather than an individual smoothness
class. The above generalization of discrepancy for arbitrary positive integer r al-
lows us to study a question of how does smoothness r affect the rate of decay of
generalized discrepancy.

Remark 1.1. In the case of natural r the class MW turns into the subclass of the
class MW (Qq)B :=={f : f/B € MW (Qa)}, after the linear change of variables
xr; = —m + 27t;, j=1,...,d.

We are interested in dependence on m of the quantities

Sm(W) = inf An(W,£)
A1, Am
gL em
7



for the classes W defined above.

It will be convenient for us to use the following notations. For two nonnegative
sequences {am, }oo_; and {by,}o°_; we write a,, < by, or by, > a, if there exists
a positive C' independent of m such that a,, < Cb,,, m = 1,2,.... In the case
am < b, and a,, > b,, we write a,, < b,,.

Remark 1.1 shows that

O (MW)) < 6 (MW (Qa)). (1.16)

0
Let MW7 (€4) denote the subset of functions in MW} (24) which is the closure
in the uniform metric of the set of functions f which have the following property:
f(x) is rd times continuously differentiable and suppf(z) C Q4.

Theorem 1.1. Let 1 < p < oo. Then
0 .
5m(MW;(Qd)) = 5m(MW£(Qd)) = 5m(MW;(Qd)). (1.17)
Proof. Let A and £ be given. We will prove that

s (Al - [ g > 6,00W@0). (1)
geMW5 (@) fha

Suppose an infinitely differentiable function () is such that ¢ (xz) = 0 for z < 0,
Y(x) =1 for z > 1 and () strictly increases on [0, 1]. For the cubature formula

0
(A, &), defined on the class MW (£2g), we define the cubature formula (A, 7), whose
error will be investigated for the class MW} (€24) as folows:

my =), i=1L....4

d

o= e, p=1,.,m

Jj=1

Then for the functions f and g related as

g(t) = f(Y(t1),--- ,¥(ta)) H P () (1.19)
we have
[#@ s = [g)at
Qa Qua

PRWIGOEDPPWICDE
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It remains to check that there exist a number § > 0 which does not depend on m

0
such that 6g € MW (Qq) provided f € MW (Qa).
In fact, differentiating (1.19) we see that the expression for g(*) (t), s = (s1,..., 84),
0<s; <r,j=1,...,d will contain terms of the form

d . :
wit, k) =& (@) [TTT@" )™, @) = (@), ..., 9(ta)),

j=1 i
k=(ki,....ka), 0<k;<s;, > Imi=s;+1, j=1,...d
: (1.20)

the number of which depends on the vector s.
It is obvious that in the case p = oo we have

lw(t; F)lleo < Cr)Iflarwy, (20)-

To estimate ||w(:,k)||p, 1 < p < oo we use the following simple lemma.

Lemma 1.1. Suppose that f € MW;(Qd) s rd times continuously differentiable,
and the vector k € Zﬁlr is such that kj = r for j € ei and kj <r —1 forj € eg =
[1,d] \ e1. Then

swp [ |t @[] doy) < Cr gy L0 <.
ZMGQ[O 1]lenl jcer ’

Proof. We will first prove the following statement. Let f be such that f, % are
J
continuous. Then

T

s [ 1@ ([[dn) < 20015 + 15510 (1.21)

0,1]d—1 i£j

Indeed, there is an a € [0, 1] such that

/ @1z, za)P([[ de) < A1

[0,1]d71 7'747

We represent the function f(z) in the form

f(il:) = f(:El,... 7 Lj—1,0, Tj41,- - ,xd)—l—
z;
of
g(ml,... VL1, Uy Tjgl, ... ,Tq) dU.
j
a

9



Then, for any z; € [0, 1], we have

/ )P ([T dos) < 220111+ 12 ||p>

[0,1]4—1 i£j
This proves (1.21).
Applying successively relation (1.21), we obtain the statement of the lemma.

We return to estimating ||w(:,k)|/,. By Lemma 1.1 and by the uniform bound-
edness of the functions |¢p()(¢;)| < C(r), I < r + 1, we get for k such that k; < 7,
j=1,...,d that

(- B)lp < Nl R)lloo < I1FF R0 |log <1 Fllarwr (c20)-

Thus it remains to consider only those k for which there is a j such that k; = r.
Then, with respect to this variable, (¢'(¢;))" T participates as an additional cofactor
in expression (1.20). Taking into account that

(W' (t))PU T < C(p,r)Y' (t5),

we obtain
1

/ w(t, k)P di; <

0

C(p7 T) ( /|f(k) (¢(t1)7 s 7¢(tj—1)7xj7 ¢(tj+1)7 s 7¢(td))|p diL‘j)X
0

i mfjp
< [TII@ ™))"
v#£j 1
Reasoning in this way for all j such that k; = r and applying Lemma 1.1, we find
that

[w(, B)llp < Co, 7, d)[ £l arwy @a)

0
for all k. This implies that c(p,r,d)g € MW7 (£4) with some positive c(p,r, d).
The arguments we presented show that

sup | / gty dt — 3" Nag(e”)| >

0
9EMWE(Q) Qu w=1
> c(p,r,d)  sup | /f )dx — Z Wi (1.22)
FEMWS (2a)

Relation (1.22) and the embeddings MW;(Qd) — MWI’;(Qd) — MW;(Q4)
yield the statement of Theorem 1.1.
10



Remark 1.2. Let 1 <p<oo andr > 1/p. Then
Sn(MW) < 6, (MW (Q4)).

The upper estimate follows from (1.16). The lower estimate follows from Theo-
rem 1.1.

2. OPTIMAL CUBATURE FORMULAS AND NONLINEAR APPROXIMATION

The relations (1.10) and (1.11) can be interpreted as a connection between the
error of the cubature formula (A, §) on the class MW, and the approximation error
of a special function 1 = [}, F;.(x)dp by m-term linear combination of functions
F.(¢& — ), j = 1,...,m. The latter problem is a problem of nonlinear m-term
approximation with regard to a given system of functions, in the above case with
regard to the system {F,(z —-),z € T¢}. The problem of nonlinear m-term ap-
proximation has attracted a lot of attention during last ten years because of its
importance in numerical applications (see surveys [15] and [51]). In this section
we will use some known results from m-term approximation in Banach spaces for
estimating the error of optimal cubature formulas. Let 1 < ¢ < co. We define a
set ICgy of kernels possessing the following properties. Let 2, and €2, be measurable
sets for variables x and y respectively. Let K(z,y) be a measurable function on
Q; x Q,. We assume that for any z € Q, K(z,-) € Ly(€y), for any y € Q, the
K (-,y) is integrable over €2, and fﬂz K(z,-)dx € Ly(S2y,). For a kernel K € K,/ we
define the class

WK = {f:f= /Q K(z,9)eWdy, oo, <1} (2.1)

Then each f € W[ is integrable on , (by Fubini’s theorem) and defined at each
point of €2,. We denote for convenience

J(y) == Tk (y) = /Q K (2, y)da.

For a cubature formula A,,(-,€§) we have

A(WE €)=  sup | /Q (T@) — S ALK (€, 1) oly)dy| =

lellr,@,) <1

= J0) = D AK€ )z, @,)- (2.2)

We use the same as above definition of the error of optimal cubature formula with
m knots for a class W
Im(W):= inf A, (W,E).
ALy Am
g Em
11



Thus by (2.2)

O (W) = R inf () = D AK€, )L, ay)-
den e
We will now introduce some notations and concepts from the theory of m-term
approximation in Banach spaces.
Let X be a Banach space with norm ||-||. We say that a set of elements (functions)
D from X is a dictionary if each g € D has norm one (||g|| = 1),

g €D implies —geD,

and spanD = X.
We will discuss in this section two types of greedy algorithms with regard to D.
For an element f € X we denote by Ny a norming (peack) functional for f:

[Nl =1, Ne(f) = [I£I]

The existence of such a functional is guaranteed by Hahn-Banach theorem. Let
7 := {tr}3>, be a given sequence of positive numbers ¢ <1, k =1,.... We define
first the Weak Chebyshev Greedy Algorithm (WCGA) that is a generalization for
Banach spaces of Weak Orthogonal Greedy Algorithm defined and studied in [49]
(see also [16] for Orthogonal Greedy Algorithm).

Weak Chebyshev Greedy Algorithm (WCGA). We define f§ := f3" := f.
Then for each m > 1 we inductively define
1). ¢S, := ST € D is any satisfying

Nye _ (@) > tmsup Nge _ (g).
g€eD

2). Define
®,, := @y, :=span{pj}jL,,
and define G, := G%7 to be the best approximant to f from ®,,.
3). Denote
fo = IR0 =F = G

We define now the generalization for Banach spaces of the Weak Relaxed Greedy
Algorithm studied in [49] in the case of Hilbert space.

Weak Relaxed Greedy Algorithm (WRGA). We define fJ := f;'" := f and

=Gy :=0. Then for each m > 1 we inductively define
T

1). ¢, := ™ € D is any satisfying

Nfln,l(@rm — Gy,_1) =ty sup Nf;,l(g —Gh_1)-
geD
12



2). Find 0 < \,,, <1 such that

£ = (U= Am)Grus + Amgh)l| = L 1F = (L= NGy +A¢1)]
and define
G, =Gy = (1= Apn)Gr_ 1 + A,

3). Denote
fo = foT = f =G

The term ”weak” in both definitions means that at the step 1). we do not shoot for
the optimal element of the dictionary which realizes the corresponding sup but are
satisfied with weaker property than being optimal. The obvious reason for this is
that we don’t know in general that the optimal one exists. Another practical reason
is that the weaker the assumption the easier to satisfy it and therefore easier to
realize in practice.

We present in this section results of convergence and the rate of convergence for
the two above defined methods of approximation. It is clear that in the case of
WRGA the assumption that f belongs to the closure of convex hull of D is natural.
We denote the closure of convex hull of D by A;(D). It has been proven in [49]
that in the case of Hilbert space both algorithms WCGA and WRGA give the
approximation error for the class A;(D) of the order

(14> )12
k=1

We discuss here approximation in uniformly smooth Banach spaces. For a Banach
space X we define the modulus of smoothness

1
p(u):=  sup  (S([lz +uyl + |z —uyl)) —1).
lzl|=Ilyl|=1

The uniformly smooth Banach space is the one with the property

lim p(u)/u = 0.

u—0

The following convergence result has been proven in [50]. In the formulation of this
result we need a special sequence which is defined for a given modulus of smoothness
p(u) and a given 7 = {tx}%2 ;.

Definition 2.1. Let p(u) be an even convez function on (—oo,00) with the prop-
erty: p(2) > 1 and

lim p(u)/u = 0.

u—0

For any 7 = {t}32,, 0 <t <1, and 0 < 0 < 1/2 we define &, := &n(p, 7,60) as a
number u satisfying the equation

p(u) = 0t u. (2.3)

13



Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that a sequence T := {t}32, satisfies the condition: for
any 6 > 0 we have

Z tm&m(p, T,0) = o00.
m=1

Then for any f € X we have

| =0.

. c,T
im ([ £

Corollary 2.1. Let a Banach space X have modulus of smoothness p(u) of power
type 1 < ¢ < 2; (p(u) < ~yul). Assume that

= q
m=1

Then WCGA converges for any f € X.

It is well known (see for instance [14], Lemma B.1) that in the case X = L,
1 < p < oo we have

uP /p if 1<p<2,
plu) < :
(p—1u?/2 if 2<p<oo.

It is also known (see [28], p.63) that for any X with dim X = oo one has
plu) > (1+2)!/2 — 1

and for every X, dim X > 2,
p(u) > Cu?, C >0.

This limits power type modulus of smoothness of nontrivial Banach spaces to the
case 1 < g < 2.
Let us apply Corollary 2.1 for numerical integration. Consider a dictionary

D:=D(K,p') = {g: g9(z,y) = K(z,9) /| K(z, )L, (,)}

(in case ||[K(z,")||L,, (a,) = 0 we set g(z,-) = 0), and define a Banach space X :=
X(K,p') as the L, (€,)-closure of span of D. Assume now that Jx € X. Then for
1 < p’ < 0o the WCGA satisfying (2.4) with ¢ = min(2,p’) provides a deterministic
algorithm of constructing a sequence of cubature formulas A¢ (-, &) such that

Afn(WpK,f) —0 as m — oo.

We will discuss in more detail a question of the rate of convergence. The following
theorem has been proven in [50].
14



Theorem 2.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yu?, 1 < ¢ < 2. Then for a sequence T := {t}7,, tx € [0,1],
k=1,2,..., we have for any f € A1(D) that

1
m

< Cilg )1+ 3 @),
k=1

1fm"
m

| < Calg,7)(1 + Ztﬁ)‘”p, p= qi%,
k=1

with constants C;(q,7), 1 = 1,2, which may depend only on q and 7.

Corollary 2.2. In a particular case T = {t}52,, tx =t, k=1,2,..., with some
t € (0,1], we have under assumptions of Theorem 2.2 that

17| < Cilg,y, tym /P,

| < CZ(Q?’Yat)mil/pa p = L

In order to apply Theorem 2.2 in numerical integration for Wlf( we need to
check that Jx € Ai(D(K,p’)) (or there exists a positive constant ¢ such that
cJx € A1(D(K,p')). Tt could be a difficult problem. An inspection of the proof of
Theorem 2.2 shows that it is sufficient to check that

/ 1K (2, )|z, ) < oo.

We formulate this as a theorem.

Theorem 2.3. Let sz( be a class of functions defined by (2.1). Assume that
K € Ky satisfies the condition

[ 1Kl e < M

T

and Jx € X(K,p'). Then for any m there ezists (provided by WRGA with T = {t})
a cubature formula A, (-, &) with

ZP‘MSM
n=1
and 12 . )
m=e, <p <2,
A (WE &) < MC(p,Q,Q,, ¢
SRR T T BN

Let us consider a particular example of K (z,y) = (27) " ?F(z—y), Q, = Q, = T¢.
We denote the corresponding class Wlf{ by Wf .
15



Proposition 2.1. Let 1 < p < oo and ||F||,y < M. Then the kernel K(z,y) =
(27)4F(x — y) satisfies the assumptions of Theorem 2.3.

Proof. 1t is obvious that K € K,/. Next,
@m) " [ IF@=lpdz = [Pl < M.
It remains to check that Jx € X (K,p’). We have

JK d/WF = F(0).

Denote

Sn(F,x) := Z E(k)eitk2)

|kj|<N,j=1,...,d

Then it is well known (by the M. Riesz theorem) that
|F—SN(F)|l,y =0 as N — oo.

For a given N we consider a cubature formula

Then we have A
1F(0) —gn (F(- — )l =

= [|F(0) — an (Sn—1(F,- = 9)) + an (Sn-1(F,- = y) = F(- = 1)) |y =
= llan (Sv-1(F,- = y) = F( =)l < [1Sv-1(F) = Flly = 0
as N — oo. This proves the proposition.

Theorem 2.3 and Proposition 2.1 yield the following result.

Theorem 2.4. Let 1 < p < co. Assume F € Ly(T%), p' = p/(p — 1). Consider
the class

WE={f:f=Fxp, |eol,<1}

Then for any m there exists a cubature formula Ay, (-, &) with Zanl Al < J|F ||

d
" A, (WF &) < Clp.d)||F m~2 1<p<2,
m( p ag) = (pa )H ||P' m—l/p’ 2 < p<oo.

A sequence of {A,,(-,£)} from Theorem 2.4 can be obtained by applying WRGA
with a fixed 7 = {t}. We will describe this procedure in detail. Denote g := p’. We
have 1 < ¢ < co. Then

X(K,q) = span{F(z — ),z € T},
16



with the closure in L,(T%). It is well known that
span{F(z —-),z € T%} = L,(T¢) nspan{e'*?) & : F(k) # 0}.
As a dictionary we have
D = {£F(z—)/||Flly,z € T*}.
We note that in the proof of Proposition 2.1 we actually proved that
F(0)/|IF |l € Ai(D).

Let us for simplicity give an algorithm for F' satisfying ||F'||,; = 1 (otherwise we

take F/||F||,"). We begin with f = F'(0). First, we construct a norming functional
Ny. It is known that for 1 < ¢ < oo the Ny acts as

Ny(g) = (20" [ 11312 g (25

Fix t € (0,1) and find ¢! satisfying

[Np(F(E" =) > tsup [Ny (F(z —))].

Find A\; € [0,1] and €; = +1 such that

1(0) = MerFEt =)l = inf [£(0) = AF(E! =)l

Denote R
Gi:= e F(¢' —-) and f;:= F(0)—G;.

We now describe the mth step. Assume we have already obtained G,,,—; and f,,_1.
Define by (2.5) the norming functional Ny, , anf find {™ satisfying

[Nfoa (F(E7 = )| = tsup [Ny, (F(z =)
Denote €,, = sign Ny, , (F(§™ —-)) and find )\, € [0, 1] such that
1E'(0) = (1 = Am) Gt + A F(E™ =)y =

= inf ||F(0) — (1 — A)Gm—1 + AemF (€™ —))|lq-

A€[0,1]
Denote
G = (1 = Apn)Gm—1 + Amen F (€™ — ), fm = f—Gp.
After m steps we obtain a cubature formula with knots £ = (£1,...,£™) and weights

A = (11, ..., €mAn). Nice properties of this construction are: (1) Zzzzl Ap < 1,
(2) proceeding from the step m — 1 to the step m we add one new knot £” and
change in a simple way weights ez A\ from the previous step.

17



3. LOWER ESTIMATES FOR THE CLASSES MW;

We will present here some methods of obtaining lower estimates of A,,, (W, &) for
the classes MW

It will be convenient for us to assume that the functions are 1-periodic and to
keep the notation 4 = [0,1]%. We begin with the following result.

Theorem 3.1. For any cubature formula (A, &) with m knots the following relation
holds (r > 1/2)

A (MW3,€) > C(r, dym ™" (logm) ‘="

Proof. Let us denote

A(k’) — Am(€i27r(k,m) f Z z27r(k &H)
p=1
for the cubature formula (A, ¢) and k € Z<.

Lemma 3.1. The following inequality is valid for any r > 1/2

Z‘A 2 > C(r,d) ‘A ‘ ~2r(logm)?~1,
k0
where k; := max(|k;|,1) and v(k) = H?Zl k;.
First we will deduce Theorem 3.1 from Lemma 3.1 and then prove this lemma.

We assume that ‘A(O)‘ > 1/2 because otherwise it is sufficient to take as an
example the function f(z) = 1. Let us consider the function

ZA —2r z27r(k x)

k40

where A(k) is the complex conjugate to the A(k). Then

1/2
1F 2 = | SIAE)| v (k) (3.1)
k#£0
and R
Am(f,€) — f(0) =) |A(K) (3.2)
k#£0
By (3.1) and (3.2)
1/2
A (MW3,6) = | ST[AR)v(R) 2],
k#£0

18



using Lemma 3.1 we get
A (MW3,€) > Clr,dym™" (logm) =",

which proves Theorem 3.1.

We turn to the proof of Lemma 3.1. Let b(z) be an infinitly differentiable function
such that b(x) = 0 for « ¢ (0,1) and b(z) > 0 for « € (0,1). Let m be given, choose

n € N such that
2m < 2" < 4m

Denote for s = (s1,...,Sq), s; nonnegative integers,
d
bs(x) = [ ] 0(2°7%ay),
j=1
and

Y, = {y € Qg such that A, (bs(z —y),€) = 0}.

It is easy to verify that for all s with ||s||; = n, the estimate
Ys| = C(d) >0

is valid for the measure |Y;| of the set Y;. Further,
XOROIARY TCESR —65<0>A<0>\2dyg
[ (bs(@ = ),€) = B (OIAO) " dy = >_[AGR)["[Bu

Qa k0
Let a := [r] + 1. Then for s such that ||s||; = n we have

d
‘I; < C(d,a) H ~% min(1,2%% (k;) %) =

= C(d, )2 1" H 2775 min (1,2 (k;) ).

=1

(3.3)

(3.4)

(3.5)

By summing the relation (3.5) over all s such that ||s||; = n and using the inequal-

ities 4
Z H 277% min (1,2 (k;) %) <
[slli=nj=1
o0

d d
< 1:[ Z_: 27" m1n 2“5J - 1:[
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we get from (3.4)
nd=12721|A(0)*C(d) < 22V C(d,r) Y |A(R)| v ()P,
k0

which proves the lemma.

We proceed to a stronger result than Theorem 3.1. We will replace the class
MW in Theorem 3.1 by MW with 2 < p < co. We prove the following proposi-
tion.

Theorem 3.2. The following lower estimate is wvalid for any cubature formula

(A, &) with m knots (r > 1/p)

A (MW,€) > C(r,d, p)m ™" (logm) T,  1<p < co.

Proof. The proof of this theorem is based on the following theorem on existence of
generalized Rademacher type polynomials. We introduce first some notation. Let

II(N,d) = {(a1,...,a4) € R%: |a;| < Nj;, j=1,...,d},

where N; are nonnegative integers and N := (N, ..., Ng). We denote

T(N,d):={t:t= Y e}

kETI(N,d)

Then
d
dim T'(N, d) H (2N; + 1) =: 9(N).

Theorem 3.3. Lete > 0 and a subspace ¥ C T(N, d) be such that dim ¥ > ed(N).
Then there is a t € ¥ such that

[tleo =1,  |ltl2 > C(e,d) > 0.

The proof of this theorem is based on the lower estimates of the volumes of the
sets of Fourier coefficients of bounded trigonometric polynomials from T (N, d) (see
[45] and [47]).

First, we prove the following assertion.

Lemma 3.2. Let the coordinates of the vector s be natural numbers and ||s||; = n.
Then for any N < 2"~! and an arbitrary cubature formula (A,§) with N knots
there is a ts € T((2°,...,2%),d) such that ||ts||cc <1 and

£,(0) = An(ts,€) > C(d) > 0. (3.6)
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Proof of Lemma 3.2. Let N and (A, £) be given. Let us consider in T'((2°171,...,2%471) d)
the linear subspace ¥ of polynomials ¢ satisfying the conditions

t(¢7) =0, j=1,...,N. (3.7)

Then
dim ¥ > 2" — N > on L

Consequently, by Theorem 3.3 there is t! € ¥ such that ||t!||cc = 1 and
[£*]l2 > C(d) > . (3.8)

We difine ' N
y T SN LA <12,
@]
The relations (3.7) and (3.8) prove the lemma.

otherwise.

We now complete the proof of Theorem 3.2. Let m be given. We choose n such
that
m < 2"t < 2m.

We consider the polynomial

where ¢, are polynomials from Lemma 3.2 with N = m. Then
£(0) — A (t, &) > C(d)n? L. (3.9)

Let us estimate ||t(")Hp, 2 < p < co. We will use the following corollary of the
Littlewood-Paley theorem. Let f € L;; denote for u € Z‘fr

p(u) :={k: k= (ki,... . kg),[2% '] < |kj| <2%,j=1,...,d}, (3.10)

ou(f) =) fk)e'™®).

kep(u)

Then for f € L,, 2 < p < 0o one has the inequality

£l < Clo,d) (S 116, (HI2) 2.

d
u€Z+

We have
1/2

[0, < {32 186,

[l <n+d
21



Using the Bernstein inequality we continue the estimate

1/2
< X omleaml) - (3.11)
lullr<n-+d
Next we have
5u(t): Z 5u(ts): Z 5U(ts)'
[sll1=n |s]|l1=n

s+1>u

By the inequality ||ts||cc < 1 we get from here

d—1

[6u(®)]], < (n+d+1—lull) (3.12)

The estimates (3.11), (3.12) result in

1/2

2(d—1)

) <[ S0 22l (ntd 1 lul) <2mnT. (313)

[l <n+d

Comparing (3.9) and (3.13) we get the conclusion of Theorem 3.3 for 2 < p < oc.
Clearly, the lower estimate for 1 < p < 2 follows from the estimate which we have
just proved.

Theorem 3.2 gives the same lower estimate for different parameters 1 < p < oo.
It is clear that the bigger the p the stronger the statement. We now discuss an
improvement of Theorem 3.2 in the particular case p = 1. We will improve the lower
estimate by replacing the exponent (d — 1)/2 by d — 1. However, this improvement
will be proved under some (mild) assumptions on the weights of a cubature formula
(A, &) and also for a slight modification of the classes MW7 . Denote

Fro(z) =142 Z k™" cos kx, z €T,
k=1
d
Fro(x) == HF,,,O(mj), z=(x1,...,2q) € T%
j=1
MWig:=A{f:f=¢xFo, ol <1}
It is clear that in the case r is an even integer we have MW7, = MWT. Let B be

a positive number and @ (B, m) be the set of cubature formulas A,,(+, ) satisfying
the additional condition

>l <B.
p=1
We will obtain the lower estimates for the quantities
S (W) = inf A, (W,8).

A (€)EQ(B,N)

We will prove the following relation.
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Theorem 3.4. Letr > 1. Then
5o (MW g) > C(r, B,dym™"(logm)*, C(r,B,d) > 0.

Proof. We use a similar to the above notation

A(k) = A (eF2) £) = Z)\ et(k:g"),

In the case |A(0)] < 1/2 it is sufficient to consider a function f(zr) = 1 as an
example, and therefore we will assume that |A(0)| > 1/2. Considering the cubature
formula A, (-, &) = An(+,€)/A(0), we see that

A (W, €) > A (W, €) /4

for W such that %(f — £(0)) € W provided f € W and A,,(-,&) is exact on the

function f(z) = 1, i.e. A(0) = 1. Thus it is sufficient for our purpose to consider
the cubature formulas A,, (-, ) satisfying the additional condition A(0) = 1. Let us
consider the cubature formula A" constructed with the use of A,, (-, &) as follows:

= > MAm(f@—€),€)
v=1
where ), is the complex conjugate to the \,. Then

A(E) := A (6F)) Z)\ Z)\ ! (E" =€) — | A (k)2 (3.15)

The function F;. o belongs to the closure in the uniform norm (r > 1) of the class
MWT . Consequently, by (3.15) and Lemma 3.1, we obtain

N (MW7) > N(Frp) — Frg(0) = > N(k)F
k#£0

> AR Fro(k) > C(r,d)ym ™" (logm)?~". (3.16)
k#0

On the other hand, for the cubature formula A’ we have
= A (f(z—€),6) - £(0))
v=1

which, for A,,(-,§) € Q(B, N), implies the inequality
AI(MWIT,O) S BAm(MW{,Oag)' (317)
Relations (3.16) and (3.17) yield the required lower estimate for 6,2 (MW7 ).

Let us discuss how Theorems 3.2 and 3.4 can be used for estimating from below
the generalized discrepancy D, (¢, A, m,d),. Theorem 3.2 combined with Theorem
1.1 and Remark 1.2 implies the following result.

23



Theorem 3.5. Let 1 < g < oo and r be a positive integer. Then for any points

E= (& ...,6™) C Qq and any weights A = (A1, ..., \n) we have

D,(&,A,m,d)q > C(d,rym ™" (logm)(d=1)/2

with a positive constant C(d,r).

We now turn to application of Theorem 3.4. Let r be an even integer. then
MW, = MWT. Assume that the given cubature formula A.,(-,§) € Q(B,m).

Then using the definition of D,.(§,A,m,d)~ (see (1.15)) and the embedding

0 :
MW3(Qq) — MW, (24) we get

D,.(&,A,m,d)s > Am(MI/(I)/{(Qd),f).

By (1.22) and the embedding MW7 — MW7 (£24) we obtain

A (MW(20).6) 3 A (MW 6),
where § = (01,...,0™), 04 = —7 + 2mnH,
ny =¢E), Ji=1,....4
d

o=l ), p=1,..,m.

j=1

(3.18)

(3.19)

Next, it is clear that A,,(-,&) € Q(B,m) implies that A! (-,0) € Q(C(d)B,m).

Therefore, by Theorem 3.4 we get
AL (MWT,0) > m ™" (logm)* .

Combining (3.18)—(3.20) we obtain the following statement.

Theorem 3.6. Let B be a positive number. For any points &1, ...

any weights A = (A1, ..., \n,) satisfying the condition

> l<B
p=1

we have for even integers r

D,.(&,A,m,d)o > C(d, B,r)m " (logm)**

with a positive constant C(d, B,r).
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Corollary 3.1. Let r be an even integer. Then we have for the r-discrepancy
D, (€,m,d) o := Dy(€,(1/m, ..., 1/m),d,m)s > m "(logm)? 1.

The case p = oo is excluded in Theorem 3.2. There is no nontrivial general lower
estimates in this case. We will give one conditional result in this direction.

Theorem 3.7. Let the cubature formula (A,&) be such that the inequality
A (MW, €) < m”"(logm) @ D72, v >1/p,

holds for some 1 < p < oo.
Then
A (MW, €) > m ™" (logm)@~1/2,

Proof. We denote as above
NOEDIPICR)
j=1

Let us consider the function
gnen(®) =D A(K)F(k)e' ™) — 1,
k

Then for the quantity A,,(MW,§) we have
Am(MWy,6) = sup [Am(£,€) — f(0)] =
feMwy

= sup |Apm (Fr(2) * p(2),€) — ¢(0)] =

llellp<1
= sup |(9aer(—9),0W))| = llgrerlly, P =p/(p—1).
lellp<1 (3.18)

Consequently, by hypothesis of Theorem 3.7, for some 1 < q¢ < oo, (¢ = p’) we
have

lga,e.rllq < m™" (logm) =172, (3.19)
Further, for arbitrary 1 < a < b and f € L; the following inequality holds
11 1\ !

0 < Wl =l-—=[|1-+= : 3.20
Il < IIEIAIE = (5-3) (1-3) (3.20)

By Theorem 3.2 we have for any 1 < z < oo
A (MW ;&) > m™"(log m)(d=1/2, (3.21)

Therefore, by (3.18)

lga,¢,rll2 > m~" (logm) 4= 1/2. (3.22)

Setting now b =g, a = 1(b+ 1), 2’ = a we get from relations (3.20), (3.19), (3.22)
|1 > m ™" (logm)@—1/2,

l9a.¢.r

It suffices to apply the relation (3.18) to complete the proof.
Theorem 3.7 is proved.
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Remark 3.2. We have actually proved the following inequality. Let 1 < p; < pa <
00, then for any (A, §)

A (MW, €) < A (MW, €) 72 Ay (MWL, €)' "52, (r>1/py).

4. UPPER ESTIMATES FOR THE CLASSES MW;‘

4.1. The Fibonacci cubature formulas. For periodic functions of two variables
we consider the Fibonacci cubature formulas

bn

O, (f) = b, Y F@mp/bn, 2m{pbn_1/bn}),

p=1

where by = by =1, b, = b, 1 + b, 2 are the Fibonacci numbers and {z} is the
fractional part of the number z.
For a function class W we denote

B, (W) = sup |&,(f) — (27)2 / f() de],
’H‘Z

few

where T? = [0, 27]? is the period square.
The following known result gives the order of ®, (W) for all parameters 1 <
p<oo,T>1/p.

Theorem 4.1. We have

b7 (log by, )'/2, 1 <p<oo,r>max (%,%);
@n(MW;) = b, " logb,, p=11r>1;
b " (logb, )17, 2<p§oo,% <r< %;

by, ((log by) (log log b, )) /2, 2 < p < co,r =1/2.

The lower estimates provided by Theorem 3.2 and the upper estimates from
Theorem 4.1 show that the Fibonacci cubature formulas are optimal (in the sense
of order) among all cubature formulas in the case 1 < p < oo, 7 > max(1/p,1/2):

8y, (MW)) < @, (MW]) < b, " (log by,) /2.

Theorem 3.4 combined with Theorem 4.1 implies that the Fibonacci cubature for-
mulas are optimal (in the sense of order) among formulas satisfying an additional

restriction ZT:l |Ax| < B in the case r an even integer and p =1

5p. (MWY) < ®,(MWY) < b, " log by,.

For all other values of parameters p and 7, 7 > 1/p, the right order of d,,(MW}) is
unknown.
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4.2. The Korobov cubature formulas. It will be convenient for us to denote
vectors in Z% and R? by bold letters. Let m € N, a = (ay,...,aq) € Z%. We
consider the cubature formulas

R Y T e )

which will be called the Korobov cubature formulas.
In the case d =2, m = b, a= (1,b, 1) we have

Pr(f,2) = @n(f).

We note that in the case d > 2 the problem of finding concrete cubature formulas
of the type P,,(f,a) as good as the Fibonacci cubature formulas in the case d = 2
is unsolved. The results of this subsection deal with the case d > 2 and are not as
complete as the results of Subsection 4.1.

We first prove an auxiliary assertion. Denote

d
D(N):={k = (ki,...,kq) € Z* : [ [ max(|k;|,1) < N}.
7=1
For a finite set E the cardinality of E will be denoted by |E].

Lemma 4.1. Let n, k, L be a prime, a positive real and a natural number, respec-
tively, such that

IT(L)| < (n—1)(1—27%)/d. (4.1)

Then there is a natural number a € I, := [1,n) such that for all m € T'(L),
m # 0

my +amg + - +a’ " tmg Z0 (mod n), (4.2)

and the relation (4.2) will be valid for allm € Fy(L) := I'(L2)\I'(L2'~ 1), m # nm’,
with the exception of no more than

Af = |F(L)|d2" 2 —1) T (n—1)",  1=1,2,....

Proof. Let a € I,, be a natural number. We consider the congruence
my +amy+ - +a tmg =0 (mod n). (4.3)

For a fixed vector m = (my,...,my) we denote by A,(m) the set of natural
numbers a € I,, which are solutions of the congruence (4.3). It is well-known that
for m # 0, |/m;| <n, j =1,...,d the number |An(m)‘ of the elements of the set
A, (m) satisfies the inequality

|Ap(m)| <d—-1<d. (4.4)
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We denote by GG; the set of the numbers a which are solutions of the congruence
(4.3) for at least one of m € I'(L), that is

G = Umep(L)An(m).

Let us estimate the number |G| of elements of the set G;. By (4.4) and (4.1)
we have

Gil < Y JAn(m)| < dT(L)] < (n—1)(1 —27%). (4.5)
mel (L)

For any a € I,\G; for all m € I'(L) we have
my +amy + -+ a% tmg £ 0 (mod n).

Let Gi41,1 =1,2,... denote the set of those a for which the number of elements
of the set

M!:={m:me F(L), m#nm', mitama+ --+a* 'mg=0 (mod n)}
satisfies the inequality
|M!| > Af. (4.6)
Then by (4.6)
Z | M| > A7 |Gl (4.7)

acGrya

On the other hand, by (4.4) each m can belong to at most d — 1 different sets
M! and therefore

Y Ml < dR(L)]. (4.8)

ac€Gry
Comparing (4.7) and (4.8) we find
Graa| < d|F(D)|/AF = (n— 1)(2% — 1)277+D), (49)

From relations (4.5) and (4.9) it follows that

oo
Y lGi <n—1.
=1

This means that there exists a number a € I,, which does not belong to any set
Gy, Il = 1,.... This a is the required number by the definition of the sets GG;. The
lemma is proved.

For a of the form a = (1,a,...,a?!) denote P,(f,a) := P,(f,a).
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Theorem 4.2. For any r such that r > max(1/p;1/2) and any prime number n
there is a natural number a € [1,n) for which

P, (MW, ,a) < C(r,p,d)n""(log n)"(@=1) 1 <p<oo.
Proof. Clearly, it suffices to consider the case 1 < p < 2. Let k := (r—1/p)/2, n be

given and L satisfies (4.1) and in addition |['(L)| =< n. Let a be the number from
Lemma 4.1, depending on n, k, L and

7, = {m :m € Fi(L), m#nm’, mi+amo+---+a®tmg=0 (mod n)}
Then by Lemma 4.1
1Z| < A, (4.10)
and the error of the cubature formula can be estimated as follows
1Po(foa) = FO) < DY fm)|+| > fm)| =01+ 00 (4.11)
=1 meZ; m=nm’
Let us estimate 01,02 from (4.11) for f € MW
We denote _
Yi(z) = Z e'h),
mEZl
We have
01 = Z(fa wl) S ZELQI*I (f)p”qlep’a (412)
=1 1=1

where En(f), denotes best approximation of f in L, by trigonometric polynomials
with frequencies in T'(N). It is known (see [47,Ch.3,Th.3.2]) that for f € MW,
1 < p < oo we have

EN(f)p S C(Tapa d)N_Ta r> 0

Further
2/p' —2/p’
Wullr < llall3” Nl 227" < 1207, (4.13)
From (4.12) by the estimate of Enx(f), and by (4.13) and (4.10) we get
o1 < L7 < n""(logn) @),
For o9 we have
o3 < Y |f(nm’)] < 07" p(@) 77| @(nm'), (4.14)

m’#0 m’

where ¢ is such that f = F,. x ¢, ||¢||, < 1.
From (4.14), applying the Holder inequality and the Hausdorff-Young theorem,
we get

1/p
ogpLn " (Z V(ﬁ')Tp> (Z

m’ m’

) 1/p
$(nm’)|” > <n el <n"

The conclusion of the theorem follows from the estimates for o7 and os.
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4.3. The Frolov cubature formulas. In this subsection we construct the opti-

0
mal (in the sense of order) cubature formulas for the classes MW7 (€4), 2 < p < oo.
The following lemma plays a fundamental role in the construction of such cuba-
ture formulas.

Lemma 4.2. There exists a matriz A such that the lattice L(m) = Am, where m is
a (column) wvector with integer coordinates, has the following properties

Ly (m)
L(m) = | ;
La(m)
10 H(;Zl Lj(m)‘ > 1 for all m # 0;

20 each parallelepiped P with volume |P| whose edges are parallel to the coor-
dinate azes contains no more than |P|+ 1 lattice points.

Let ¢ > 1 and A be the matrix from Lemma 4.2. We consider the cubature

formula
®(a, A)(f) = (ad|detA|)_1 Z f <w>

meZzd

0
for f € MW3(€4). Clearly, the number N of points of this cubature formula does
not exceed C(A)a?|det A|.

Theorem 4.3. Let a matriz A be from Lemma 4.2 and let r be a natural number.
Then

d—1

d(a, A)(MI/IO/Q(Qd)) < C(A,d)a""4(loga) = .

Proof. We will use the Poisson formula which we formulate in a form convenient

for us. We denote for f € L;(R%)

Fo = [ remi i,

Lemma 4.3. Let f(x) be continuous and have compact support and the series
> xeza f(k) converges. Then

Y k) =) fln)

kezd nezd

By Lemma 4.3 the identity

®(a, A)(f) = (a| det A]) " Zm:/w f (%) e 2mi(mx) gy —

=Y | e e Amdy = 3 f(aam), (4.15)
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holds under the assumption that the series in the right side of (4.15) converges.

The convergence of this series will follow from further consideration. In the relati-
—1\T
on (4.15) we carried out the linear change of variables y = %
We have for the error of this cubature formula

6 = ®(a, A)(f =) f(aAm). (4.16)

m=#0

We need the following simple assertion.

Lemma 4.4. Let ||¢||2 < 1 and the support of ¢ be contained in Q4. Then for any
a > 1 and nonsigular matrix A we have

3 [@(adm)|* < C(A).

Proof. Similarly to (4.15) we have

—1\T
¢(aAm) = (a’|det A|)_1/ @ <M> e~ 2mi(mx) gy (4.17)
Qg

a

Let
Qu(n) = {x:x=y+n, yeQ}

= fu: (s (4)) o £}

From the hypothesis of the lemma it follows that

and

G| < C1(A)al. (4.18)

Afll‘ )
Cm(n) :/Q ( )<P (7( a) X) e~ 2mi(mx) g
a(n

By the Parseval identity
A-HTx
o (( ) )
a

;‘Cm(nﬂz - /Qd(n)

From the relation (4.17), using the Cauchy inequality and the inequality (4.18),
we get

We denote

2
dx. (4.19)

2
|p(aAm)|” = (a?|det A]) 7 |3 em(n)| <
neG
< (a%| det A|)~ |G|Z\cm (a% det A]) " C2(A) > |em(n)
neG neG
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Performing the summation over m and taking into account the relation (4.19)
we get
2
dx =

%:\sb(cmm)\2 < Cy(A)(a%) det Al) " /R ‘SO <%>

= Ca(4) [ [ety[dy < Ca(a)

The lemma is proved.

We continue the proof of Theorem 4.3.

Let fe M V(I)/""(Qd) be rd times continuously differentiable. We denote p(z) =
Ldf. Then for m # 0

™
oxy...

T

d
f(aAm) = $(aAm) H (2miaL;(

Let [ be such that
271 <ot < 2.
Then by the property 1° of Lemma 4.2 the inequality ||s||; > [ holds for s such that

p(s) (see the definition of p(s) in (3.10)) contains a point aAm with m # 0.
Then

d
(27T)_Td5 < Z Z |<,5(aAm)| H‘aLj(m)‘_T <

lIsll1=>l aL(m)€ep(s)
1/2

d 1/2
<| > > Iezim)™ <2\¢<aAm>\2> .
m (4.20)

Isll1 >l aL(m)€ep(s) j=1
Applying Lemma 4.4 and using the relation
d
I —2r 9-2r(s ‘P(S)‘ 1
> Y e« X CIFR
[slli=l aL(m)ep(s) 1=1 lIslls=>1

< 2—2rlld—1 < a—2rd(10g (L)d_l.
we get from here and (4.20)

6 < a”"(log a)%.

Theorem 4.3 is proved.
Theorem 4.3 combined with Theorem 1.1 and Theorem 3.2 implies the following
theorem.

Theorem 4.4. Letr € N and 2 <p < co. Then
d—1

O (MWJ) =< m "(logm) = .
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5. HISTORICAL NOTES, COMMENTS, AND SOME OPEN PROBLEMS

First we will give a brief historical survey on the discrepancy. We refer the reader
for a complete survey to the following books on discrepancy and related topics L.
Kuipers and H. Niederreiter [27], J. Beck and W. Chen [5], J. Matousek [29], and
B. Chazelle [9]. We formulate all results in the notations of this paper and in the
form convenient for us. We use the following notation

D(X,m,d), / HaJ——ZX x“|qda)/q, 1< q< oo,
Q

d ,] 1

D(X,m,d)s = aénéai( |HaJ ——ZXOa (H)]

where X = (x!,...,2™). The first result in this area was the following conjecture
of van der Corput [11,12] formulated in 1935. Let &7 € [0,1], j = 1,2,..., then we
have

limsupmD((£L,...,€™),m, 1)s = oo0.

m— 00

This conjecture was proved by van Aardenne-Ehrenfest [1] in 1945:

log log1
anjB((é‘l’ cre ’é‘m)’m) 1)00 > 0'

lim sup
m—oo loglogm

Let us denote
D(m,d)q := igl(fD(X,m;d)qv 1< g < o0

In 1954 K. Roth [32] proved that
D(m,d); > C(d)ym™" (logm)“~1/2, (5.1)
In 1972 W. Schmidt [36] proved
D(m,2)s > Cm ™' logm. (5.2)
In 1977 W. Schmidt [37] proved
D(m,d), > C(d,q)m ™ (logm)d=1/2, 1 <q<o0. (5.3)
In 1981 G. Haldsz [21] proved
D(m,d); > C(d)m~*(logm)'/2. (5.4)
The following conjecture has been formulated in [5] as an excruciatingly difficult

great open problem.
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Conjecture 5.1 ([5]). We have for d >3
D(m,d)se > C(d)m =" (logm)?~1.

This problem is still open.
We now present the results on the lower estimates for the r-discrepancy. We
denote
D,(m,d)q == iIglf D,(& (1/m,...,1/m),m,d),

where D,.(§, A, m,d), is defined in (1.15) and also denote
Dy (m,d)q == 1§n1£ D, (&, A,m,d),.

It is clear that
D7 (m,d)q < D,(m,d),.

The first result in estimating the generalized discrepancy was obtained in 1985 by
V.A. Bykovskii [6]

D8(m,d)y > C(r,d)ym " (logm)@~1)/2, (5.5)

This result is a generalization of the Roth’s result (5.1). The generalization of the
Schmidt’s result (5.3) was obtained by the author in 1990, [45], (see Theorem 3.5
of this paper)

D¢(m,d), > C(r,d,q)m " (logm)@1/2, 1 < g<oo. (5.6)

In 1994, [48], the author proved that for r even integers we have for the r-discrepancy
(see Theorem 3.6 and Corollary 3.1 of this paper)

D, (m,d)oss > C(r,d)m ™" (logm)?~1. (5.7)

This result encourages us to formulate the following generalization of the Conjecture
5.1.

Conjecture 5.2. For all d,r € N we have
D2 (m,d)os > C(r,dym ™" (logm)*~".

The above lower estimates for D{(m,d), are formally stronger than the corre-
sponding estimates for D(m, d), because in D{(m,d), we are optimizing over the
weights A. However, the proofs for D(m, d), could be adjusted to give the estimates
for D§(m, d),. The results (5.5)—(5.7) for the generalized discrepancy were obtained
as a corollary of the corresponding results on cubature formulas (see Theorem 1.1
and Theorems 3.5, 3.6). We do not know if existing methods for D(m, d), could be
modified to obtain the estimates for D2(m,d),, r > 2.

We proceed to the lower estimates for the cubature formulas. Theorem 3.1 and
Lemma 3.1 were established in [6]. The proof is taken from [47]. Theorems 3.2,
3.3, and Lemma 3.2 were proved in [45]. Theorem 3.4 was proved in [48]. Theorem
3.7 is from [46]. There are two big open problems in this area. We formulate them
as conjectures.
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Conjecture 5.3. For any d > 2 and any r > 1 we have

S (MWT) > C(r,d)m =" (logm)?~1.

Conjecture 5.4. For any d > 2 and any r > 0 we have
Om (MWL) > C(r,d)ym " (logm)(d-1D/2,

We note that by Proposition 1.2, Theorem 1.1, and (1.15) Conjecture 5.3 implies
Conjecture 5.2 and Conjecture 5.4 implies

D8(m,d); > C(r,d)ym " (logm)@~1/2, (5.8)

We turn to the upper estimates. We begin with the cubature formulas. We
have already made a historical remark on classes with bounded mixed derivative in
Section 1. We will discuss only these classes here. For results on cubature formulas
for the Sobolev type classes we refer the reader to the books of S.L. Sobolev [40], E.
Novak [31], and the author [47,Ch.2]. The first result in this direction was obtained
by N.M. Korobov [25] in 1959. He used the cubature formulas P,,(f,a) defined
in Subsection 4.2. We note that similar cubature formulas were also used by E.
Hlawka [22]. The Korobov’s results lead to the following estimate

Om (MWT) < C(r,d)m~" (logm)™, r> 1. (5.9)
In 1959 N.S. Bakhvalov [2] improved (5.9) to
S (MWT) < C(r,d)ym~"(logm)™ @V ¢ >1.

The first best possible upper estimate for the classes MW, was obtained by N.S.
Bakhvalov [3] in 1963. He proved in the case d = 2 that

S (MWI) < C(r)ym~"(logm)*?,  reN. (5.10)

N.S. Bakhvalov used the Fibonacci cubature formulas defined in Subsection 4.1.
In 1976 K.K. Frolov [18] used the cubature formulas defined in Subsection 4.3
to extend (5.10) to the case d > 2 :

O (MWZ) < C(r,d)ym " (logm)@~1/2, reN. (5.11)

In 1985 this estimate was further generalized by V.A. Bykovskii [6] tor € R, r > 1.
Bykovskii also used the Frolov cubature formulas. One can find these results in
Section 4 of this paper. Theorem 4.1 was proved in [46] and [48]. Theorem 4.2
and Lemma 4.1 are from [44]. Theorem 4.2 addresses the case of small smoothness:
r > max(1/p,1/2) instead of » > 1. Lemma 4.2 is a well known result in algebraic
number theory (see [8]). Theorem 4.3 was obtained by K.K. Frolov [18, 19]. The
proof is taken from [47]. We note that there is no sharp results for 6,,(MW}) in
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the case of small smoothness 1/p < r < 1. It is an interesting open problem. The
approach based on nonlinear m-term approximation (see Section 2) can be useful
in this case.

The Frolov cubature formulas [19] give the following estimate

S (MWT) < C(r,d)ym~"(logm)?~1, r>1. (5.12)

Thus the lower estimate in Conjecture 5.3 is the best possible.
In 1994 M.M. Skriganov [39] proved the following estimate

S (MW) < C(r,d,p)m ™" (log m)d /2 1<p<oo, reN, (5.13)
This estimate combined with Theorem 3.2 implies
O (MW) < m™"(log m)4V/2 1 <p<oo, rel (5.14)

Another proofs of (5.13) and Theorem 3.2 were given in 1995 by V.A. Bykovskii
[7].
We now present the upper estimates for the discrepancy. In 1956 H. Davenport
[13] proved that
D(m,2); < Cm~(logm)'/2.
Another proofs of this estimate were later given by I.V. Vilenkin [52], J.H. Halton
and S.K. Zaremba [24], and K. Roth [33]. In 1979 K. Roth [34] proved

D(m,3)y < Cm ‘logm
and in 1980 K. Roth [35] and K.K. Frolov [20] proved
D(m,d)y < C(d)m ™ (logm)@-1/2,
In 1980 W. Chen [10] proved
D(m,d), < C(dym~*(logm)@Y/2 ¢ < 0.
The estimate (5.12) and Theorem 1.1 imply
D2(m,d)s < C(r,d)m~"(logm)¢~1, r>2.

We note that the upper estimates for D(m,d), are stronger than the same upper
estimates for DY (m, d),.

Let us also mention a classical book of S.M. Nikol’skii [30] on quadrature formulas
and books of N.M. Korobov [26], W. Schmidt [38], and Hua Loo Keng and Wang
Yuan [23] on discrepancy and related topics. We discussed in this paper only the
case of the class MW, of functions with bounded mixed derivative. There are
analogs of classes MW which are also natural in the theory of cubature formulas.
One can find results on numerical integration of functions with bounded mixed
difference in the papers [4], [17], [43], and in the book [47]. A different method of
constructing cubature formulas for functions with bounded mixed derivative was
suggested by S.A. Smolyak [41] (for further results see [42]).
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H. Wozniakovski the organizers of the workshop ”Numerical Integration and its
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