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CONVERGENCE OF GREEDY APPROXIMATION 1.
GENERAL SYSTEMS!

S.V. KONYAGIN AND V. N. TEMLYAKOV

ABSTRACT. We consider convergence of thresholding type approximations with regard to gen-
eral complete minimal systems {e,} in a quasi-Banach space X. Thresholding approximations
are defined as follows. Let {e};} C X* be the conjugate (d ual) system to the {ey}; then define
for € > 0 and = € X the Thresholding Approximations as Te(z) := > jeD.(z) € (z)e; where
De(z) == {j : |ej(z)| > €}. We study in this paper a generalized version of T, th at we call
the Weak Thresholding Approximation. We modify the T¢(z) in the following way. For € > 0,
t € (0,1) we denote Dy c(x) := {j : te < |e](z)| < €} and consider the Weak Thresholding Ap-
proximations Te p(z) := Te(z) +3_ ;¢ p €] (¥)ej, D C Dy,e(x). We say that Weak Thresholding
Approximations converge to z if T, p(c)(z) — = as € — 0 for any choice of D(e) C Dy ().
We prove that the convergence set WT'{e,} does not depe nd on parameter ¢ € (0,1) and
that WT'{e,n} is a linear set. We present some applications of general results on convergence
of thresholding approximations to A-convergence of both number series and the trigonometric
series.

1. INTRODUCTION

Let X be a quasi-Banach space (real or complex) with the quasi-norm || - || such that for
all z,y € X we have ||z +y|| < a(||z||+||y]|) and ||tz| = |t|||z|. It is well-known (see [KBR,
Lemma 1.1]) that there is a p, 0 < p < 1, such that

(1.1) > | <AVP (Y flaal?

Let {e,,} C X be a complete minimal system in X with the conjugate (dual) system {e’} C
X*. We assume that sup,, ||e}|| < oo. This implies that for each x € X we have

1/p

(1.2) lim e} (z) =0.

n—oo

Any element z € X has a formal expansion
(1.3) x ~ Ze;(x)en,
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and various types of convergence of the series (1.3) can be studied. In this paper we deal
with greedy type approximations with regard to the system {e,}.

For any x € X we define the greedy ordering for x as the map p : N — N such that
{j : ej(z) # 0} C p(N) and so that if j < k then either e} . (z)| > |e} ;) (z)| or |e} . (z)| =
|e;(k)(x)| and p(j) < p(k). The m-th greedy approximation is given by

m
Gm(z) = Gm(z,{en}) == Z €pi) (T)€p(j)-
j=1

The system {e,} is called a quasi-greedy system (see [KT]) if there exists a constant C
such that |G, (z)]| < CJ|z|| for all z € X and m € N. Wojtaszchyk [W] proved that these are
precisely the systems for which lim,, , o, Gy, (2) = z for all z. If a quasi-greedy system {e, }
is a basis then we say that {e,} is a quasi-greedy basis. It is clear that any unconditional
basis is a quasi-greedy basis. We note that there are conditional quasi-greedy bases {e,}
in some Banach spaces [KT, W|. Hence, for such a basis {e,} there exists a permutation of
{en} which forms a quasi-greedy system but not a basis. This remark justifies the study of
the class of quasi-greedy systems rather than the class of quasi-greedy bases.

Greedy approximations are close to thresholding approximations (sometimes they are
called “thresholding greedy approximations”). Thresholding approximations are defined as

T.(z) = Z e;(z)ej, €>0.

e (x)| >e

Clearly, for any € > 0 there exists an m such that T.(z) = G,,,(z). Therefore, if {e,} is a
quasi-greedy system then

(1.4) Ve e X ;1_% T (z) = x.

Conversely, following Remark from [W, pages 296-297], it is easy to show that the condition
(1.4) implies that {e,} is a quasi-greedy system.

The following weak type greedy algorithm was considered in [T1]. Let ¢ € (0,1] be a
fixed parameter. For a given system {e,} and a given x € X denote A,,(t) any set of m
indices such that

min |le*(x)e;l]l >t max l|le*(x)e;
min @)l > ¢ max [e5(@)es]

and define
GL(z) =GN, {en}) = > ef(a)e;.
FEAR ()

We note that the greedy approximant G? (z) does not depend on normalization of a system
{en} and the previously defined greedy approximant G,,(z) does depend on normalization.
Usually we will denote by {e, } a general system and by {#,,} a normalized one or a system
which can be assumed normalized without loss of generality.

It was proved in [T1] that in the case of X = L,, 1 < p < oo, and {e,} is the Haar
system H we have for any f € L,

(1.5) 1f = G (£, H)llp < C(p,t)om (£, H)p-
This result motivated us to introduce a concept of greedy basis (see [KT]).
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Definition 1.1. We call a normalized basis ¥ greedy basis if for every x € X there exists
a realization {GX'(z,¥)} such that

lz = Gt (@, W)l|x < Gom(z, ¥)x

holds with a constant independent of x and m.

We note here that the proof of (1.5) from [T1] works for any greedy basis instead of the
Haar system 7. Thus for any greedy basis ¥ of a Banach space X and any ¢t € (0, 1] we
have for each x € X

(1.6) lz — G (2, 9)llx < C(t)om (e, ¥)x.

This means that for greedy bases we have more flexibility in constructing near best m-term
approximants. Similarly to the above, one can define the Weak Thresholding Approxima-
tion. Fix ¢ € (0,1). For € > 0 denote

Dy () = {j : te <lej(z)| < e}

The Weak Thresholding Approximations are defined as all possible sums

Tp(@)= Y €@)ej+ ) ef@)e,

e ()| >e jeD

where D C D, .(x). We say that the Weak Thresholding Algorithm converges for z € X
and write z € WT{e,}(t) if for any D(e) C Dy

;I_I)I%) TE7D(€) (:I?) = T.
It is clear that the above relation is equivalent to

lim sup ||z —Tp(z)|| =0.
e—0 Dth75(w)

We shall prove in Section 2 (see Theorem 2.1) that the set WT'{e,,}(¢) does not depend on
t. Therefore, we can drop ¢ from the notation: WT{e, } = WT{e,}(t).

It turns out that the Weak Thresholding Algorithm has more regularity than the Thresh-
olding Algorithm: we will see that the set WT{e,} is linear. On the other hand, by “weak-
ening” the Thresholding Algorithm (making convergence stronger) we do not narrow the
convergence set too much. It is known that for many natural classes of subsets Y of a
Banach space X the convergence of Tc(z) to z for all z € Y is equivalent to the condition
Y C WT{e,}. In particular, it can be derived from [W, Proposition 3| that the two above
conditions are equivalent for Y = X.

3



§2. GENERAL PROPERTIES OF THE WEAK THRESHOLDING ALGORITHM

We suppose that X and {e,} satisfy the conditions stated in the beginning of the paper.

Theorem 2.1. Lett,t’' € (0,1), x € X. Then the following conditions are equivalent:
1) lime 0 SUppcp, . (z) | Te,n(x) — || = 0;
2) im0 T.(z) = = and

2.1 lim sup ei|l = 0;
(2.1) fy e 113 65 @)

3) lim._,o Te(x) = = and
(2.2 im s | ael(@el =0

€2014;|<1(j€D,c (z)) jED, . (x)
4) lim. o Te(z) = = and
(2.3) lim sup I Z bjej|| = 0;

=70 b |<eiile; (@)12€) 1ot (my e
5) limeo0suppcep,, (2) ITe,p(z) —z| = 0.

Proof. The equivalence of 1) and 2) easily follows from the definitions of T¢(z) and T¢ p(z).

The condition 2) follows from 3) since for any D C D;.(z) we can take a; = 1 for
j € D and a; =0 for j ¢ D. To prove the implication 2) = 3) we use the following lemma
essentially proven in [W, Proposition 3]. We note that in the case of Banach space X instead
of quasi-Banach space X this lemma is trivial.

Lemma 2.1. There ezists a constant C = C(«a) such that for any elements
x1,...,%y, of the space X we have

n n
max g ajz;|| < C max g a;x;

<1 40,1
laj|< j=1 a;j€{0,1} j=1

Proof of Lemma 2.1. Denote

= max a;x;
a;j€{0,1} ; 7
Let us estimate the sum 2?21 a;x; for a; € [0, 1] first. We write a digital expansion of each
aj, namely, a; = Y oo, a; s27°, where a;, € {0,1}. Then, using (1.1), we obtain
P P
n oo n
2| = |2,27) e
j=1 s=1  j=1
P

S 420.32_81) zn:aj,sfbj S 420.32_SPMP = (ClM)p
s=1 7j=1

s=1
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Hence,
n n
E ;T S Cl b'Ié'l{%Xl} E bjﬂ?j
j=1 J ’ j=1

The case of arbitrary coefficients |a;| < 1 can be easily reduced to the case a; € [0, 1] by

using a representation a; = agl) — a§~2) with ag-l) € [0, 1], a§-2) € [0, 1] for a real space X and

a similar representation a; = ag-l) — a;_z) + ia§-3) — ia§-4) for a complex space X, and Lemma
2.1 follows.

Applying Lemma 2.1 for the set

{z1,- 0 zn} = {€f(2)ej 1 J € Die(2)},

we get

sup Z aje;(z)e;l| < C sup Ze;(m)ej ,

a5 | S1GEDs (@) || je e (a) DD, (v) 12T)

and therefore 2) implies 3). Thus, we have proved that 2) and 3) are equivalent.

We will prove that the condition 3) follows from 4) by proving that 4) implies 2). Indeed,
for any D C D;(z) we set b; = tej(x) for j € D, and b; = 0 for j ¢ D. Then we have
bj| < te, and, by 4),

sup || Z bjejll =0
DCD:.(2) jcp

as € — 0, and 2) holds.
Let us show that 3) implies 4). Let x € X. Define for u > 0

(2.4) P(u) == sup aje;(z)e;
laj|<1(FE€D¢,u(x)) jeth;(m) ]

Then by 3) we have lim, o ®(u) = 0. Let us take b;(j : [ej(z)| > €), |b;| < €, and estimate
the sum
S = Z bjej.
jiles @) 2e

We have
(2.5) S=YS.,
s=1

where

SS = E bjej.
j:t*(sfl)eg\e; (z)|<t—se
5



By (2.4) with u =t"%¢ we get

1S, = > bje;|| < t571d(t%).

j:t—(5—1)6§|e; (z)|<t—se

By (1.1) and (2.5),

(2.6) ISP < 4) P Da(te)P.

s=1

It follows from the properties of the function ® that the right-hand side of (2.6) tends to 0
as € — 0. Hence, 4) holds.

Finally, note that the condition 4) does not depend on the choice of ¢ € (0,1). This shows
that 1) is equivalent to 5) and completes the proof of the theorem.

So, the set WT'{e,,} defined in Section 1 is indeed independent of ¢ € (0, 1).
Theorem 2.2. The set WT{e,} is linear.

Proof. 1t is enough to prove that z +y € WT{e,} provided that x € WT{e,} and y €
WT{e,}. By Theorem 2.1 it is sufficient to consider a particular parameter ¢ € (0,1). Let
us specify ¢ = 1/2 and prove that

(2.7) lim sup | Tep(z+y)— (z+y)|| =0.
e—0 DgD1/2,E(m+y)

Take e > 0 and D C D5 .(x + y) and estimate ||T. p(z +y) — (z +y)||. Let
Dy =DU{j:lej(z+y)l >}, D2=N\Dx.

Notice that j € D; implies |e}(x + y)| > €/2 and therefore |e}(x)| > €/4 or |e}(y)| > /4.
We have

(2.8) Tep(z+y) = Z e;(z +yej.
JED1

Consider the following sets
Az, e) :={j : |ej (@) > €/4,]ej(y)] < €/4},

Ay, €) = {7 : ej (W) = e/4, [ej ()| < e/4},
Be) :={j : lej(@)| = ¢/4,]ej(y)| = e/4}.
It is clear that D; C A(x,e) U A(y,€) U B(e). It is also clear that

(2.9) A(z,e) UA(y,e)UB(e) =Dy UEUF
6



where
E:={j:lej(z)| > €/4,j € D2},

Fi={j:1ei)| = e/4,|el(2)| < ¢/4,5 € Ds}.

Define the following sums:

S]. = Z 6;(3])6]',

(3:le; (@)|2/4}

Sa= D> &We,

(3:let (v) [ >e/4}

Ss= Y eye

JEA(z,€)

Si= > (e,
JEA(y,€)

S5 = Z 6;(37 + y)ej,
JjeEE

Se = Z e; (T +y)e;.
jEF

Then we have
S1+ 8594+ 853+ 54 = Z 6;($+y)€j.

JjEA(z,e)UA(y,e)UB(¢)

Taking into account this fact, (2.8), and (2.9), we see that
Tep(z+y) — (z+y) = (51— 2) + (52 —y) + 53+ 54 — 55 — S

The terms S; —z and S2 —y tend to 0 as € — 0 since z € WT{e,} andy € WT{e,}. The
sums Sj, j = 3,4,5,6, tend to 0 by the condition 4) of Theorem 2.1. This proves Theorem

2.2,

Remark 2.1. Using the same technique as in the proofs of Theorems 2.1 and 2.2 one can
show that the linear set WT{e,} equipped with the quasi-norm

llzll[ = sup sup [T, p(x)]l
€ Dth,E({B)

is a quasi-Banach space embedded in X. The system {e,} is a quasi-greedy system in the

space (WT{en}, |l - |l)-

We note that the space (WT{ey,},|||-|||) needs not to be a Banach space even if X is.
Moreover, we will show in Section 3 (see Theorem 3.2) that the quasi-norm ||| - ||| is not
necessarily equivalent to any norm. Thus it would be unnatural to restrict ourselves to
Banach spaces in studying quasi-greedy systems.

Let us now discuss the convergence of GX!(z, ) for quasi-greedy bases.

7



Theorem 2.3. Let ¥ be a normalized quasi-greedy basis for a Banach space X. Then for
any fized t € (0, 1] we have for each x € X that

GXtx, ) -2 as m — oo.

Proof. Let
Gz, @) = > cj(@)h; = Sa, (1) (z, ).
JEAm (1)
We denote
o= max ¢ (2)]
and

AL = {j ¢ e (@) > a) € A1),
A2, = (Gt les(@)] 2 ta} 2 An().

Thus we have
SAm(t) (x, \If) = SA},L (213, \I’) -+ SAm(t)\A}n (a:, \If)

The assumption that ¥ is quasi-greedy implies that
(2.10) Sa (z,¥) =z as m — oo.
We will prove that
||SAm(t)\A}n(-T, )| -0 as m — oo.
We note that
(2.11) Sam@\aL, (@) = Saonan (Y @)y, D).

Jita<lcj(z)|<a

We need a lemma on properties of quasi-greedy systems.

Lemma 2.2. Let ¥ be a normalized quasi-greedy basis. Then for any two finite sets of
indices A C B and coefficients 0 < t < |a;| <1, j € B, we have

1D ajasll < CX, T, 0] ajs]l.

JEA JjEB
Proof. The proof is based on the following known lemma (see [DKKT]) that is essentially
due to Wojtaszczyk [W].

It will be convenient to define the quasi-greedy constant K to be the least constant such
that
[Gm(2)[| < Kllz]| and  [lz — Gm(z) < Kl|z], =€ X.

8



Lemma 2.3. Suppose U is a normalized quasi-greedy basis with a quasi-greedy constant K.
Then for any real numbers a; and any finite set of indecies P we have

(4K%) ™" min fa|| Yol <Y agey)l < 2K max |aj| > il
! jEP jEP ¢ jEP
Using this lemma, we get
1Y~ agibsll < 2K wsll < QKDY ol < QK) D ajib]l-
jEA jEA jEB jEB

This proves Lemma 2.2.
We continue the proof of Theorem 2.3. Denote

Ty 1= Z cj(x);.

jita<|e; (z)|<a
Then by Lemma 2.2 we get from (2.11)
158, AL, (2, )| < C[za].

It remains to remark that « — 0 as m — oo and z, — 0 as a — 0.

We note that the mth greedy approximant G,,(z,{e,}) changes if we renormalize the
system {e,} (replace it by a system {\,e,}). This gives us more flexibility in adjusting a
given system {e,} for greedy approximation. Let us make one simple observation in this
direction.

Proposition 2.1. Let ¥ = {¢,,}52; be a normalized basis for a Banach space X. Then
the system {en}52 1, € :=2"py,, n=1,2,... is a quasi-greedy system in X.

Proof. For a given z € X denote

on(z) := sup |¢r(z)].

n>N
Then
(2.12) In(x) >0 as N — oc.
For € > 0 we denote by N(€) := N(x,¢) the smallest integer N satisfying
¥ (z)] <2%, n>N+1.

By (2.12) we get

lim 2V (¢ = 0.
e—0
9



Let

neD.

Then by the definition of e,, and the number N (€) we obtain that D, C [1, N(¢€)]. Therefore,
denoting

S (@, 0) =) o5 (x)n

we get

1SN (o) (2, ¥) = Te(z)|| = | > en()en| =

n<N(e):ley (z)|<e

[ > Pi (@) <2V 0

n<N(e):|9 (z)|<2me
as € — 0. This completes the proof of Proposition 2.1.

We apply Proposition 2.1 to the trigonometric system {1, }n>0: %o = 1, t2, 1 := €™,
Pop = e ™ n =1,2,... . It is known (see [T2]) that the trigonometric system is not a
quasi-greedy system for L, (T) for p # 2. Proposition 2.1 implies that the system {2Inlginty
is a quasi-greedy system for L,(T), 1 < p < oo.

Let us discuss relations between the Weak Thresholding Algorithm T, p(z) and the Weak
Greedy Algorithm G? (z). We define a modification of G¥ (x) that coincides with Gt (x)
for a normalized system {e,} and close to G,,(x) for a general system when ¢ = 1. For a
given system {e,} and ¢t € (0,1] we denote for x € X and m € N by W,,(t) any set of m
indices such that

2.13 i *(2)] > ¢ *
(2.13) jervnvln?(t)lej(w)|_ ; g_ﬁnvlvix(t)|ej(x)l

and define 5 3
Gio(@) i= G (2, {en}) == Sw () = D €f(a)e;.
JEWn (t)
It is clear that for any ¢ € (0,1] and any D C D, .(z) there exist m and W,,(t) satisfying

(2.13) such that
Te.p(z) = Sw,, (1) (€)-

Thus the convergence G? (r) — z as m — oo implies the convergence T, p(z) — = as
e — oo for any t € (0,1]. We will now prove that for ¢ € (0,1) the inverse is also true.

Proposition 2.2. Lett € (0,1) and x € X. Then the following two conditions are equiva-
lent:

(2.14) lim sup ||T.p(z)—z| = 0;
e—0 Dth,e(w)
10



. ~t i _
(2.15) Tim_ (|G, () — al| = 0

for any realization Gt (x).

Proof. The implication (2.15) = (2.14) is simple and follows from a remark preceding Propo-
sition 2.2. We prove that (2.14) = (2.15). Denote

€m = max |e}(x)].
j¢Wm(t>| (@)

Clearly €,, — 0 as m — oo. We have

(2.16) Gh(z) =Tae, (z) + Y €}(x)e;

J€Dm
with D,, having the following property: for any j € D,,
tem < lej(z)] < 26

Thus by condition 5) from Theorem 2.1 for ¢’ = ¢/2 we obtain (2.15).
Proposition 2.2 is now proved.

Proposition 2.2 and Theorem 2.1 imply that the convergence set of the Weak Greedy
Algorithm G (-) does not depend on ¢ € (0,1) and coincides with WT{e,}. By Theorem
2.2 this set is a linear set.

Let us make a comment on the case ¢ = 1 that is not covered by Proposition 2.2. It
is clear that T.(z) = G,,(x) with some m and, therefore, G,,(z) — = as m — oo implies
T.(x) - x as € — 0. It is also not difficult to understand that in general T.(z) — z as
€ — 0 does not imply G,,(x) — = as m — oo. This can be done, for instance, considering
the trigonometric system in the space L, p # 2, and using the Rudin-Shapiro polynomials
(see [T2]). However, if for the trigonometric system we put the Fourier coefficients with
equal absolute values in a natural order (say, lexicographic), then in the case 1 < p < oo
by Riesz theorem we obtain convergence of G,,(f) from convergence of T.(f). Results from
the paper [KS] show that the situation is different for p = 1. In this case the natural order
does not help to derive convergence of G,,(f) from convergence of T¢(f).

§3. A-CONVERGENCE OF NUMBER SERIES

A series ) an, a, € C, is said to A-converge to a number s € C if the following
conditions hold:

(3.1) lim )" an=s;

e—0t
nilan|>e
(3.2) lim e¢|{n: |a,| >¢€}| =0.
e—0t

11



We shall write it as

(4)) an=s.

The notion of A-convergent series has been studied in [U2]; see also [U3]. It is similar to
the well-known notion of the A-integral (see, e.g., [U1]). We show that A-convergence can
be treated as weak thresholding convergence of number series. Recall that ¢y is the space
of sequences convergent to zero. Namely,

coz{w:(xo,wl,...):mne(c, lim x”zO},

n—oo
with the norm of z € ¢y defined as ||z|| = max, |z,|. It is known that
oo
g =1l = {(.’EO,.’El,...) 2" eC, ||z|| = Z|wn| < oo}
n=0

Consider the system {e,}nen C co defined as €2 = e? = 1, e/ = 0 for j # 0,n. It is
clear that {e,} is a minimal system. It is also easy to see that {e,} is complete in ¢y. For
instance, we have for the coordinate vectors u,, (ul' =1,ul =0,7 #n),n=0,1,...:
1 m
fuo — 3 enlly < 1/ms

n=1
Up = €p —Ug, N =1,2,....

The elements e} of the conjugate system are e} = u,, n = 1,2,.... Thus, the formal
expansion (1.2) takes the form
(e e}
T~ Z z"e,,.
n=1

Clearly, this expansion converges to = for x € ¢y satisfying the following condition

(e e)
20 = E z".
n=1

Theorem 3.1. Define the system {e,}nen C co as €d = e? =1, el = 0 for j # 0,n.
Let ), cnan be a number series, lim, .o an, = 0, s € C, t € (0,1). Then the following
conditions are equivalent:

1) the series ), a, A-converges to s;

2) lim._,osuppcp, . |Te,p — 8| =0, where

Dic={j:te<lajl<e}, Tep= > aj+ Y aj
laj|>e jeb
12



3) the element x € ¢y defined as x = (s,a1,as,...) belongs to WT{e,}.
Proof. We begin with proving that 1) = 2). Using (3.2) we get for any D C D,

(3.3) da| < ) el < ) e=o(1/e)e =o(1).
JjED JED¢ Jilaj|>te
Therefore, taking into account (3.1) we get

sup |Tep — s| =o(1).
Dth,e

We now prove the implication 2) = 1). This implication is a corollary of the following
lemma.

Lemma 3.1. The property 2) from Theorem 3.1 implies

|Dt,e

=o(1l/e), €—0.

Proof of Lemma 3.1. Note that we can take D’ C D, . such that

1
(3.4) Zaj ZZ Z |-

Indeed, for u € R denote u4 = max(0,u). For any z € C we have |z| < (Rz)4 + (—Rz2)+ +
(S2)1 + (—S2) 1. Therefore, at least one of the following inequalities holds:

1
(3.5) Y (Raj)y > 1 > lasl,

jEDt,E jEDt,E

(36) S (Rag)e > Y ol

jEDt,E jEDt,E

N 1
(3.7) > (Say)y > 1 Z |a;1,

(38) > Sz Y lal



If, say, (3.5) holds, then for D' = {j € D;. : Ra; > 0} we have

Y a| =D Ra;= ) (Ray)s,

JjeD’ JjeD’ J€D: e
and (3.4) holds. Other cases are studied similarly.
Thus, specifying D = ) and D = D’ we get from 2) that

> ajl =0 (e —0).

JEDy
Using that |a;| > te for j € D, . we obtain
|Die| =0(1/e) (e — 0).
Similarly to the proof of implication 3) = 4) in Theorem 2.1 we obtain from here that

(3.9) {7 : la;| = e}| = o(1/e€).
So, (3.2) has been proved. The property (3.1) follows directly from 2) (take D = ().

We continue the proof of Theorem 3.1. The equivalence of the conditions 2) and 3)
easily follows from the definition of the Weak Thresholding Approximation. Theorem 3.1 is
proved.

Remark 3.1. In Theorem 3.1 we indexed (enumerated) the elements of the series Y an
by the set of positive integers. Actually, this is not essential, we can assume that n runs
over any countable set.

The following corollary of Theorems 2.2 and 3.1 has been proved in [U2].
Corollary 3.1. The set of A-convergent series is linear. Moreover,

(A) (an+bp) =(A)D an+(A)) by,

n

Remark 3.2. One can see from the proof of Theorem 3.1 that for any t € (0,1) the quasi-
norm ||| - |||z in the space Y = WT{e,} € ¢y defined as in Remark 2.1

Izl = sup sup ||Tc.p ()]l
g

CD; ()

18 equivalent to the quasi-norm

llz]]| = max(|z°],supel[{n > 1 |z"| > e})).
g

Also, a quasi-norm in the spaceY can be treated as a quasi-norm in the space of A-convergent
series.
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Theorem 3.2. The quasi-norm ||| - ||| in the space Y = WT{e,} € ¢y is not equivalent to
any norm.

Proof. 1t is sufficient to show that for any M > 0 there exist a positive integer m and
elements x1,...,z, from Y such that

(3.10) llzill<1 (G=1,...,m)
and
1 m
(3.11) - > ||| > M
j=1

Take an even m € N and set 277 = 0 for n > m, 27 = (=1)"/k for 1 < n < m where
ke {l,...,m} is defined as k = n + j(modm), 7 = Y., «¥. It is easy to see that all

the elements z; = (29,2},...) satisfy (3.10). Further, for the element 2 = - Yoy =
0 .1

(z°,2*,...) we have

1m
" =— 1/k =1,... .
o= Uk (=L

Therefore, |||z]|| > >"7*, 1/k, and (3.11) holds for sufficiently large m. The proof of Theorem
3.2 is complete.

4. A-CONVERGENCE OF TRIGONOMETRIC SERIES

In this section we use the results of the previous section for studying the A-convergence of
trigonometric series. The main results of this section concern the univariate case. However,
we begin with the multivariate case. Consider a periodic function f € C(T?), defined on
the d-dimensional torus T¢. Denote the Fourier coefficients of f

f(k) = (2m)~¢ 5 F(x)e k) gy,

We will discuss the pointwise convergence of the Fourier expansion

(4.1) @)~ 3 flkyeiteo,

kezd

We can define weak threshholding approximations T p(f) of the function f with respect
to the trigonometric system {e?(**)}. Theorem 3.1 and Remark 3.1 give us the following
criteria for pointwise A-convergence of (4.1).
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Theorem 4.1. Let f € C(T¢), z € T¢, and t € (0,1). Then the following conditions are
equivalent:
1) the series Y cya f(k)e'k2) A_converges to f(zx);
2)
lim sup |Tep(f)(x)— f(z)| =0.
e—0 Dth’E(ﬂJ)
From now on we consider only the univariate case d = 1. For a real function f € C(T)
we can write its Fourier series in the real form:

(4.2) f~ ) Bu(a),

’I‘LEZ+

where By = f(0), Bn(z) = f(n)e™ + f(—n)e~™® for n > 0. The problem of pointwise
A-convergence of Fourier series has been studied in [U2]. We will study relations between
A-convergence of the complex expansion (4.1) and the real expansion (4.2) of Fourier series.
In particular, we will prove that A-convergence of (4.1) implies A-convergence of (4.2). For

f € C(T) by A.(f) (A.(f)) we denote the set of the points z € T at which the series

A

> ez f(n)e™® (Xnez, Bn(®), respectively) A-converges to f(z).
Let us observe first that if A.(f) # () then the following property holds

(4.3) lim ¢/{k: |f(k)| > e} = 0.

e—0Tt

Indeed, let x € A.(f). Then by (3.2) we get (4.3).

Theorem 4.2. Let f € C(T). Then either A.(f) =0 or A(f) = A-(f). Moreover, if the
measure of A.(f) is positive then A.(f) = A,-(f).

Proof. We prove first that if A.(f) # 0 then A.(f) = A,(f). Take a point € A.(f). The
series > ., f(n)e™® and Y, f(—n)e™"* A-converge to f(x). By Corollary 3.1, their
sum must be A-convergent to 2f(z). This means that

(4) Y 2B, (2) = 2f(a),

n€Z+

orz € A.(f).
Conversely take a point z € A,.(f) and € > 0. We have

(4.4) lim > B, (z) = f(z).

e—0+
neZ:| By (x))] 2

Let us write

(45) >, Bal@) - fl@)=51+5,
n€Zy:|Bn(z))|2e
16



where

Si= Y Buo)- Y fme,

neZ.:|Bn(z))|>e neZ:| f(n)|>e/2

S= S fmen - fa).

n€L:|f(n)|>e/2

We need to prove that
(4.6) Sy = o(1).

For the S7 we have the following estimate :

(4.7) 18] < > 1B, (z)| < > e =eo(1/e) = o(1).
n€Ly:|Bn(z))|<e n€ZLy:|f(n)|>e/2
£ (n)|2e/2

The relation (4.6) follows from (4.4), (4.5), (4.7). By (4.3) and (4.6) x € A.(f).

We proceed to the proof of the second part of Theorem 4.2. Taking into account the first
part of Theorem 4.2 that has been already proved we conclude that it is sufficient to prove
the following statement. If A.(f) = 0 then mes(A4,(f)) = 0. We note that in the first part
we have proved that if (4.3) is satisfied then A.(f) = A,(f). Thus, it is sufficient to show
that if (4.3) is not satisfied then mes(A,.(f)) = 0. We will prove that if (4.3) is not satisfied
then the following relation

lim e{n:|By(z)] > €} =0
e—0+t

does not hold for almost all points € T. This follows from the assertion below which is a
generalization of the classical Denjoy—Lusin theorem [Z, p. 232].

Theorem 4.3. Let X be a quasi-Banach space of sequences z := {z,}72, with the following
properties:

1)if z € X and |yn| < |zn| for all n then y := {y,} € X and ||y|| < ||z,

2)if z€ X and 2z € X is defined as: zY = 2z, forn < N, zY =0 forn > N then

||zM —zN|| -0 (M,N — ).

Let Y, s f(n)e™® be a trigonometric series, | f(—n)| = |f(n)], z € T, By = f(0), By (z) =
f(n)ei"m +f(—n)e*im forn >0, E be a subset of T of positive measure. Then if {B,(z)} €

X for allz € E, then {f,}22, := {f(n)}>, € X.
In the case X = [; Theorem 4.3 is the Denjoy—Lusin theorem. Applying Theorem 4.3

to the space of sequences {a,} satisfying (3.2) with the quasi-norm sup.-,e[{n : |ap| > €},
we complete the proof of Theorem 4.2.

Proof of Theorem 4.3. By the condition 2), for any x € E

(4.8) lim |{By(x)} — {By (2)}| = 0.

M ,N — o0
17



Note that the mappings z — {|BM(z)|} and = — {|BY(z)|} are continuous. By 1) the
mappings x — ||[{|BM(z)|}|| and = — ||{|BY (z)|}|| are also continuous. Let us define for
rek

gn(z) = sup [{By"(z)} — {By ()}
M>N
These are measurable functions such that for each =z € E (see (4.8))
Jim () =0

By Egorov’s theorem we can take a subset Ey C FE of positive measure such that the
convergence in (4.8) is uniform. Thus,

(4.9) lim sup [[{B,(z)} — {B} ()} = 0.

M,N—)OO weEl

Consider n with |f(n)| > 0. There exists a point zzy € T such that €27 = — f(—n)/f(n),
or B,(zp) = 0. For z € T we have |B,(x)| = 2|sin(n(x — z¢))||f(n)|. This implies

mes{z € T : |B,(z)|/|f(n)] < 2sinu} =4u (0 <u < 7/2).

Therefore,

4. B, (x C A’IL ,
( 10) /1| n( )| > |f( )|
Wlth esEL
C— n (7 4 du.
/0 2s ( / )

For arbitrary positive integers M and N, M > N we find from (4.10) and the condition
1) of the theorem that

(4.11) | @sen - gs¥ e a

It follows from the inequality (1.1) that

‘/ {1Bx! (@)} = {|Bx (2)I}) dz §4/E 1B ()1} = {IBY (@)[}]|" de.

E;
Combining this inequality with (4.11) we obtain
LA =LA < 4CP/E 1B ()1} = {1By ()|} |7 da,
1

> CI{I£ T =B

and, by (4.9),
i [[1£21) ~ (] = 0.

M,N—

So, the sequence {| f (n)N|} is a Cauchy sequence. It has a limit w € X. Consider the linear
functional e} on X: e} (y) = yn, y € X. We have

wn = eh(w) = lim_en(f)) = fo

Therefore, {f,}>2 , = w € X. This completes the proof of Theorem 4.3.
18
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