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CONVERGENCE OF GREEDY APPROXIMATION II.
THE TRIGONOMETRIC SYSTEM!

S.V. KONYAGIN AND V.N. TEMLYAKOV

ABSTRACT. We study the following nonlinear method of approximation by trigonometric poly-
nomials in this paper. For a periodic function f we take as an approximant a trigonometric
polynomial of the form G (f) = > pca f(k)ei(k’m), where A C Z¢ is a set of cardinality m
containing the indices of the m biggest (in absolute value) Fourier coefficients f(k) of function
f. Note that Gm (f) gives the best m-term approximant in the La-norm and, therefore, for
each f € Lo, ||f — Gm(f)|]2 = 0 as m — oco. It is known from previous results that in the
case of p # 2 the condition f € L, does not guarantee the convergence ||f — Gm (f)|lp — 0 as
m — oco. We study the following question. What conditions (in addition to f € Lj) provide
the convergence ||f — Gm(f)|[p — 0 as m — o0o? In the case 2 < p < oo we find necessary
and sufficient conditions on a decreasing sequence {A,}2° ; to guarantee the L,-convergence of
{Gm(f)} for all f € Ly, satisfying an(f) < Apn, where {an(f)} is a decreasing rearrangement
of absolute values of the Fourier coefficients of f.

1. INTRODUCTION

We study in this paper the following natural nonlinear method of summation of trigono-
metric Fourier series. Consider a periodic function f € L,(T¢), 1 < p < 00, (Loo(T¢) =
C(T4)), defined on the d-dimensional torus T¢. Let a number m € N and a number ¢ € (0, 1]
be given and A,, be a set of k € Z% with the properties:

. i f > f =
(11) min f(0) > max | FK)], M| =m.

where

~

fk):=@2n)~¢ | flz)e B2 dy
Td
is a Fourier coefficient of f. We define

GL(f) = GL(f,T) = San(f) = Y fk)eit®
kEA,
and call it an m-th weak greedy approximant of f with regard to the trigonometric system
T = {ei(k,z)}kezd. We write G,,(f) = G}n(f) and call it an m-th greedy approximant.

IThis research was supported by the National Science Foundation Grant DMS 9970326 and by ONR
Grant N00014-96-1-1003



Clearly, an m-th weak greedy approximant and even an m-th greedy approximant may not
be unique. In this paper we do not impose any extra restrictions on A,, in addition to (1.1).
Thus theorems formulated below hold for any choice of A, satisfying (1.1) or in other words
for any realization G? (f) of the weak greedy approximation.

There has recently been (see surveys [D] and [T2]) much interest in approximation of
functions by m-term approximants with regard to a basis (or minimal system). We will
discuss in detail only results concerning the trigonometric system. T.W. Korner answering
a question raised by Carleson and Coifman constructed in [K1] a function from Ly(T) and
then in [K2] a continuous function such that {G,,(f, T)} diverges almost everywhere. It has
been proved in [T1] for p # 2 and in [CF] for p < 2 that there exists a f € L,(T) such that
{G(f,T)} does not converge in L,. It was remarked in [T2] that the method from [T1]
gives a little more: 1) There exists a continuous function f such that {G,,(f,7)} does not
converge in L,(T) for any p > 2; 2) There exists a function f that belongs to any L,(T),
p < 2, such that {G,,(f,T)} does not converge in measure. Thus the above negative results
show that the condition f € L,(T%), p # 2, does not guarantee convergence of {G,,(f,T)}
in the L,-norm. The main goal of this paper is to find an additional (to f € L,) condition
on f to guarantee that ||f —G,,(f, T)||, — 0 as m — oco. In Section 2 we prove the following
theorem.

Theorem 1. Let f € L,(T?%), 2 < p < oo, and let ¢ > p' := p/(p — 1). Assume that f
satisfies the condition

S 1f )17 = ofn®=a/)

|k|>n

where |k| := maxi<;<q |kj|. Then we have
Tim (I = G4 (£, Tl = 0.
For f € Li(T%) let {f(k(l)) 72, denote the decreasing rearrangement of {f(k)}pega, ie.
(1.2) [fRW)] > [F(k(2)] > ...
Denote a,(f) := |f(k(n))|. In Section 3 we prove the following theorem.

Theorem 2. Let 2 < p < oo and let a decreasing sequence { A, }7° | satisfy the condition:

(1.3) A, =o(nP™ Y as n— oco.
Then for any f € L,(T?) with the property a,(f) < Ap, n=1,2,..., we have
(14) i || = GL(F Tl = 0.

We also prove in Section 3 that for any decreasing sequence {A,,}, satisfying

lim sup Ap,n' 1P >0

n— oo
there exists a function f € L, such that a,(f) < A,, n =1,..., with divergent in the L,
sequence of greedy approximants {G,,(f)}.

In Section 4 we prove a necessary and sufficient condition on the majorant {4,} to
guarantee (under assumption that f is a continuous function) uniform convergence of greedy
approximants to a function f.
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Theorem 3. Let a decreasing sequence { A}, satisfy the condition (A ):

(1.5) Z A, =o0(l) as M — oc.

M<n<eM

Then for any f € C(T) with the property a,(f) < A,, n=1,2,..., we have
(16) T [f — Gl (f T)lloe = 0.

The condition (As) is very close to the convergence of the series ) Ay; if it holds then
we have

N
ZA” = o(log,(N)), as N — oo,
n=1

where a function log,(u) is defined to be bounded for v < 0 and to satisfy log,(u) =
log, (logu) 4+ 1 for w > 0. The function log, (u) grows slower than any iterated logarithmic
function.

The condition (As) in Theorem 3 is sharp.

Theorem 4. Assume that a decreasing sequence {A,}5°  does not satisfy the condition
(Ao ). Then there exists a function f € C(T) with the property an(f) < An, n=1,2,...,
and such that we have

1iInSU-p ||f - Gm(f7 7d)”oo >0

m— 00

for some realization G, (f,T).

Theorems 3 and 4 will be proved in Section 4. Also, in that section we will prove the
following theorem.

Theorem 5. Assume that a decreasing sequence {A,,}S° , is not summable. Then there
exists a continuous function with the property a,(f) < A,, such that its partial Fouries sums
diverge at some point.

We note (see Section 2) that sufficient conditions for convergence of greedy approximants
in Theorem 1 for p = oo also imply the convergence of partial Fourier sums. Theorems 3
and 5 demonstrate that the conditions for convergence of greedy approximants in terms of
decreasing rearrangement of Fourier coefficients of continuous functions are weaker than the
ones for convergence of partial Fourier sums.

2. SUFFICIENT CONDITIONS IN TERMS OF
FOURIER COEFFICIENTS. PROOF OF THEOREM 1

Let us begin this section with some historical remarks. The question of the rate of approx-
imation of functions in certain smoothness classes by greedy approximants was discussed
in [T1]. In particular the following function class was considered. For 0 < r < oo and
0 < g < oo, let F denote the class of those functions in L1(T¢) such that

|flzp = IR (B) Dkezalli, <1, 1FO) < 1.
3



Here we use the notation |k| := max{|k1|,...,|ks|}. The following error estimates have been
proved in [T1] for

Gm(Fg)p = sup [[f = Gm(f)llp-
feFy
Theorem 2.1. For any 0 < g < oo and r > d(1 —1/q); we have

(2.1) G (Fy)p = m /4 Vatt2 1 < p <2,

(2.2) G (F)p = m /4= aH1=1p g < p < o,

It has been also noticed in [T1] that the method used in the proof of Theorem 2.1 allows
us to prove the order estimates similar to (2.1) and (2.2) for a little wider classes than Fy.
We define these classes now. It is easy to verify that for f € F, we have for each [ > 1

(2.3) (> fmHYVe<2T D0 [ fo)] < 1.

2l*1§|k|<21

We use the relation (2.3) as a definition of a new class DF; (D stands here to stress that
restrictions are imposed on the dyadic blocks). Here is a remark from [T1].

Remark to Theorem 2.1. The relations (2.1) and (2.2) are valid when the class F; is
replaced by DF;.

Denote for r > 0, 0 < g < oo, Fo, the space of functions f € L1(T9) satisfying the
condition

(2.4) > (k)T =o(nT).

|k|>n
We will now prove Theorem 1 from Introduction.
Theorem 1. Let 2 < p < 0o; ¢ > p' = p/(p —1). Assume that f € L,(T%) N Foy with
r=4d(1/p' —1/q). Then for any 0 <t <1 we have

If = Gr(Hllp =0 as m — oo.

Proof. First we note that (2.4) is equivalent to

(2.5) SR <o0@7M), 1=1,2,...,

keU (1)

where U(l) := {k € Z¢ : 2!=1 < |k| < 2'}. It has been proved in [T1] (see relation (3.18))
that the estimates
Yokl 1=1,2,..,
keU (1)
4



imply
am(f) = O(m="/471/9),

In the same way one can prove that (2.5) implies that
(2.6) am(f) = o(m=/471/9),

Taking into account that » = d(1/p" — 1/q) we get from (2.6) that

am(f) = o(m™'/¥).

In the case 2 < p < oo we can finish the proof of Theorem 1 by applying Theorem 2

from Introduction. However, we choose to give an independent proof for the following two

reasons. The proof below is simpler than the proof of Theorem 2 (see Section 3) and, also,

the proof below covers the case p = 0o, where Theorem 2 does not hold (see Section 4).
Let

G, (f) = Sa,.(f)

with A, satisfying (1.1). Consider first the case 2 < p < oo and estimate ||SZ, (f)—Sa,, (f)llps
where

S =Y fRe®™™,  Q(m):={k: |kl <m!/?}.
keQ(m)

Then we have

27)  Sh(H)=Sa. (=D fReE®T— N f(k)e' P =5 - 5,

E€Q(m)\Arm, kEA\Q(m)

From the definition of A,,, we get

(2.8) amt1(f) < inax (k)] < t_lkrg'kryln [f(®)] <t am(f)-

Thus by the Hausdorfl-Young theorem (see [Z,Chap.12,Section 2]) we get
ISl < Y IR = Olam(f)m'?) = of1).
keQ(m)\Arn,

Using the Hausdorft-Young theorem again and using the Holder inequality with a parameter
q/p" we get

ISl < C X2 ®WIPV < 30 1f) et P <

k€A \Q(m) kEAL\Q(m)

(2.9) <( Y IfR)Y e = o(1),
kEQ(m)
5



It remains to remark that || f — S, (f)|, — 0 as m — .
Let us now consider the case p = 0co. We remark that the relation (2.5) with r = d(1—1/q)
and the Holder inequality imply

(2.10) Y k)=o)

n<|k|<2n

First, observe that the cubic Fourier sums S, (f) uniformly converge to f as n — oo.
Indeed, let us consider the de la Vallée Poussin sums

LY it
0= 3 T (22508 e

It is known (see [B]) that for any f € C(T%)

(2.11) Va(f) = flleo = o(1),  (n = o0).

Further,

keZd, n<|k|<2n

and, by (2.10),

(2.12) 150 (f) = Va(H)lleo = 0o(1),  (n = o0).
The relations (2.11) and (2.12) imply

(2.13) 150 (f) = flloo = o(1)  (n = o).
Thus, we obtain the uniform convergence of S, (f) to f.

The rest of the proof is similar to the above case 2 < p < co with the only difference that
instead of the Hausdorff-Young theorem we use the inequality

1 £lloo < D> 1F(R)
k

Theorem 1 is proved.

Let us discuss now a possibility of improving the assumption f € L,(T¢) N Foy, r =
d(1/p’ —1/q), in Theorem 1.
6



Proposition 2.1. For each 2 < p < oo there exists f € L,(T?) such that
(2.14) [f (k)] = O(Jk|~40=1/D),

(and, therefore, f € DF;, r = d(1/p’ —1/q)) and the sequence {G,(f)} diverges in the Ly,.

Proof. We will use a construction from [T1]. We use the Rudin-Shapiro polynomials:

(2.16) Ry(z)= Y ™, e==%1, zeT,
k|<N

which satisfy the estimate
(2.17) IRl < CN'/2,
for an absolute constant C'. Denote for s = +1
Aiy = {k: Rp(k) = £1}.
The estimate (2.17) implies
(2.18) 1A1] = A1l = [Ron(0)] < /2.

Let s = =1 be such that |As| > |A_s|. Then take a small positive parameter § and consider
the function

(219) fm,(S = Rm + 80D,

where

Dp(x) := Z et e,
|k[<m

is the Dirichlet kernel. Then since |fm,5(k)| =146 for k € Ay and |fm,5(k)| =1-4 for
k€ A_, and |As| > m the frequencies of G, (fm,s) will be in Ay and

(2.20) |Gm(fm,6)lloo = [Gm(fm,s)(0)] = (1+ &)m.
Next,
(2.21) | fmsllp < IRmllp + 31Dl < [Rumlloo + S|P I3/ 71Dl [25 /7 <

Cm? + §(2m + 1)171/P < Cym!/?

for § < m!/P~1/2. By the Nikol’skii inequality for trigonometric polynomials the relation
(2.20) implies

(2.22) G (o) lp = Com™ P |G fim,6)lloc > Com! VP
7



Define now

d
d (@) =[] fmss(w;)e’ms
j=1

and

fr=> 270l (1), 0< & <2748
=1

The relation (2.14) is obviously satisfied. Moreover, (2.21) implies that
(2.23) 1f = Van(f)lloo = O(274/2 1),

However, (2.22) implies that {G,,(f)} diverges in L,,.

Let us make some more comments. For a given set A denote

Ex(f)p = inf [[f— Z Ckei(k’x)np-

Ck,kEA keA
Remark 2.1. Theorem 1 implies that if f € Lp, 2 <p < 00, and

then Gt (f) — f in L.
Indeed, (2.24) is equivalent to f € Foh with r =d(1/2 —1/p).

and {Gn,(f)} diverges in L,, 2 < p < oco.

Remark 2.3. There exists a continuous function f, satisfying (2.10), such that {G,(f)}
diverges in the uniform norm.

Proof. We construct an example in the univariate case. Define

fizzbk

E>2
with
Sk
L —1/2 —s i4sktly
by := s, E 2 kfzsk,gske
=1

where {s;} is an increasing sequence such that all frequences of b1 lie to the right of
frequences of b. Then by (2.21) we get

b llco < Cusy/ 22750/
8



and, therefore, f € C(T). The relation (2.10) is also satisfied. It is clear that

max || Gon (b )10 > 5"

This implies the divergence of {G,,(f)}-

We note that Remark 2.1 can also be obtained from some general inequalities for
lf — Gm(f)|lp- We now define the m-term best approximation, i.e. the quantity

om(f)p = inf |[f- chei(k]’w)np-
j=1

ki EZd,Cj
It has been proved in [T1] that for any f € L,(T?) one has

If = G H)llp < X+ 3m" o (f)p, 1< p < o0,

where h(p) := |1/2 — 1/p|. Similarly to the above inequality one can prove the following
relation.

Theorem 2.2. For each f € L,(T%) and any 0 < t <1 we have

If =GPy < 1+ @+ 1/t)m" D)o (f)p, 1<p< oo,

where h(p) :=|1/2 —1/p|.

Proof. This proof repeats the proof of Theorem 2.1 from [T1] that corresponds to the case
t = 1 with one minor change. Let

GL(f)= D fRe®?, [N =m, A :=AN(1).

kEA’ (t)

Then the change in the proof from [T1] (¢ = 1) to adjust it for ¢ < 1 is the following. Instead
of obvious relation (see (2.10) from [T1]): for any A, |A| = m one has

[Savar (F)ll2 < 1Sana ()l
we use the inequality (A is any, |A| =m)
(2.25) 1Savar ey (Fll2 < 7 ISar@na(f)ll2

which follows easily from the definition of A’(¢).

We will prove one more inequality.



Proposition 2.2. Let2 < p < co. Then for any f € L,(T?) and any Q, |Q| < m, we have
1F = Gh(H)lly < I = S (Nl + B+ 1/8)(2m)" P Eq(f)».

Proof. Let as above

G = Y Fet,

keA (t)
Then
(2.26) 1f = Go(Pllp < I1f = So(Hllp + 1S (f) = Sarry (Nl
and by Lemma 2.2 from [T1]
(2:27) 1S0(f) = Sarey(N)llp < @m)*P1Sq () = Sarey (£)ll2-
Next,
(2.28) 1SQ(f) = Sarey (N2 < Nf = SNz + [If = Sarey (f)llz-
Using (2.25) with A = A" we get

1Sar ey (f) = Sar(F)N13 = I1Sar@epnar (D3 + [[Sanar @ (N5 <

A +t72)[[Sarnar (N3 < @ +t72)om(f)3-

Therefore,

1f = Sarey(O)llz < (1f = Sar(Hll2 + 1S4y (f) = Sar ()2 <

(2.29) < @2+ 1/t)om(f)2 < (24 1/t)EQ(f)e-
Combining (2.26)-(2.29) we complete the proof of Proposition 2.2.

We study now the convergence of greedy approximations of univariate functions of bounded
®-variation. Let ® : R — Ry be an increasing function and ®(0) = 0. The class Vg of
functions of bounded ®-variation is defined as the set of functions f defined on T such that

ve(f) = Supzq>(|f(bj) — f(a;)]) < o0,

where supremum is taken over all possible finite systems of disjoint intervals
(aj,b;) C T. For ®(u) = u the class Vg is the class of functions of bounded variation.
Clearly, if CI)l(’U,) < Cd,y (u), then Vq>2 C Vq>1.

The classical Dirichlet—Jordan test asserts that if f € C(T) is a function of bounded
variation then the Fourier series of f uniformly converges to f (see [Z, p. 57]). The conver-
gence of Fourier series for functions of bounded ®-variation was studied by many authors;
see related references in [O] where it was shown that the uniform convergence of Fourier
series on the class C(T) N Vg is equivalent to the condition

/0 log(1/® (u))du < co.

We proceed to a proposition that shows that we need a stronger restriction that the above
one on the function ® for convergence of greedy approximations.
10



Proposition 2.3. a) If u?> = o(®(u)), (u — 0), and f € C(T) N Vs, then
If = Gr(f)llc =0 as m— oo.

b) For ®(u) = u? there exists a function f € C(T) N Vg such that its greedy approrimants
{Gm(f)} diverge at the point x = 0.

Proof. Let 1 <p < o0, § >0, w(f,d), be the modulus of continuity of f in L,:

w(f,0)p = sup [[f(-+h)—f)lp-
0<h<s

Let us estimate the modulus of continuity w(f,d)s of f from C(T) N Ve. Take h > 0 and
n = [2w/h] + 1. We have

||f(-+h)—f(-)||§§/0n |f(t+h)—f(t)|2dt=Z/J |f(t+R) — f(t)[at

j=17(@-1Dh

= [ [ in - s+ G- | a

J

:/0 o | Do R(F(t+ k)~ £+ G - D)) | de

7j=1
h
— [ otzes(p)it = olt)
0
Thus, w(f,d)2 = o(v/3) as § — 0, and, by Jackson’s theorem [A, p. 200],

En(f)2 = o(n™1/?).

This means that f satisfies (2.24) with p = co. By Remark 2.1 ||f—G%,(f)|loc = 0 as m —
0.
To prove b), we use an example from Remark 2.2 with p = co. We have F,,(f)o =
O(n~'/?). By Bernstein’s theorem [A, p. 206], this implies w(f,d)o < CV3 for some C.
We show that ®-variation of f is finite for ®(u) = u?. Indeed, for any disjoint intervals
(aj,bj)

D O 1F(bs) = fla)P <) C?lb; — a;] < 27C7,

j j

and vg(f) < 2mC?. This completes the proof of Proposition 2.3.

In particular, Proposition 2.3 implies that weak greedy approximations converge for any
absolutely continuous function f € C(T). The same is true for f € C(T?). We use the
notion of absolute continuity of a function of several variables suggested by L. Zajichek and

11



developed in [H]. Let v € (0,1). We say that a function f : T¢ — C is absolutely continuous
if for each € > 0 there is § > 0 such that for each disjoint family {B, := B(t;,r;)} of balls
in T¢ the inequality > ; V(Bj) < ¢ implies

d
Z( sup |f(t’)—f(t”)|) <e,

j t',t”EB(tj ,’yTj)

where B(t,r) = {t' : |t — t'| < r} and V(B) is the d-dimensional volume of the ball B. It
is proven in [H] that the definition does not depend on vy and for d = 1 coincides with the
classical definition.

Proposition 2.4. a) If f is absolutely continuous on T2, then ||f — Gt (f)]lo — O as
m — oo.

b) For d > 2 there exists an absolutely continuous on T¢ function f such that its greedy
approximants {G,,(f)} diverge at the point © = 0.

Proof. It is shown in [H] that for any absolutely continuous function f € C(T¢) its gradient
belongs to Lq(T?). Therefore, in the case d = 2 this implies (see [N]) that

Eqm)(f)2 = o(n™'/?),
and by Remark 2.1 we have
If—GE ()l =0 as m — oo.

Further, from the example in Remark 2.2 it is easy to see that for d > 2 there exists a
continuously differentiable on T? function f whose greedy approximations diverge at the
point x = 0. It follows from the definition that the class of absolutely continuous functions
contains all continuously differentiable (and, moreover, all Lipshitzian) functions. This
proves the proposition.

3. CONDITIONS IN TERMS OF DECREASING REARRANGEMENT
OF FOURIER COEFFICIENTS. PROOF OF THEOREM 2

Let us begin with the proof of Theorem 2. We reformulate it here for the convenience.

Theorem 2. Let 2 < p < oo and let a decreasing sequence { A, }7° 1 satisfy the condition:
(3.1) A, =o(n'P™Y) as n— .
Then for any f € L,(T?%) with the property a,(f) < An, n=1,2,..., we have

(3.2) Tim_[[f ~ G (£, Tl = 0.
12



Proof. By the M. Riesz theorem (see [KS,Chap.4,S.3])we have for any f € L,(T?), 1 <p <
0o, that

(3.3) |f=Sn(f)llp =0 as N — oo.
We will consider first the case t = 1. Let us estimate [|S% (f) — G (f)|l,- Denote 7 :=
Se(f —Gm(f)) and Xy := (Id — S¢)(Gn(f)). Then we have
Siu(f) = Gu(f) = S (f) = S (Gm(f)) — (Id = S3)(Gm(f)) = B1 — Bo.
For the first sum we get by the Paley theorem (see [Z,Chap.12,S5])

2m—+1
(3.4) IZ1llp < Clp,d) (Y am(H)PnP )P = Ofam(f)m'~/7) = o(1).

n=1

We now proceed to the second sum 5. We first prove one general inequality.
Proposition 3.1. Let 2 <p < oo and u € L, ||u||, # 0. Then for any v € L, we have
lullp < llu+vllp + (ull2p—2/lullp)? o]l
Proof. Denote
F = ||u||110_p11|u|p_2.

Then
[Flly =1 and  (Fiu) = [|luflp.

Therefore,
[ullp = (Fyu) = (F,u+v) = (F,v) < |lu+ ol + [[F[l2][v]2.

It remains to observe that
IFll2 = (lullap—2/llullp)P~*

Lemma 3.1. Let2 < p < oo. For f € L,(T?) assume that a,(f) = o(n'/P~1). Then
I(Zd = S5)(Gm(H))lp = o(1).

Proof. We use Proposition 3.1 with
= (Id—S3)(Gm(f)); vi=f—Sp(f) —u

Then

(35) ||U||2 < ||f — Gm(f)||2 < (Z an(f)2)1/2 — O(ml/p—l/z).
n>m

By the Paley theorem

(3.6) [ul|5, 2y = O(( Zan F)2P2n2P 1) — o 1/2-1/p).

Combining (3.5) and (3.6) and taklng into account that ||u + v, = ||f — S&(f)ll, = o(1)
we get by Proposition 3.1 that ||ul|, = 0o(1). Lemma 3.1 is now proved.

The required estimate ||X2||, = o(1) follows from Lemma 3.1. This together with (3.4)
complete the proof of Theorem 2 in the case t = 1. The general case 0 < ¢t < 1 follows from
the case t = 1 and Lemma 3.2 below.

13



Lemma 3.2. Let 2 < p < oo, t € (0,1], and f € L,(T¢) be such that a,(f) = o(n/P=1),
Then
G (f) = GL(F)llp, =0 as m — oo.

Proof. Let
Gm(f) = Sa(f) and  G7,(f) = Saw (f)-
Then
G = Gm(f) = Gh(f) = > fk)e®D = 3" fk)e'™o).

kEA\A(t) keA(t)\A
It is clear that .
[f(R)] < am(f), ke At)\A.

The relation (2.8) implies

[F(B)] <t tam(f), ke A\A®),
Thus, for the Fourier coefficients of the function g, we have

|Gm (K)] <t am ().

Taking into account that g,, has at most 2m terms we get from the Paley theorem that

lgmllp = O(am(fm'=/7) = o(1).
This proves the lemma.

Let us note that by the Hausdorff-Young theorem the condition
o0
Z AP < o0, 2 <p<oo,
n=1

which is stronger than (3.1) implies that for any f such that a,(f) < A, its Fourier series
converges in L, unconditionally.

Proposition 3.2. Let a decreasing sequence {A,}52 1 does not satisfy the condition (3.1)
of Theorem 2, i.e.,
lim sup A,n' /P > 0.

n— oo
Then there is a continouos function f € C(T) with the property a,(f) < A,, n=1,2,...,
such that {G,,(f)} diverges in the L,-norm, 2 < p < oo.

Proof. We will use functions constructed in the proof of Proposition 2.1. Let a number
¢ > 0 and a sequence {ny} be such that

Ay, > Cni/p_17 ng >4ng_1, n1 >4,

Define my, := [ng /4] and
f= cznllc/p_lfmkﬁkeinkx
k=1

where f,, s are defined by (2.19). Then f is a continuous function, satisfying the property
an(f) < A,,. Divergence of {G,,(f)} follows from (2.22).
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4. CONDITIONS IN TERMS OF DECREASING REARRANGEMENT
OF FOURIER COEFFICIENTS. PROOF OF THEOREMS 3-5

We begin with the proof of Theorem 3. We reformulate it here for the convenience.

Theorem 3. Let a decreasing sequence {A,,}S° , satisfy the condition (A ):

(4.1) > An=o(1) as M — oo

M<n<eM

Then for any f € C(T) with the property a,(f) < A,, n=1,2,..., we have
(12) S [ = S, ()l = O,

where A, is an arbitrary subset of 7. satisfying

(4.3) |Am| = m,
(4.4) min |(k)] > ¢ max £ (k).

Proof. Denote as above

Gun(f) = 3 Fk())e =,

Note that if k # k(n) for n < m then |f(k)| < am(f). Also, by (4.4), if k & A,, then
|f (k)| < am(f)/t. Therefore,

(4.5) 158,. (f) = Gm(f)lloo < mam(f) +mam(f)/t
It is clear that (4.1) implies 4,, = o(n™!) and, therefore,
(4.6) am (f)m = o(1).
Relations (4.5) and (4.6) give
(4.7) 158, () = Gm(f)lloo = o(1).
Let us estimate ||V (f) — G (f)]loos Where Vi, (f) is the de la Vallée Poussin sum
Veo(f)= ) min (1, MT_"“'> F(k)e=.

|k <2m
15



We have
Vin(f) = Gm(f) = X1 — 2o,

where

Y1 = Vin(f = Gm(f)),
E2 - (Id_ Vm)(Gm(f))

For the first sum we get

4m—1

IZilloe < Y am(f) < 4mam(f).
n=1

Therefore, by (4.6), ||X1]|c = o(1).
We proceed to the second sum 5. Let us consider

(4.8) f=Vin(f) =2 = > A f(k(n))e*™® + g = %4 + g,

m<n<e¢™ k(n)>m
where 0 < \,, < 1. Using (2.11) and the assumption A., we get from (4.8)

(4.9) 12 + glloo <1 = Vin(f)lloo + [1B4lloc = o(1)-

Next we have

(4.10) lglls < (2 an(HH? =0 (e="/2).

n>ee™

We need the following lemma that we will prove a little later.

Lemma 4.1. Let a function f, ||f|lco = 1, have a form

f=Y fke*, Al <m.

keA

Then for any function g such that ||g|l2 < 1(4wm)~™/2 we have

If + glloe = 1/4.

This lemma and (4.9) imply that ||¥2||cc = 0(1). Together with (4.7) this completes the
proof of Theorem 3.

Proof of Lemma 4.1. Denote by ||u|| the distance from a real number u to the closest integer.
Denote for a fixed j € N

Fi={zeT: Vked, jke/@2n)| <1/(4rm)},
16



F =F.
Well-known estimates for simultaneous diophantine approximation (see [C, p. 13]) give
T=|JF, J=@m™

i<J
Note that uF; = pF' for all j. Therefore,

1< uF; < JuF,

i<J
or,
(4.11) pF > (4dmm)~™.
Let [f(zo)| =||flloo =1, E={20+y: y€ F}. Forz =z9+y € E, k € A we have
|e“” - e“”o‘ < 2m||ky/(2m)| < 1/(2m).

Therefore,

[f(@) = f(zo)l < Y 1f(R)] e —e*eo] <3 (1/2m) < 1/2.
keA

keA

Thus, |f(x)] > 1/2 for x € E.
Suppose that

(4.12) If + glloo < 1/4.
Then |g(z)| > 1/4 for x € E, and, by (4.11),

913 > [ loto)Pdn > (i) P

This does not agree with the condition of the lemma. Hence, (4.12) is not true, and the
proof is complete.

Remark 4.1. Actually, in the proof of Lemma 4.1 we have shown the following. If
F=>fk)e**, Al <m,
keA

G CT, uG>1— (4mm)~"™, then

[flloe < 2sup |f(z)].
z€G

Recently the first author and Nazarov (not published) have proved that the last inequality
holds under an assumption uG > 1—c™ for a small constant c. This can be used to weaken
the assumption on ||g||2 in Lemma 4.1. However it does not affect Theorem 3.

We proceed to the proof of Theorem 4 from Introduction. The core part of the proof of
Theorem 4 is the following lemma.
17



Lemma 4.2. Fix A >0, 0 > 0. Let positive integers m — oo and M — oo be such that
(4.13) log M = o(m).

Let mqy =m, mg =m+ M, m; < mg < ms. Let a decreasing sequence {A,}22 , satisfy the
conditions

(4.14) An < A/n,

(4.15) i A, = i A, =1,

n=mi+1 n=msqo+1

(4.16) Aom > 0Am.

Then for sufficiently large m there exists a trigonometric polynomial

T(x) =Tm(x) = Zf(k)ei(k,w)

k=1
such that
(4.17) ap(T) < Ay (1< k< M),
(4.18) IT)|co =0 (m — 00),
(4.19) max |G, (T,7)(0)] > 0.01.

Proof. Take independent random variables 1, (1 < k < M) so that each 7 is equal to any
n, m; < n < mg with probability 1/(10M), and is equal to m; with probability 0.9. A
polynomial 7" is defined as

M
T(:E) = Z O A"Ik eZ(k’m)v
k=1

where o(m;) =0, 0, = 1 for my < n < mgy, 0, = —1 for mg < n < mg. We prove that
a polynomial T satisfies the conditions (4.17)—(4.19) with a large probability. Probability,
expectation and variance will be denoted by P, E, and V, respectively. We will estimate
the probailities of the following events:

Ei: JA>1:{k:mi<m <mqg+1}>1
18



Ey:  ||IT|lso > 3(A log(2mM?))/2,

Ej: > A, <005

k:my <mp<mo

Note that nonfulfillment of the events E;, Eo, F3 imply (4.17), (4.18), (4.19), respectively.
In the case of Ey and (4.18) we use (4.13) and (4.14) to prove that A,, log(2rM?) = o(1).
Consider the event

Evp:{k:my <nmg <mq+1}>1

We have
(4.20) P(Ey) <) P(Eu).
l
Further,
e =3 () () (=)
(4.21) Sjil (zy) <10LM>J

For any j > [ we have

Therefore,
) o) <o 5 4) () 130" s

j=l+1

By (4.20) and (4.21) we get

(4.22) P(Ey) <) (e/10)' < 1/2.

To estimate P(E3), we use the following theorem [Ka, pp. 68, 79].
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Theorem A. Let E be a measurable space with measure p, and p(E) < oco. Let B be a
linear space of measurable bounded functions on E, closed under complex conjugation, and
suppose that there exists p > 0 with the following property: if f € B and f s real, then
there exists a measurable set I = I(f) C E such that u(I) > p(E)/p and |f(t)| > 3| flle
fort € 1. Let us consider a random finite sum

P =Y &fr,

where

E(&k) = 07 E(fi%) = b%a |§k| S 1.

Moreover we suppose that || filloc =1 and r =3 b2 > logp. Then
12) 4
P (||Plloc > 6(rlogp)'/?) < =.
p

We use Theorem A for E =T, B = {Zﬁ/[:l cpet®B)) = eilk) g — Oy Ay /A
Note that

(4.23) P(x)=T(x)/An.
One can guarantee the existence of the required set I(f) by taking
(4.24) p = 2 M?

([Ka, p. 49]). Further, for k =1,..., M we have E{;, = 0, and, by (4.16),

1 2 mo>
2 2 2
=F = — E Az > .
O & 10M A2, o "= 10M

Therefore, r > ”{—‘52, and, by (4.13) and (4.24), for sufficiently large m the condition r > log p

holds. On the other hand,

ms ms3
(4.25) Z A2 < A, Z A, = 2A,,,
n=mi+1 n=mi+1

b2 < ﬁ? and r < 5%. Thus, by (4.23),

P (Pl > 6(rlogp)'/2) > P (|[P]loc > 3(10g(2mM?)/A,)"/?)

= P (IT )l > 3(An log(2mM?)1/2),
20



and Theorem A gives
4 -2
(4.26) P(Ey) < - < M=
P

To estimate P(E3), we define the random variables vy,...,vy as vy = A,, for my <
Nk < meo and v = 0 otherwise. The event E3 can be rewritten as

Es: Y v <005
k=1
We have )
E = —
() = Toaz
and, by (4.25),
Am
V() < E@j) < M
Hence,
M
E (Z yk> =0.1,
k=1
M
Am
14 (Z Vk) S 5o
k=1
and, by Chebyshev’s inequality,
14 (Zkle Vk)

(4.27) P(Es) < = < 804,

(B (Zhliw) —0.05)

So, by (4.22), (4.26), and (4.27), P(E1)+ P(E3)+ P(E3) < 1, and there exists a choice of
a polynomial T for which neither of the events F, Fs, E3 holds. This completes the proof
of Lemma 4.2.

Theorem 4. Assume that a decreasing sequence {A,}52, does not satisfy the condition
(A ). Then there ezists a function f € C(T) with the property a,(f) < A,, n=1,2,...,
and such that we have

1inlsup ||f - Gm(fa 7i)”oo > 0.

m— 00

Proof. Without loss of generality we may suppose that

(4.28) limsup Y Ap >8

U— 00
u<n<le4
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where u € R. Also, we may assume that for sufficiently large n
(4.29) A, <10/n.

Indeed, if (4.29) fails for infinitely many n’s, we replace all A4, by A’ = min(A4,,10/n). If
for a large m we have A,, > 10/m, then

doooAa,> ) 10/m>9,

logm<n<m logm<n<m

and (4.28) holds for A]. Now, observe that F(F(u)) > e* for sufficienly large u and
F(u) = eV*. Therefore,

Yoo A< D) A+ D> Ay,

u<n<e® u<n<F(u) F(u)<n<F(F(u))
and (4.28) implies
(4.30) lim sup Z A, > 4.
uee u<n<ev®

We will prove now that there exists an arbitrary large integer m such that

(4.31) Y A>3

and
(4.32) Aoy > Ay /100.

Indeed, by (4.30), we can take a large u with

Z A, > 4.

u<n<evu

Let mo = [u]. If A,,, > 1/(2my), then the number m = [my/2] satisfies (4.31) and (4.32)
(we use (4.29) with n = m). If A,,, < 1/(2mo), we define the sequence m; = 2/mg. We
take m as the minimal m = m; satisfying (4.32). To show the existence of such an m and
to prove (4.31), we note that

whenever A,,, < A,,,/100,...,A,,, < Ap,; ,/100. Hence, the number m does exist and,
moreover,



which clearly implies (4.31).
We take now any large m = m; satisfying (4.31) and (4.32) and define

me = min{m’ : Z A, > 1},

mi<nim/’

mg = min{m’ : Z A, > Z An}.

mo<n<m/ mi1<n<mg
We have
Z A, <24 2ap,, + am, < 3.

mi<n<mg

This inequality combined with (4.31) shows that ms < e3V™. We apply now Lemma 4.2 to
the sequence {A] }, where

-1

A;z = Z Ak An (n < m2)7
m1<k§m2
—1
Al = > Ax| An (n>my).
mo<k<mg

We get a polynomial T' = T, satisfying (4.17)—(4.19). Setting f =), T,, where the sum
is taken over a sparse sequence of m’s we complete the proof of Theorem 4.

Theorem 5. Assume that a decreasing sequence {A,}o° ¢ is not summable. Then there

exists a continuous function with the property a,(f) < A, and such that its partial Fouries
sums diverge at some point.

Theorem 5 is a simple corollary of the following lemma.

Lemma 4.3. Let a decreasing sequence {A,}22 ; be not summable. Then for anyl € N and
mo € N there exist a trigonometric polynomial T'(z) = T}(x) and numbers m > my, N € N
such that

(4.33) ar(T) < Apyr (K >1),
(4.34) IT|cc =0 (I = 0),
(4.35) SN (T,0) = 00 (I = o).

Proof of Lemma 4.3. By the conditions on {A,} we have for any [ € N

Z A2ln = OQ.
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Therefore, for any [ > 1 we can find m; > mgy and mo > my such that

(4.36) (log)™ 2 < Y Agp < 2(logl)™"/?

mi1<n<mg

We associate with any n, m; < n < ms, a trigonometric polynomial

1. .
) sin(K jx
T (z) = Ao 3 S0UEGT)

=1 7

where the numbers K and k,, and a positive integer N satisfy the conditions
kn=N-n, K>ms, N >IK.

We define

T = Z T,.

mi1<n<ma

Let us prove prove (4.33) with m = 2m;. We observe that by the choice of the numbers
k, and K the spectra of polynomials 7;, are disjoint, that is for any j there exists at most
one n such that 7;,(j) # 0. We have

To(@)= Y Tulkn + Kj)e oKDz T (ki + Kj)| = Anin/(2]]]).
1<]51<1L

Therefore, we can write the following inequalities
|Tn(kn + K])| S A2ln S AZln—j (1 S ,7 S l)a

|Tn(kn - KJ)| S A2ln S AZln—n—j (1 S ,7 S l)

and note that for n > m;, 1 < j <[, the numbers 2in — j, 2ln — n — j are all greater than
2m; and pairwise distinct. This proves (4.33) with m = 2m;.
We will check (4.34) and (4.35) now. Using the well known estimate

oo

[Z, p. 61], we get
Tlo<C Y Au.
mi<n<ms
and, by (4.36),
ITl|oe < 2C(log )2,
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Let us estimate Sy (7',0). We have

!

7 1

Sn(T,,0) = §A2ln Z ;
=

Hence,

l
1 1
SN(T0 =5 Y A§5

mi<n<msg

and (4.35) follows from (4.36). The proof is complete.

[K1]
[K2]
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