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Abstract

Our objective is to study nonlinear approximation with regard to re-
dundant systems. Redundancy on the one hand offers much promise for
greater efficiency in terms of approximation rate, but on the other hand
gives rise to highly nontrivial theoretical and practical problems. Greedy
type approximations proved to be convenient and efficient ways of con-
structing m-term approximants. We introduce and study vector greedy
algorithms that are designed with aim of constructing mth greedy ap-
proximants simultaneously for a given finite number of elements. We
prove convergence theorems and obtain some estimates for the rate of
convergence of vector greedy algorithms when elements come from cer-
tain classes.

1 Introduction

Our objective is to study nonlinear approximation of vector functions. The most
basic concept of nonlinear approximation is to use in it the elements from a set
depending on the function being approximated rather than from a fixed vector
space.

Assume that X is a Banach space with a basis ¥ = {3}, so that each
function f € X has a unique representation

F= en(f)vw, (1)

k=1

It has been established that the algorithm which forms a sum of m terms with
the largest ||cx(f)9¥k||x out of expansion (1), and is hence called greedy, realizes
in many cases almost the best m-term approximation for function classes ([6])
and even for individual functions ([21]). The problem of m-term approximation
with regard to a basis has been studied thoroughly and rather complete results
have been established (see [2], [3], [5], [6], [8], [16], [17], [20], [21], [22], [23]).
Another more complicated form of nonlinear approximation can be called
highly nonlinear approximation. In it, the basis is replaced by a larger system
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of functions D that is usually redundant and called a dictionary. Redundancy
on the one hand offers much promise for greater efficiency in terms of approx-
imation rate, but on the other hand gives rise to highly nontrivial theoretical
and practical problems. The problem of characterizing approximation rate for
a given function or function class is now much more substantial and results are
quite fragmentary. However, such results are very important for understanding
what this new type of approximation offers.

Perhaps the first example of approximation involving dictionaries was consid-
ered by E. Schmidt in 1907, [19] who considered the approximation of functions
f(z,y) of two variables in Ly ([0, 1]?) by bilinear forms

D) =Y (@) v)

This approximation problem can be seen as an m-term approximation with
regard to the dictionary

I={g: g(z,y) = u(x)o(y); w,v € La([0,1]), [[ullz, = llv]lL, =1}

The above problem is closely connected with the properties of the integral op-

erator
/ f(z,9)9(y) dy,

with kernel f(z,y). Schmidt gave an expansion (known under his name)
y) =Y si(J)ei(@)v;(y),
j=1

where {s;(J;)} is a nonincreasing sequence of singular values of Jy, i.e. s;(Jf) :=
Ai(J5IF)H2, {A;(A)}>1 is a sequence of eigenvalues of an operator A, J} is
the adjoint operator to Jy. The two sequences {¢;(z)};>1 and {;(y)};>1 are
the orthonormal sequences of eigenfunctions of the operators J fJ; and JiJg
respectively. He also proved that

| f(z,y) ZSJ Jp)¢i (@) ()L, = 1 f(z,y) ZCJUJ YL
j=1

flw JH H JII L
cj,j=1,....m

It was understood later that the above best bilinear approximation can be real-
ized by the following greedy algorithm. Assume that c;, u;(x), v;(y), |lu;|lz, =
llvjllz, =1, 7 =1,...,m — 1, have been constructed after m — 1 steps. At the
m-th step of the algorithm we choose ¢p,, um (), Vi (y),s |tmllL, = l[vmllz, =1,

to minimize
m

|f(z ZCJU‘J )L

Jj=1
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We call this type of algorithm the Pure Greedy Algorithm (see the general
definition in the next section).

Another approximation problem of this type which is well known in statistics
is the projection pursuit regression problem. The problem is to approximate in
Ly a given multivariate function f € Lo by a sum of ridge functions, i.e. by

Wm(a:):er«wj,m)), wijERda j=1...,m,
j=1

where 7;, j = 1,...,m, are univariate functions. The following greedy type
algorithm (projection pursuit) was proposed in [12] to solve this problem. As-
sume functions r{,...,7,,_1 and vectors wi,...,w,_1 have been determined
after m — 1 steps of algorithm. At the m-th step choose a unit vector w,, and
a function 7, to minimize the error

1f () — ZW((W;&@)IILQ-

This is the second example of Pure Greedy Algorithm. The Pure Greedy Al-
gorithm and some other versions of greedy type algorithms have been recently
intensively studied (see [1], [4], [7], [9], [10], [11], [13], [14], [15], [24]).

2 Greedy Algorithms. Basic Notions

In this paper we will study a modification of greedy type algorithms which
makes them more ready for implementation. We call this new type of greedy
algorithms Weak Greedy Algorithms and Vector Weak Greedy Algorithms. We
will study only theoretical aspects of the efficiency of m-term approximation and
possible ways to realize this efficiency. The greedy algorithm gives a procedure
to construct an approximant which turns out to be a good approximant. The
procedure of constructing a greedy approximant is not a numerical algorithm
ready for computational implementation. Therefore it would be more precise
to call this procedure a ”theoretical greedy algorithm” or ”stepwise approxima-
tion optimizing process”’. Keeping this in mind we, however, use term ”greedy
algorithm” in this paper because it has been used in previous papers and has
become a standard name for procedures like the above (see for instance [5], [9]).

In order to orient the reader we remind some notations and definitions from
the theory of greedy algorithms. Let H be a real Hilbert space with an inner
product (-,-) and the norm |z|| := (z,z)'/2. If Hp is a finite dimensional
subspace of H, we let Py, be the orthogonal projector from H onto Hy. That
is Py, (f) is the best approximation to f from Hy. We say a set D of elements
from H is a dictionary if each g € D has norm one (||g|| = 1) and span D = H.

The objective of greedy algorithms is to construct a sequence {gx}r>1, gr €
D and a sequence of approximants Gy € Dy, = span{gy, ..., gx} such that

lim ||f — G| = 0.
k—o0
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The most important step of a greedy algorithm is to choose a new dictionary
element g,11 to add to the existing set of g1,...,g, obtained after n steps.
The specific optimization criteria for constructing Gy, will define specific greedy
algorithms.

For a given dictionary D we can introduce a norm associated with D by the
formula

171> = sup (/. 9)].
g€D

It is clear that in the case of general dictionary D we can not guarantee that

for each f € H there exists g* € D such that

1fllo = 1{f,9%)!-

In order to overcome this difficulty we use two ways. In the first way, when
we define the Pure Greedy Algorithm and the Orthogonal Greedy Algorithm
(see Algorithms 1 and 2 below), we make the following additional assumption.
We assume we can define a selection operator S = Sp, S : H — D so that it
satisfies

[(F5 S = sup (£, 9)I-

g€D
We define

G(f) = G(f,D):= (£, 5(F))S(f),
R(f):=R(f,D) = f - G(f).

In the second way we do not impose an extra assumption on D and instead we
weaken the condition

(£ SN = 1 fll»,

for selection of an element from the dictionary D to the condition

(o =t fllo, ¢ €D,

with ¢ € (0,1). This way is realized in all weak type greedy algorithms (see
Algorithms 3-6 below). The following greedy algorithms have been studied in

[9].

Algorithm 1 (Pure Greedy Algorithm, PGA) We define Ry(f) = f and
Go(f) =0. Then, for each m > 1, we inductively define:

1. Gm(f) = Gm(faD) = Gmfl(f) + G(Rmfl(f))a

2. Ri(f) i= B (£, D) := [ — Gu(f) = R(Rm-1(f))-
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Algorithm 2 (Orthogonal Greedy Algorithm, OGA) We define R3(f) =
f and G§(f) = 0. Then for each m > 1, we inductively define

1. Hp(f) = span{G(RG(f)), - - -, G(Ry, 1(f))},
2. Gr.(f) = Go(f, D) = Pu, (f),
J. Ry, (f) = R (£, D) = [ = GL.(f)-

We remark that for each f we have

1f = G, D < 1B -1 (f) = Go(R7 1 (£), D). (2)

In [25] we studied some modifications of the Pure Greedy Algorithm and
the Orthogonal Greedy Algorithm which we called respectively Weak Greedy
Algorithm (WGA) and Weak Orthogonal Greedy Algorithm (WOGA). We give
now the corresponding definitions. Let a sequence 7 = {tx}32,, 0 <ty <1, be
given.

Algorithm 3 (Weak Greedy Algorithm, WGA) We define f§ := f. Then
for each m > 1, we inductively define:
1. o1, €D is any element satisfying

({1 Pmd| 2 tmll fr -1l 2,

2. fow = Ty = (et €005
m
3. GT f7 Z Jj— 17()0_7
We note that in a particular case tp, = ¢, £ = 1,2,... this algorithm was

considered in [14]. In our paper we modify WGA and WOGA in a way that
allows us to build simultaneous approximation for a given vector of elements
fi, ..., fN each of its components in H. We call this new modification ”vector”
type greedy algorithms VGA.

Let us consider a particular example that gives a motivation for studying
"vector” type greedy algorithms. Let N functions fi(z,y) € L»([0,1]?), i =
1,..., N be given. We want to approximate different kernels f(z,y) of the form

N .
y) = a;if (z,y),
j=1
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by bilinear forms
y) = > ciui(e)vi(y)
i=1

As we mentioned in the Introduction the truncated Schmidt expansion
D si(T)é ()5 (),
j=1

provides the best (in the Ly([0,1]?) with regard to IT) approximation of f.
However, this way has a disadvantage. Changing the coefficients a1, ...,an we
change everything in the Schmidt expansion (s;(Jr), {#;}, {¥;}). We want to
have a more efficient way of constructing good approximants of f(z,y) for differ-
ent sets of coefficients ay, ...,an. We suggest to build a kind of ”simultaneous”
Schmidt expansion for the functions

xy)zzb;gbj(x)wj(y)a i:]-a"'aNa
j=1

with systems {¢;} and {¢;} independent of i. Then the corresponding expansion

for f(z,y) with any given coefficients ay,...,an can be easily obtained as
o N
=D ait)é; (@s (v)-
j=1 i=1

Algorithm 4 (Vector Weak Greedy Algorithm, VWGA) Let a vector of
elements fi € H, i =1,...,N be given. We define fol" = fi. Then for each
m > 1, we inductively define:

1. %7 €D is any element satisfying

max |(f"25, o3| >t max || £, |1,

2. flUT::fZ712;7<f:nv71—’90m>@%Ta i:]'?“"N’
m

5 Gi (£,D) = Yo 3, T= 1
j=1

We will prove (see Theorem 3 below) that under certain conditions on 7 the
VWGA converges. This implies that the VWGA provides the convergent ex-
pansions

fZ:Zb;gjv ngDa
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with the property

o0

£ =" bi?,  i=1,...,N.

Jj=1

Algorithm 5 (Weak Orthogonal Greedy Algorithm, WOGA) We define
fo° = [ and f1"° == f7; 7 := @] where f7,¢] are from the above definition
of WGA. Then for each m > 2 we inductively define:

1. ¢ €D s any element satisfying

[(FrZasem ) Z tm |l £ 21 2,
2. G7o(f,D) := Puz (f), where H;, :=span{p;®,...,00°},

3. fm’=1f =GR (f,D).

It is clear that the approximations G7, and G7.° generated by the weak
algorithms in the case tx = 1, £k = 1,2,..., coincide with G,,, constructed in
PGA and G9, constructed in OGA. It is also clear that WGA and WOGA are
more ready for implementation than PGA and OGA.

Algorithm 6 (Vector Weak Orthogonal Greedy Algorithm, VWOGA)
Let a set vector f',i=1,...,N be given. We define ;7% := fi,i=1,...,N.
Then for each m > 1 we inductively define:

1. 1, is such that

[P [ | el i=1,...,N,
2. v €D is any element satisfying

[F AR B [ g P

3. GUOT(f',D) = Py~ (f'), where HY™ :=span{p] ™% ...,0u"},

4_ frir,Lv,T,o = fi _ GfﬁT7o(fi7D)-

We turn first to formulate some theorems on convergence of WGA and
WOGA. We begin with some historical remarks. The weak Lo-convergence
of projection pursuit was established in [13] and the strong Ls-convergence of
it was proved in [14]. The proof from [14] also works in the general problem
of convergence of PGA (see [18], [11]). For convergence of OGA see [11]. The
convergence of WGA and WOGA was studied in [25] including the following
theorems:



2 GREEDY ALGORITHMS. BASIC NOTIONS 8

Theorem 1 Assume

oo £
Z?:oo. (3)

k=1

Then for any dictionary D and any f € H we have

Theorem 2 Assume -
Zti = 0. (4)
k=1

Then for any dictionary D and any f € H we have

lim | f —GZ7(f,D)|| = 0.
m—r 00
We will prove here the following generalizations of these theorems to the
case of vector approximation.

Theorem 3 Assume Y .., % = oo is satisfied. Then for any dictionary D and
any set of functions f* € H,i=1,...,N we have

lim |[f' =G (f, D)l =0.
m— 00

Theorem 4 Assume 220:1 t2 = oo is satisfied. Then for any dictionary D and
any set of functions f* € H,1=1,..., N we have
lim [|f* — Gu™°(f",D)| = 0.
m—r 00

The following criterion on 7 for convergence of WGA has been established
in [26].

Let us introduce some notation. We define by V the class of sequences of
real numbers = {zx}7>, zx > 0, k = 1,2,..., with the following property:
there exists a sequence 0 = gy < g1 < ... which may depend on x such that

i >
< 00,
— Ags

and
oo

qs
DL P
s=1 k=1

where Aqs := qs — qs_1.

Theorem 5 The condition T ¢ V is necessary and sufficient for convergence

of Weak Greedy Algorithm with weakness sequence T for each f and all Hilbert
spaces H and dictionaries D.
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It is clear that the condition 7 ¢ V is also necessary for convergence of
VWGA with the weakness sequence 7. We will prove that this condition (7 ¢ V)
is also sufficient for convergence of VWGA.

Theorem 6 The condition T ¢ V is necessary and sufficient for convergence
of Vector Weak Greedy Algorithm with weakness sequence T for all wvectors
..., fN and all Hilbert spaces H and dictionaries D.

3 Convergence of the VWGA

The following two lemmas imply Theorem 3.

Lemma 1 Assume that (4) is satisfied. Then if all component sequences { fi;"'™ }°_,,
t=1,...,N converge then they converge to zero.

Proof of Lemma 1 is the same as proof of Lemma 2.1 from [25].

Lemma 2 Assume (3) is satisfied. Then each component sequence { f5V'7}5°_,,
t=1,...,N converges.

Proof of Lemma 2. For simplicity in notations we drop the superscripts v
and 7. It is easy to derive from the definition of VWGA the following two
relations fori =1,..., N

m

I = 1= i 00)%0 (5)
j=1
1F5 7 = P =D i o)) (6)
j=1
Denote
N
a;’ ::|<fgl‘—17‘pj>‘7 a; ::Za;"
i=1
We get from (6) that
> @) < IR (7)
j=1
We take any two indices n < m and consider for ¢ =1,..., N

15 = Frall® = 1P = 017 = 20f% = Fous fon)-
Denote and estimate the quantities

Orem = [{fn = Fons Fru)-
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By Lemma 2.4 from [25] (see below) for convergence of {f: } it is sufficient to
prove that

lim inf max 9 =0.
m—oo0 n<m

Using (5) and the definition of the VWGA we get for all n < m that

m+1
max 6, ,, < max Z Fon el < D dilifimenl (8)
.7 n+1 j=1

(From the definition of p,,+1 we get

max (£, Pm+1)| > b1 max sup |( Fm> 9)]-
g€

This implies for all j

N

Z Ly 9)

. 1
[(Fhur )| £ 7 max (£ @m1)]
m+1

We get from (8) and (9) that fori=1,...,N

am+1
max 6 E aj.

n<m "M m+1

It remains to use (3) and (7) in the following lemma from [25].
Lemma 3 (Temlyakov and Konyagin) Assume y; >0, j =1,2,..., and

o9} o0
Zfz ) Zy?-<oo.
j=1

k=1

~

Then

11nn_1>1£f— ZlyJ =0.

Lemma 4 (/25]) Let a sequence {x,}52, be given in a Banach space X. As-
sume that for any m,n we have

||l'n — l'm||2 =Ym — Yn T em,na

where {y,}52, is a convergent sequence of real numbers and a sequence Op,
satisfying the property

lim inf max |0,, .| = 0.
n—oo m<n

Then {x,}5°, converges.

We now proceed to the proof of Theorem 6. As it was mentioned above we
need to prove only the sufficiency part. Taking into account Lemma 1 we can
claim that in the proof of Lemma 2 we actually proved the following statement.
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Lemma 5 Let 7 be such that for any {a;}32, € lz, a;j 20, j = 1,2,... we
have .
linrggfan Zaj/tn =0.

j=1

Then for any H, D, and f' € H,i=1,...,N we have

|=0, i=1,...,N.

lim || £""
m—ro0
We now use the following theorem from [26].

Theorem 7 The following two conditions are equivalent

T¢V,

n
V{a;}j2, €lz, a; 20, linrgigfan Zaj/tn =0.
j=1
Combining this theorem and Lemma 5 we complete the proof of Theorem 6.
We proceed now to the rate of convergence of VWGA. For a general dictio-
nary D, we define the class of functions

A{D,M):={f€H:f=) crwp, wp€D, Y || <M}

k=1 k=1

where n is any integer. Denote A; (D, M) the closure of A$(D,M). For M =1
we denote A; (D) := Ay (D, 1). We prove the following theorem.

Theorem 8 Let D be an arbitrary dictionary in H. Assume 7 := {tx}32,
tr,=t, k=1,...,0<t<1. Then for any vector f',...,fN, fi € A1(D, M),
t=1,...,N we have

N
Do FTIP < M2 (N +me?)

i=1

SN (10)

Proof. 1t is clear from rescaling argument that it is sufficient to prove the
theorem for M = 1. We introduce new notations:
A = fll?s Yo = [(Fracss omdls 90:=0, m=1,2,...,
and consider the sequences {b,} defined as follows
by=1, b =0 4y, m=12,....

Consider also the sequences

N N
U =) b Ym = D Y bmoi= b
i=1 =1 3
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Note that by the Cauchy inequality we have

N

> (yh)? > yk/N. (11)

i=1
It is clear that f: € A;(D,b!). By Lemma 3.5 from [9] we get

sup [(fr, 1, 9| = 11 1I*/b 1. (12)
geD

(From (12) and from the equality (see (6))

1F7ll? = el = K Fre 1y o) (13)

we obtain the following relations
U = gy — (Yn)? (14)
bin = bin—l + y'fn) (15)
max yy, > tmaxay, /b, ;. (16)

This implies that
Ym > maxyfn > tszl. (17)
g m—1

We have used the following simple property of fractions that the mediant of
two fractions always lies between them in value. If a, b, ¢, d be nonnegative and
¢/d < a/b then

cate_a
d~b+d b
Thus from (11), (14), (15), and (17) we get
Am S am—1 — Z/?n/N; (18)
bm = bm—l + Ym, (19)
Yo > ¢ 1 (20)
bm—l

We get from (18) and (20) that

t2 Am—1
amgaml(l_ﬁbz >a

m—1

and due to bi, > bt

m—1
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a_m < A —1 1_ ﬁam—l ]
b2 = B2 N b2

m—1
By Lemma 3.1 from [25] with ¢2, :=t*/N and A = 1 we obtain
am, mt2\ !
— < (14 — . 21
e (1) .

On the other hand by (18) and (20) we have

t Ym
m< m— 1-— )
a S 1( me1>

Ym
b =bm_1 (1 .
! ( * bm1>

Similarly to the case of WGA (see [25], Section 5) we get from here that

and by (19)

ambt/N < NYFUN, (22)

Combining (21) and (22) we get
2 —t/N
QZHIN < (1 n %) N2(LH/N)

This completes the proof of Theorem 8.

4 Rate of Approximation of VWOGA
The following theorem has been proved in [25] for 7 = {tx}, 0 <t <1, k > 1.

Theorem 9 Let D be an arbitrary dictionary in H. Then for each f € A1(D, M)
we have

m ~1/2
If = Gw (f, D) SM<1+Zti> :
k=1

We will use this theorem in this section to establish the convergence rate of

VWOGA.

Theorem 10 Let D be an arbitrary dictionary in H and 7 = {t}, 0 < t < 1.
Then for each f* € A1 (D, M) we have

' ' N\ M2
w—%WﬂmMMmm(%Q ), i=1,...,N.
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Proof. We will carry out the proof for M = 1. The inequality ||f.] < 1
follows from the assumption f* € A;(D) and from the obvious remark that the
sequences {||f%,||}m>1 are decreasing. Let us prove the estimate

' N\ M2
< | — .
10 < ()

Take m > N and define ¢ to be the one with (i;, j =1,2,... are defined in the
definition of VWOGA)

4{j ¢ iy =i, 1< j <m}>m/N. (23)

Let
n:=max{j, j € [1,m], : i; =10}

Then we have

£l < ol S N fR2all- (24)
The VWOGA can be seen as a realization of WOGA for each fi with appro-
priately chosen 7%, i = 1,..., N. For instance for f we get S . fio as a

realization of WOGA with 7% = {t{°}, i =t if i}, = iy and t}° = 0 otherwise.
Then by Theorem 9 we get

1/2
170 4] < (1+ (m/N — 1)) /2 < <N> .

mt?
Using (24) we complete the proof.

Comparing Theorem 9 with 7 = {¢} and Theorem 10 we see that in approx-
imation of a vector with N components by the VWOGA the number [m/N]
plays the same role as the number m in the case of WOGA. This means that in
essence the VWOGA has the same guaranteed upper estimate for the error as
the following N-fold WOGA. For a given t € (0,1] we apply n := [m/N] steps
of the WOGA to each f, i =1,...,N. For each f' we get a subspace H (f"),
i=1,...,N (see the definition of Algorithm 5). Denoting

N
H,, = D H.(f"),
i=1
we obtain by Theorem 9 the estimate
7% = Pras, (FN S5 = Prag ) (£
<M(1 + nt?)~1/2
<Mmin(1, ((m/N)t*)~*?),  i=1,...,N.

However the VWOGA is more adaptive than the above N-fold WOGA. For
instance if we have one "bad” element f! and all "good” elements f2,..., f¥
then the VWOGA will work all m steps with f! while the N-fold WOGA will
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use only [m/N] steps for working with f1. This adaptivity makes the VWOGA
more suitable for applications than the N-fold WOGA.

We also note that the replacement of m by [m/N] when we switch from the
WOGA to the VWOGA (with a vector of N components) is natural. In order
to understand this let us consider the following general example. Let H and D
be given. For a fixed N consider the direct sums of N copies of H and D

HN =H+...4+H, DN .=D+...4+D.

Then it is clear that the behavior of the WOGA with 7 = {t} applied toa f € H
at the [m/N]th step is equivalent to the behavior of the VWOGA in HY with
DN applied to the vector f,...,f (of N components) at the mth step.
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