20
Jyaestna\

ndn

ooskaeet ‘
Q77N

.. (A

INDUSTRIAL
¢
\ N s’y n"

MATHEMATICS
I"'ll
\e007 INSTITUTE

2003:01

On S.A. Telyakovskii’'s result, and
multiple oscillatory Hilbert
transforms with the polynomial
phases

K.l. Oskolkov

Department of Mathematics
University of South Carolina




On Telyakovskii’s result, and mutiple oscillatory Hilbert
transforms with the polynomial phases

K.I.Oskolkov

I dedicate this paper to my teacher Sergei Alexandrovich Telyakovskii on occasion of his
70-th birthday.

For a natural d, denote R? the d-dimensional real Euclidean space of vectors v = (vy, ..., vq);
Z® -the integral lattice in R?; N - the subset of vectors n € R? with the natural coordinates;
Z?)N - the set of vectors in R? with the rational coordinates.

A set w C R? is called coordinate-wise connected iff the intersection of w with every line
parallel to one of the coordinate axes is either an interval, or an empty set. Denote ¢ the class
of all coordinate-wise connected domains in R?.

S.A. Telyakovskii [6], [7] established the following remarkable result concerning multiple
sin-sums with the linear phase.

Theorem 1 Ford > 2

sin nyx; sin ngxy

sup sup
weNd xeRd n Ng

ncwnN¢

This result has found noteworthy applications in estimates of Kolmogorov’s widths for
classes of functions with the bounded mixed derivative, and in general, in the approximation
of functions by “hyperbolic cross”. For some later developments, we refer to the paper [8], and
to the literature cited therein.

The following theorem was proved in [1], on the base of .M. Vinogradov’s method of expo-
nential sums [16]. It concerns 1-d discrete oscillatory Hilbert transforms with the polynomial
phase of higher degree (cf. also [13]). We use the notation P", r € N for the set of univariate
algebraic polynomials p of degree r with the real coefficients, such that p(0) = 0.

Theorem 2 For a polynomial p € P", let



Then

sup sup |, (p)| < oo, (1)
peEPT™ m

and for each fized polynomial p € P", there exists the limit h(p) = lim,, o0 hm ().

Here we prove theorem 3, that unifies and somewhat generalizes these two results. It concerns
the multiple discrete Hilbert transforms with the polynomial phase.

A numerical sequence f = {f,}nen satisfies the Littlewood — Paley condition (see [18],
Chapter 15), iff || f||co := sup,, |fu] < 00, and

A(f) = sup Z |fm_fm+1| < 0.

In the sequel, we call such sequences slow; let us use the notation & for the class of all slow
sequences, ||flls := ||fllcc + A(f) for the norm in §. Clearly, if a sequence f has a bounded
variation in the usual sense, i. e. f € BV, then this sequence is slow. However, the class S
is essentially wider than BV. For example, for each fixed real ¢ # 0 we have f; := {n"} =
{etnr} €S, but fi ¢ BV.

We will say that d-indexed sequence f = { fn}nend iS coordinate wise slow (notation: f € S%),
iff restrictions of f onto the lines parallel with coordinate axes are uniformly slow:

Hf”Sd = HfHOO + 1?,??(18}11’}) sup Z |fnk+mek - fnk+(m+1)ek| < 00,

n n<m<2n

k
where e;, := (0,...,0,1,0,...,0), k = 1,...,d denotes the standard basis in R?, and for n =

(ny,... Mg,y ..yng), 1N :=n— nge,. Obviously, the characteristic function of a coordinate-
wise connected domain, i. e. w € Q% is slow.
We will also use the following notations: P™¢ the set of collections = (py,...,pq), Where

r r,d
pr € P75 Oy — the parallelepiped {n € N* : ny < my, k = 1,...,d}. The symbols <, <

d .
in relations of the type A < B, A & B mean that that there are (finite) factors c,, ¢y q

that depend only on the indicated parameters r, or r, d, such that |A| < ¢,|B], or respectively,
Al < ¢4l Bl

Theorem 3 For p€ P™¢, m € N¢, [et
d

hm(faﬁ) = Z an

n€lm k=1

etPr(nk) _ oipk(—n)

N

If f € 8¢, then
r,d
sup sup |hw(f, )| < || fllsa (2)

meNd
o .

and for each collection of polynomials € P™, the limit h(f, ) := liMmin, 00 b (f, D) ezists.



It is interesting to compare this result with the recent one of M.Z. Garaev [4], who considered
the sequence of partial sums

N X sin mnx
hy() =YY ., N=1,2,...

mn

m=1 n=1

Garaev proved that there exist real numbers x for which the sequence hy(x) divergesas N — oo.
Proof of the theorem. For p € P", denote

eip(t) _ gin(—t)

21

P .

and for n € N, n € N¢, 5 € P"? introduce the following exponential sums and integrals:
g

1 - ip(n " g
1) = 0 L) = [V i) = h() =0
m=1

An(p) == Tu(p) = Tu1(p), Bu(p) := Bu(p) — Bu-1(p);

d
A =[] Auon), Bal®) =[] Buu (o)
k=1 k=1
We have ) ®
ezp " Tn—l(p) " el—p In—l(p)
-4, , dt = B, 3
—= At [ (n) + g
It was proved in [1] that
T, I,
a) supzw<oo, b) supzm<oo. (4)
PEPT 1eN n PEPT heN n

The claim b) in these relations concerns the integral Hilbert transform with the polynomial

phase

eip(t)

g(p) == lim g,(p), gn(p) = /Om ——dt.

m—o0

The global boundedness sup,,,~q Sup,cpr |gm(p)| < 00, and the existence of the limit g(p) are
the results due to E. Stein and S. Wainger [15].

The claim a) in (4) is of a somewhat more complicated nature, because the arithmetical
properties of the coefficient vector of the polynomial p play a significant role, and the proof
requires the application of the circular method of G.H. Hardy — J.E. Littlewood — .M. Vino-
gradov. This claim was proved in [1]. Independently and somewhat later than in [1], the global
boundedness result (1) was established by Stein and Wainger, see [13] and also [14], p. 373.



For a subset of indices A C [1,d] (possibly empty), let us consider the composite integral-
discrete products

A7) = (H Ank(pk)) [] Buw)|. neN, jep

ke A ke[l,d]\A

Then in view of (3) and (4), theorem 3 is a corollary, corresponding to the particular case of
A = [1,d], of the following statement.

Theorem 4 Assume that f := {fu},cu i a coordinate-wise slow sequence, with ||f|lss <1,
A C [1,d] - a subset of indices, and p € P™%. Then the limit

S(f, A, p):=  lim Z fuCun(A, D

ming mjg—»00

nEEIm
exists, and
r,d
1S(f, A, p)| < 1. (5)
For a polynomial p € P", denote x = (z1,...,z,) the coefficients vector of -, and let

p(t) =2nP(x,t) :=2m(z1t + - -+ x,t"), po(t) :=2n(Jxy|t + - -+ |z, |t7).
The following estimates are trivial

max(|Ty(p)], [In(p)]) < min(1, p.(n));
min(1, p.(n))
Calp)] < max(( 4, (p)], B (p)]) < LR (6
simply because ‘ep‘ = |sinp_| where p_(t) := (p(t) — p(—t))/2, and |p_| < p..
We split the proof of theorem 4 into the the consideration of the following 4 cases.
Casel. A=0, d=1.
Case 2. A=0, d> 2.
Case 3. A= {1}, d=1.
Case 4. A general A C [1,d], d > 2.
Case 1 is the simplest. Here we need to study the sum of integrals

S(f,p) = S(f,0,p) == fuBn

neN
By Abel’s transformation, for the m-th partial sum of this series we have

_ Z JaBa) = Y fullu(p) = Lu-a(p))

) + Z Li(p)Afu,  Afui=fo— fas1



Therefore, it suffices to prove that I,,(p) — 0, n — oo, and if f € S, ||f||s < 1 then
Z P)AS,| < 1. (7)
It follows from the definition of slow sequences that

Zp* A < pe(m), Z . (Af] < p(m), pEPT, p>0. (8)

n=m-+1
Furthermore, for the integral I,, the following estimate is true (see also [1], [10])
: - 1
[La(p)| << min (p.(n), p.*(n)) . po= -

In view of (6), this estimate is a corollary of the inequality

1 n
il / P ¢
nJo

which is equivalent to Vinogradov’s estimate of the “standard” oscillatory integral with the
polynomial phase (see [16], Ch. 2, Lemma 4):

1
/ eP®) dt‘ =
0

Therefore, it follows from (9) that indeed, in the non-trivial cases, when p is not identically
0, I,(p) = 0, n — oo, and

<< min (1, p*’p(n)) , peP,

1
/ 2P (D) dt‘ < min <1, 32 mkin |xk|*p) < min (1, 32r’p,~"(1)) .
0

Z |I Afn| < Z mln p*( ) p*—p(n)) |Afn| <T< mnlln( *(m) _|_p*—p(m)) <T< L.

n=1

Moreover, we have

[S(£,0) = Sulfs2)l = | D FuBa®)] < @)+ D [1a(@)A Sl
< Z min (p.(n),p. " (n)) |Af,] < min (1,p.~"(m)) , (10)

which provides the estimate of the rate of convergence of the series in the case 1, and concludes
the proof of this case.
Case 2. Here we need to consider the multiple sum of integrals

S(f,9) = S(f,0.0) =) faB

neNd



For this purpose, we apply a modification of Telyakovskii’s central idea of the proof of
his Theorem 1. Given a collection of polynomials p = (p1,...,ps) € P"%, let us subdivide
the domain of summation N¢ into d! sub-domains, according to the size of the polynomials
Dty - -5 Pxg- Lypical sub-domains are the algebraic octants

w=w(@) = {(n,...,ng) €N poy (1) >+ > pag(na)},

Wi = Wi (P) := {(n1,...,ng) € N1 pyy (1) > > pug(ng), ng>m}, meN. (11)
The other d! — 1 octants are obtained from w by taking all possible permutations of the inequal-
ities between the polynomials p,, (ny), and substituting < by the strict inequalities < in some

or all places, so that the resulting subsets of N¢ do not have common points, and partition N?.
Let us prove that for a compactly supported sequence f with || f||s« < 1 we have

r,d _
|Su,,| < min (1,p,;”(m)), meN, S, = Z fuBu (D). (12)

ncwm

For brevity let ny := n, p; := p, and for n = (n,ny,...,ng) € N4, meN, k=1,...,d—1,
denote n* := (ng,q,...,ng) € NO°F

Bu(@) = [ Bulp). ()= [ 2nlbpalm)),

I=k+1 I=k+1 "
wy, = A0 ENTE L p (k) 20 2> pag (na) , ng > m} (13)

Then
Swm: Z Bnl(ﬁ) Z ann(p) ) (14)

nlewl, n: pa(n)>pey(n2)

and according to (10), (8),

S faBap)| € min (Lp () . 1Bur ()] < ot (7).

n: px (1) >pas(na)
Therefore, (12) is a corollary of the following chain of inequalities:

r,d _
|Swgn| < Z [T (ﬁ) min (17p*2p(n2))

nlewl,

= Z I, () Z min (p*2(n2),p*;p(n2))

U
n2cw?, n2: Prg(n2)>ps3(ns)




< Z n2 (P ")mln(l Pz’ (0 ))

n?cw?,

,d > min xd\Td ) *7pn ] 4

T<< Z (p a(74), g " ( d)) < min (Lp*dp(m))' (15)
ng=m d

Clearly, (15) implies the global boundedness of the sums S(f, ) for arbitrary compactly sup-
ported coordinate-wise slow sequences f, ||f||se < 1:

r,d
sup |S(f,p)| < 1.
pePrd

(15) also implies the convergence of the infinite series in the sense of Pringsheim, if f is not com-
pactly supported. Moreover, the following estimate of the rate of convergence of the sequence
of the rectangular partial sums is a corollary from (15):

m(,0) = D faBa(P), = p(m) = minm;

nclm

rd _
Iﬂﬁ@—sdﬁmh<mn@qg%mﬁw0- (16)
Case 3. Here A = {1}, and we need to consider the purely discrete 1d series of exponential

S(.p) = S A1)p) = Y fuda

neN

As above, applying the Abel’s transformation, for the m-th partial sum of this series we have

=3 1) = 3 FaTp) — Tas @) = fonTnlp) + 3 Tulp)A Sy

Therefore, by virtue of theorem 2 and (4,a), in this case we need to prove that if f is a slow
sequence, then

sup Z |1 (p)Afr| < 0. (17)
pEPT
Although the proof of this result is essentially the same as that of (4,a) in the paper [1], we
will reproduce here the most essential details. We do so because these details are needed for
the complete proof of theorem 4, and also for the sake of the reader’s convenience.
Let us first provide an outline of the most important features of the construction. Given a
polynomial p € P", the domain of summation N is partitioned into 2 disjoint sets, both disjoint



unions of intervals of natural numbers:

N =N (p) UN:(p),
Ni(p) = Ul v, No(p) = Jwi i), 15 = mi(p), vy = v5(p). (18)

jz1 jz1

This partitioning is accomplished according to arithmetical properties of the coefficient vector
x of the polynomial - = P(x,-). Namely, it depends upon the approximation of x by vectors
with the rational coordinates.

For n € [u;,v;], the point x is close to a rational point y; with the “relatively small”
denominator. Here, the exponential sums 7;,, A, admit the asymptotic formulas of the type:

T,.(p) = 0,1,(pj) + n, An(p) = 0;Bn(p;) + (en —€n—1), 1 € [, v4];
Yol <1 BeP; du<n® a=a(r)>0. (19)

On the contrary, if n € Ny (p), the point x keeps away from the rational vectors with relatively
small denominators. For such n, the following estimates are true

Tn(p) = &n, An(p) =&p —En-1, |€n| <T< niﬂa 5 = B(T) > 0. (20)

Admitting that such a construction is possible, we estimate the sum in (17), making use of (19)
and (20), as follows:

> LB A S| < sup > |L(P)AL| <1

n€p;,v;)

2t

Sl X ILEALI+ Y ()AL L Y o+ 1L 21)
J

n€[u;,vj] n J

DAl =D L) ALal + D 1T0(p) ALl

neN; neNy

To realize this construction, let us apply the circular method of Hardy — Littlewood —
Vinogradov. This method provides asymptotic formulas and estimates for H. Weyl’s exponential

sums

n n

E,(p) =FE,(x) :=— et — — e2mibP(xt)
(p) (x) =~ t:Zl - t:ZI
If one of the co-ordinates xy, ..., x, of the vector x is an irrational number, then according
to the theorem of H. Weyl [17]
lim E,(p) = 0.

n—0o0



For a rational point y € Z"/N', let us denote @) = Q(y) the least common multiple of the

denominators of its coordinates in the reduced representation, and rewrite y in the form y = %:

b b,
y:<q_17"'7q_>€ZT/NT; bezraqENT; (bsaqs)zl;
1 r

aq ap a
Q:Qy:ZQJ"'JQJ y:<_7"'7_>:_7a€ZT7Q€N'
( ) [ 1 T] Q Q Q
Given such ay, let us denote o(y) the corresponding (normalized) complete rational exponential
sum (Gauss’ sum of higher order)

Q

Q

1 i n 1 ﬂ_va]_n—f—---—f—ay-nr

U(Y):@Zehp(y’)zézeh T, Q=Q(y).
n=1

n=1
One has

and o(y) satisfy the estimate of Hua Loo-Keng (for the proof, see Chen Jing-run [3], or S.B.
Stechkin [5])

o(y)| < Q*(y), p= % (22)

As in [1], we will apply the results of G.I. Arkhipov’s [2] version of the circular method.
Accordingly, the space R" is subdivided for a fixed natural n into 2 sets, R" = &, U F,,. The

coefficient vector x € R" of a polynomial p = %’;") € P" is allotted to &, (or major arc), iff
in a narrow rectangular neighborhood of x there is a rational point y = (v1,...,¥,) with a

“relatively small” denominator Q(y):

aS
Ty — —

Q
The set of all x € R" that do not possess this property, is by the definition F,, (minor arc).
The necessary elements of the construction (19) — (20) are contained in the following state-

ments.

max n’ |xs — ys| = max n’ <n’? Q=0Q(y) <n". (23)

1<s<r 1<s<r

Lemma 1 (see G.I. Arkhipov [2], Lemma 7 and Lemma 6) 1) If x € &, and y is the rational
point satisfying (23), z :=x —y, then
1

Eu(p) = o(y)= / PO dt +e, pi=2rP(z,); |e| <9IrQn " < n07. (24)
nJo

2) If x € F, then

T

|E.(p)|<n?, B> (@r*(Inr+1.5Inlnr+4.2))"1. (25)



Further, we obviously have
p(—t) =27 Y (—1)°z,t* =2rP(x',t), x = (-w1,...,(-1)z,),
s=1

and let us note the following relations that are crucial in the estimates of the discrete sums:
oly)=0y"), y=W,.-..,u) €Z/N |y = (—v1,...,(=1)"y,).
Therefore, the next statement is a corollary of Lemma 1.

Lemma 2 1) Ifx € &, y — the rational point satisfying (23), p = 2rP(x —y,-), then

Tn(p) = a(y)ln(ﬁ) + €n, |€n| <T< nia, a=0.7. (26)
2) If x € F,, then (see also (25))
T.(p)| <7’ (27)

Lemma 3 (See [1], p. 152). If n > ny := 1024 then for each x € &, the rational point y =
satisfying (23) is unique.

a
Q

Indeed, assume the contrary. Then there is a rational point y' = g—l, #+ % such that
!
S

@) < n%3

Since y # y’', there exists s € [1,r] for which & # g—;,, so that

max <Q', max n’ |z, —

1<s<r

/
S

1
- <
RQ
If n > 1024, the latter estimates contradict each other, which proves the uniqueness of y for
n > ny.
Fix a polynomial p = 2rP(x,-) € P". As the natural number n > ng increases, x alterna-
tively dwells either in &,, or in F,,. Respectively, let us subdivide N into two subsets

Ni(p) :={n>np, x€ &}, Nao(p):=1[1,n0)U{n >ny, x € F,}. (28)

S 27,1/0.375 S 2,',1/70.77 maX(Q, Q/) S n03

Let us consider the collection Y(x) := {y1,¥y2,...} of pair-wise distinct positions in R" that
are successively occupied, as n increases, by the rational approximant y = y(x) of x, in
accordance with (23). Thus, the set N;(p) is a union of disjoint intervals of natural numbers

(11, v;](p):

N ) = Ul ) 0), [y 1,)0) = {nzno, yW(x) = y, a”’}. (20)

= }/‘7 = —
j21 Qj

Respectively, we have Ny (p) = N\ N; (p).



Lemma 4 (see also [1], Lemma 3). Every two consecutive intervals [, vj, [ftj11,Vj+1] in (29)
are “wide apart”, and the denominators (Q; are “rapidly increasing”:

4
3

1 4
piv = (05) 507, Qi1 > 0.5Q7 . (30)
The proof is quite similar to that of Lemma 3. Since y; # y;11, there is s € [1, 7] such that

L 8y sy

QiQi+1 ~ | Q;  Qjn

Therefore, (p1p541)"* > Q;Qj11 > 0.5077, because Q; < pf?, Qj1 < pj?), and the estimates
(30) easily follow.

We conclude that the asymptotic formulas (19) and the estimates (20) are true with o; =
o(y;), and in view of (30), (22)

—0.7 —0.7 —0.7
Syt vy <2u00

Sl <> @ <1,
J J
which completes the consideration of the case 3.

Concerning the rate of convergence of the sequence of partial sums S,,(f,p) in this case,
the situation is quite naturally more complicated than in the previously considered cases, see
(10) and (16). This rate depends on the arithmetical properties of the coeflicient vector x of
P = p/2x. For a positive number ¢, in e-neighborhood of x find the rational vector y # x with
the “smallest denominator” (Q(y), and denote the latter Q(p,¢). Clearly, Q(p,e) — 00, € — 0.
The above construction implies that

1S(f,p) = Sm(f, D) LQr (p,m™"3) +m™".

For more details, the reader may be referred to [12].

Case 4. Let us again temporarily assume that the sequence {f,} is compactly supported, and
prove the estimate (5). We apply the induction in the number of elements a := $A in A,
and make use of Telyakovskii’s idea, i. e. partition the domain of summation into polynomial
octants.

Ifa =0,i e. A =0, the claim (5) is true, by the result of our consideration of the
case 2. Notice that if we consider A, (p) = T,,(p) — T—1(p) as a function of the coefficients of
the polynomial p for a fixed n, then this function is periodic in each of its variables, and the
period = 27. Therefore, we can assume, without loss of generality, that the coefficients of the
polynomials py in A, (px) do not exceed 7 in the absolute value.

According to the principle of induction, let us assume that

sup |S(f, A7) L1, tA=q, (31)

peprd



and deduce from this assumption the bounds for the sums over the octants w,,, m € N, see
(11):
wm f7 Z fn n 715)7 uA:a/+1'

nEwm
Let us re-write these sums as in (14):

Sum (L AD) =Y Cor(P)Dui(f, A, p), (32)

nEwrdnl

where ;
A:m = H an (Aapk)a Dnl (f> Aap) = Z fnCn(Aap)
k=2 n: px(n)>puy(nz)

By virtue of (6), we can estimate the product Cy: (A, p) trivially, see also (13):

Cur (A, )] & [ P2 LePeele)) gy (33)

n
k=2 k

As for the sums Dy (f,p), there are two possibilities.
(i) 1 ¢ A, so that C,(A,p) = B,(p). In this case, we can estimate D1 (f,p) and S, (f,A,D)
using (33), (15), and avoiding a reference to the assumption of the induction (31):

| Dt (f, A, p)| = S faBulp)| < min (1,57 (n2)),
n: ps(n) 2pxg(n2)
r,d . o r,d . -
|Swm(f7 A7m| < Z n1 (ﬁ) min (lap*Zp(’n’Q)) < min (lap*dp(m)) : (34)
Gwm !

(ii) 1 € A, so that C,,(A,p) = A,(p), and
Du(f,Ap)= > fadalp)= Y, fa(Tulp) = Tua(p)). (35)
n: px(n)2pss(n2) n: px(n)2psa(n2)

In this case, we need to make use of the assumption, that all coefficients of the polynomial p
are < 7 in the absolute value. Accordingly, the condition p,(n) > p.o(ne) implies

n>>phn), n? <min(l,ps"(n2)), 7v:=pp. (36)

Let us consider a numerical sequence {e, } that satisfies the estimate |,,| < n~?, and a sequence
f=A{fu} €8, ||flls < 1. Then, applying the Abel’s transformation (see also (8)) we see that

an 5n1

n>m

B _
5m—1fm - Z 5nAfn <m 67

n>m




and consequently, it follows from (36) that

Z fn(gn - 6nfl) < min (lap*Q_’y(TLZ))

n: Py (1) >pay(nz)

From here, arguing exactly as above, we obtain

> Cu(AD) Yo falen—En)

nlewd ! 1 Py (1) >psy(n2)

T'd T;d . —

< Z Iy () min (1, p. 7 (1)) < min (1, p.;" (m)) .
n Ewrdn !

With the help of this estimate, we ”"clean up” the summation of the error terms g, of the
asymptotic formulas (19), and also the summation over n € Ny(p) in the sum (20). Up to
a small error, the summation in n is localized to that of the main terms of the asymptotic
formulas on the set N (p) = U, [, vj](p). From (26), (27) we see that

Sum (s AB) = Y 08 (f(j’m)=1;'j)
j

& min (1,p.77(m)), (37)

where

Py = Bipeopa) S (F97,0,) = 30 9B () Con (),

neNd
f(],m) — fn forn € Wy, N E [Mj? Z/j](p)a
' 0 for all other n € N,
For each fixed m, j € N, the set {n: n € wy, n € [y;,v;](p)} is coordinate wise connected

(possibly, empty), so that the sequence fUm™) := {f,(lj’m)} _ is coordinate wise slow, and
neN

19| g0 < 2||f|lse < 2. Further, the number of A’s in the product B ]¢_, C is by 1 less than
that in the original product []¢_, C. Therefore, by the assumption of the induction (31)

‘S <f(j’m);l;;j>

Since we also have . |oy| < 1, it follows from (37) that

r,d
< 1. (38)

1o (FL AP E1, tA=a+1.



Thereby, the global boundedness result of the whole sum for a compactly supported slow
sequence f also follows:

sup |S(f,A,p)| < oo.
peprd
Let us finish by proving the convergence of the series S(f,.A,p) for not compactly sup-
ported slow sequences f. To this end, it is sufficient to prove that for every fixed collection of
polynomials p’ € P4
sup |S,, (f, A, D) — 0, m — oo,
fesg
where S¢ denotes the set of all compactly supported slow sequences f with || f||s« < 1. Clearly,
we can assume that none of the polynomials py is = 0, so that the right sides of (34) (case (i))
and (36) (case (ii)) are uniformly small on SJ. In particular, we can concentrate only on the
case (ii).
Assume that one of the coordinates of the coefficient vector x of the polynomial P(x,-) =
p(-)/2m is an irrational number. Then for each fixed j, the set {n € wy,, n € [u;,v;|(p)} is
empty for all sufficiently large m, so that

fOm™ =0, m > M(j).

Indeed, the condition n = (n,ny,...,ny) € w,, implies, by the definition (11) of the octant w,y,,
that p.(n) > p.y(m). The latter contradicts the bound n < v;(p), if m is large enough.
It follows that there exists a sequence {.J(m)},en such that

J(m) — o0, m —o0; S <f(j=m),ﬁj> =0, j < J(m),
so that by (37)
r,d _
SWm(fJAJm <<p*d7(m)+ Z o —>0, m — Q.
j>J(m)

Finally, if x € Z"/N, then the set Ny (p) = [J;[p;, v5] is concluded by the semi-axis [, 0), and
ps = 0, so that n > pu; we simply have B, (p;) = 0. Consequently, if m is sufficiently large,

S (f(jym),g;’j) = 0 for all j, and for all such m we have

r,d _
SWm(f’ Avﬁ) < p*dv(m)v

which concludes the proof.
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