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ABSTRACT. We study covergence and rate of convergence of expansions of elements
in a Banach space X into series with regard to a given dictionary D. For convenience
we assume that D is symmetric: g € D implies —g € D. The primary goal of this
paper is to study representations of an element f € X by a series

F~>ei(Hgi(f), gi(H) €D, ¢(f)>0, j=1,2,....

i=1

In building such a representation we should construct two sequences: {g; (f)};";l and
{¢;j(£)}32,- In this paper the construction of {g;(f)}$2, will be based on ideas used
in greedy-type nonlinear approximation. This explains the use of the term greedy
expansion. We use a norming functional Fy__ , of a residual f, 1 obtained after
m — 1 steps of an expansion procedure to select the mth element g, (f) € D from the
dictionary. This approach has been used in previous papers on greedy approximation.
The new feature of this paper is a way of selecting the mth coeflicient ¢, (f) of the
expansion. An approach developed in the paper works in any uniformly smooth
Banach space. For instance, in a Banach space X with the modulus of smoothness
p(u) we can choose cm (f) from the equation

[fm—1llp(cm (£)/I| fm—1ll) = %Cm(f) sup Fy,  (9),
geD

where t € (0, 1] is the weakness parameter of an algorithm and b € (0, 1) is its tuning
parameter. We prove convergence of such expansions for all f € X and obtain rate
of convergence for f € A1 (D) - the closure (in X) of the convex hull of D.

1. INTRODUCTION

Let X be a Banach space with norm ||-||. We say that a set of elements (functions)
D from X is a dictionary if each g € D has norm one (||g|| = 1), and spanD = X.
In addition we assume for convenience that

g€ D implies —geD.

Thus from the definition of a dictionary it follows that any element f € X can
be approximated arbitrarily well by finite linear combinations of the dictionary

IThis research was supported by the National Science Foundation Grant DMS 0200187 and
by ONR Grant N00014-91-J1343
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elements. The primary goal of this paper is to study representations of an element
f € X by a series
(L) f~D eNe(h), gG(NED, (>0, j=12. ...
j=1

In building a representation (1.1) we should construct two sequences: {g;(f)}32;
and {c;(f)}52;- In this paper the construction of {g;(f)}2; will be based on
ideas used in greedy-type nonlinear approximation (greedy-type algorithms). This
justifies the use of the term greedy expansion for (1.1) considered in the paper.
The construction of {g;(f)}52; is, clearly, the most important and difficult part in
building a represenration (1.1). On the base of contemporary theory of nonlinear
approximation with regard to redundant dictionaries we may conclude that the
method of using a norming functional in greedy steps of an algorithm is the most
productive in approximation in Banach spaces. This method has been utilized in
the Weak Chebyshev Greedy Algorithm and in the Weak Dual Greedy Algorithm
(see below). We use this same method in new algorithms considered in the paper.
A new qualitative result of the paper establishes that we have a lot of flexibility
in constructing a sequence of coefficients {c;(f)}52,. For instance, in Section 3 we
make on observation that at each step of the Pure Greedy Algorithm (see below)
we can choose a fixed fraction of the optimal coefficient for that step instead of the
optimal coefficient itself. Surprisingly, this leads to better upper estimates than
those known for the Pure Greedy Algorithm (see Section 4 for details).

We will study in this paper greedy algorithms with regard to D that provide
greedy expansions. For a nonzero element f € X we denote by Fy a norming
(peak) functional for f:

1Eell =1, Fe(f) = lIf]]-

The existence of such a functional is guaranteed by Hahn-Banach theorem. Denote

rp(f) := sup sup Fy(g).
Fy geD

We note that in general a norming functional F' is not unique. This is why we take
supp, over all norming functionals of f in the definition of rp(f). It is known that in
the case of uniformly smooth Banach spaces (our primary object here) the norming
functional F is unique. In such a case we do not need supp, in the definition
of rp(f). We begin our discussion with the Weak Chebyshev Greedy Algorithm
(WCGA) that is the best studied. This algorithm does not provide an expansion.
However, the results on converegence (rate of convergence) for this algorithm may
serve as a bench mark in the study of convergence properties of expantion (1.1).
Then we proceed to the Pure Greedy Algorithm (PGA) and its generalization the
Weak Greedy Algorithm (WGA) that provide an expansion in Hilbert spaces. We
complete our discussion of known results by presenting definitions of and some
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results for natural generalizations of the PGA (or WGA) to the case of Banach
spaces: the X-Greedy Algorithm and the Weak Dual Greedy Algorithm (WDGA).
These algorithms are not as well studied as either the WGA in Hilbert spaces or the
WCGA in Banach spaces. Finally, we turn to a new modification of the WDGA.
This modification, similarly to the WDGA, provides an expansion. In this paper
we prove convergence results for the above mentioned modification of the WDGA.
We note that these results are more general than the known results for the WDGA.
We also obtain results on the rate of convergence for elements from the set A; (D)
that is the closure (in X) of the convex hull of D. We are not aware of any general
results on the rate of convergence of the WDGA for elements from A4; (D). We also
note that the new modification considered here is even simpler than the WDGA
from the point of view of algorithmical implementation.

Let 7 := {t;}32, be a given sequence of nonnegative numbers ¢, <1, k=1,....
We define first (see [T3]) the Weak Chebyshev Greedy Algorithm (WCGA) that is
a generalization for Banach spaces of Weak Orthogonal Greedy Algorithm defined
and studied in [T1] (see also [DT] for Orthogonal Greedy Algorithm).

Weak Chebyshev Greedy Algorithm (WCGA). We define f§ := f3" := f.
Then for each m > 1 we inductively define
1). ¢S, := ¢S&T € D is any satisfying

Fre (o) Z tmrp(frn1)-
2). Define
D, = @y, = span{y§}iL,

and define GY, := G to be the best approximant to f from ®,,.
3). Denote

fom =T == Gg,.
We consider here approximation in uniformly smooth Banach spaces. For a
Banach space X we define the modulus of smoothness

pw):= swp (2

””””12OW+UMHﬂw—uMD—D-
z||=||y||=

A uniformly smooth Banach space is one with the property

lim p(u)/u = 0.

u—0

It is easy to see that for any Banach space X its modulus of smoothness p(u) is an
even convex function satisfying the inequalities

(1.2) max(0,u — 1) < p(u) <u, wu € (0,00).
It is well known (see for instance [DGDS], Lemma B.1) that in the case X = L,
1 < p < oo we have

e (P 0SS

(p—1)u?/2 if 2<p<oo.
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It is also known (see [LT], p.63) that for any X with dim X = oo one has
plu) > (1+2)!/2 — 1

and for every X, dim X > 2,
p(u) > Cu?, C >0.

This limits power type modulus of smoothness of nontrivial Banach spaces to the
case 1 < g < 2.

We begin a discussion of known results with a theorem on convergence of WCGA
[T3]. In the formulation of this theorem we need a special sequence which is defined
for a given modulus of smoothness p(u) and a given 7 = {t;}32 ;.

Definition 1.1. Let p(u) be an even convex function on (—oo,00) with the prop-
erty: p(2) > 1 and

lim p(u)/u = 0.
u—0

For any 7 = {tx}32,, 0 <t <1, and 0 < 0 < 1/2 we define &, := &n(p, 7,60) as a
number u satisfying the equation

(1.4) p(u) = Ot u.

Remark 1.1. Assumptions on p(u) imply that the function
e(u) == p(u)/u, u#0, €0)=0,

is a continuous increasing on [0,00) function with €(2) > 1/2. Thus (1.4) has a
unique solution 0 < &, < 2.

The following theorem and a corollary have been proved in [T3].

Theorem 1.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that a sequence T := {t;}32, satisfies the condition: for
any 0 > 0 we have

(1.5) > tmm(p,7,0) = co.
m=1

Then for any f € X we have

| = 0.

3 C, T
im [[f7

Corollary 1.1. Let a Banach space X have modulus of smoothness p(u) of power
type 1 < q < 2; (p(u) < yul). Assume that

o

Ztgmzooa p:L-

m=1 - 1
Then WCGA converges for any f € X.
The following theorem has been proved in [T3] for the WCGA.
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Theorem 1.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yul, 1 < q¢ < 2. Then for a sequence T := {tx}7>, tr < 1,
k=1,2,..., we have for any f € A1(D) that

m

| <ClgA+ Y )7 Vr, p= T

| fmT :
k=1 g—1

with a constant C(q,~y) which may depend only on q and .

Theorems 1.1 and 1.2 provide convergence results in a very general situation:
X is any uniformly smooth Banach space, 7 is any satisfying (1.5) (in particular
T = {t}, t € (0,1]). However, as we already mentioned above the WCGA does
not provide an expansion (1.1). We now proceed to algorithms that provide an
expansion (1.1). Unfortunately, these algorithms are not as good as the WCGA in
the sence of convergence.

Let us begin this discussion in the special case of a Hilbert space with the inner
product (-, -). We define first the Pure Greedy Algorithm (PGA) in Hilbert space H.
We describe this algorithm for a general dictionary D. If f € H, we let g(f) € D be
an element from D which maximizes (f, g). We will assume for simplicity that such
a maximizer exists; if not suitable modifications are necessary (see Weak Greedy
Algorithm below) in the algorithm that follows. We define

G(f,D) == (f,9(F)g(f)
and
Pure Greedy Algorithm (PGA). We define Ryo(f,D) := f and Go(f,D) := 0.
Then, for each m > 1, we inductively define

Gm(f7 D) = Gm—l(f7 D) + G(Rm—l(fv 'D),D)

Rn(f,D) := f = Gm(f, D) = R(Rm 1(f, D), D).

Let a sequence 7 = {t;}72,, 0 <t < 1, be given. Following [T1] we define the
Weak Greedy Algorithm.

Weak Greedy Algorithm (WGA). We define fj := f. Then for each m > 1,
we inductively define:
1). @7, € D is any satisfying

(fre1:Pm) = tmsup(fr,_1,9);
g€eD

2).

fon = Frne1 = (1 O s
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3).

m

Gr(f,D) ==Y (f]_1,¢])#]-
j=1
We note that in a particular case t, = t, £k = 1,2,..., this algorithm was

considered in [J]. Thus, the WGA is a generalization of the PGA in the direction
of making it easier to construct an element ¢ at the mth greedy step. We point
out that the WGA contains, in addition to the first (greedy) step, the second step
(see 2), 3) in the above definition) where we update an approximant by adding an
orthogonal projection of the residual f;,_; onto ¢, . Therefore, the WGA provides
for each f € H an expansion into a series (greedy expansion)
o0
F~) ey, (f) = (] 105

Jj=1

In general it is not an expansion into an orthogonal series but it has some similar
properties. The coefficients ¢;(f) of an expansion are obtained by the Fourier

formulas with f replaced by the residuals f7_;. It is easy to see that

£ = 1 sl = lem (£

In the case of convergent greedy expansion (see, for instance, Theorem 1.3 below) we
get for this expansion an analog of the Parseval formula for orthogonal expansions:

IFI1P = les ()17
j=1

We proved in [T2] a criterion on 7 for convergence of WGA. To explain this we
need some notation.

We define by V the class of sequences z = {z;}32,, zx > 0, k = 1,2,..., with
the following property: there exists a sequence 0 = gy < g1 < ... such that

oo

>a

s=1

S

< o0;
s

and
00 ds
Z 27° Z T3 < 00,
s=1 k=1

where Aqs := qs — qs_1.-

Theorem 1.3. The condition 7 ¢ V is necessary and sufficient for convergence of
Weak Greedy Algorithm with weakness sequence T for each f and all Hilbert spaces
H and dictionaries D.

For a general dictionary D we define the class of functions

A{D,M):={f€H:f=> cpwp, wp€D, #A<ooand Y |[cg| <M}
keA keA
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and we define A (D, M) as the closure (in X) of A(D, M). Furthermore, we define
A1 (D) as the union of the classes A; (D, M) over all M > 0. For f € A;(D), we
define the norm

| fla, (D)

as the smallest M such that f € Ay (D, M).
It was proved in [DT] that for a general dictionary D the Pure Greedy Algorithm
provides the following estimate

(1.6) 1f = G £, D) < |f]ayoym™°.

(In this and similar estimates we consider that the inequality holds for all possible
choices of {G,,}.) We proved in [KT] an estimate

(1.7) If = G (£, D)|| < 4| f] 4, (pym ™1/

which improves a little the original one (see (1.6)).
Recently, we proved in [LiT] that there exist a dictionary D and an element
feH, f+#0,such that

(1.8) 1f = G (£, D)l = Cm~ %[ f| 4, (p)

with a positive constant C.

Much less is known about greedy expansions with regard to general redundant
dictionaries in the case of a general Banach space X. We discuss next two versions
of generalization of PGA from a Hilbert space H to a Banach space X. The first
one is a straightforward generalization of PGA. We call it Pure Greedy Algorithm
or X-Greedy Algorithm when we want to indicate a Banach space. For a given X
and D we define G(f,D, X) := a(f)g(f) where a(f) € R and g(f) € D satisfy (we

assume existence) the relation

in || =gl =If = a(f)g(HI.
X-Greedy Algorithm. We define Ro(f,D,X) := f and Go(f,D,X) := 0. Then,

for each m > 1, we inductively define
Rpy(f) == Rn(f, D, X) := Rin—1(f) — G(Rp-1(f), D, X)

Gm(faan) = Gm—l(faan) + G(Rm—l(f)aan)

The second version of PGA in a Banach space is based on the concept of norming
functional. We call it the Dual Greedy Algorithm (DGA). Let a dictionary D in X
be given. Take an element f € X and find a norming functional Fs. Now the basic
step of PGA is modified to the following. Assume that there exists g¢ € D such
that

F — F(q).
7(9f) max (9)



8 V.N.TEMLYAKOV

We take this g and solve one more optimization problem: find a number a such
that

If = agysllx = min |[f —bgs|[x-
We put
GD(f’D) ‘= agfs, RD(f,D) = f —agg.

Repeating this step m times we get G2 (f, D) as an approximant and R2 (f, D) as
a residual.
Let us give a definition of the Weak Dual Greedy Algorithm (see [T4,p.66)).

Weak Dual Greedy Algorithm (WDGA). We define fP = fOD’T := f. Then
for each m > 1 we inductively define

1). P := P:7 € D is any satisfying
(1.9) Fyo (0) > turo(f2_,).

2). Define a,, as

1fm—1 = ampmll = min [ £y — app .
a€R
3). Denote
fo =TT = o1 — amep.

It is clear that in the case 7 = {1} the WDGA coincides with the DGA defined
above. The following conjecture has been formulated in [T4,p.73, Open problem
4.3]: the Dual Greedy Algorithm converges for all dictionaries D and each element
f € X in uniformly smooth Banach spaces X with modulus of smoothness of fixed
power type ¢, 1 < ¢ <2, (p(u) < yud).

Recently, M. Ganichev and N.J. Kalton [GK] have proved the following very
interesting result.

Theorem 1.4. Let 7 = {t}, t € (0,1] and X = L,, 1 <p < co. Then the WDGA
converges for any dictionary D for all functions f € L.

We consider here a modification of the WDGA that is a little simpler than the
WDGA. One more good feature of this new modification is that we can prove its
convergence in every uniformly smooth Banach space. In addition to this we obtain
good rate of convergence of it for elements from A; (D). We note that other greedy-
type algorithms in Banach spaces have been recently introduced and studied by
E.D. Livshitz [L].

We begin with a description of a general scheme that provides an expansion for
a given element f. Later, specifying this general scheme, we will obtain different
methods of expansion.
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Dual Based Expansion (DBE). Let t € (0,1] and f # 0. Denote fy := f.
Assume { f; ;-”;Ol C X, {p; ;”:jl C D and a set of coefficients {c; },' of expansion

7=1
have already been constructed. If fn,—1 = 0 then we stop (set ¢; =0, j = m,m +
1,... in the expansion) and get f = E;’;l cipj. If fr—1 # 0 then we

1). choose ., € D such that

Ffm—1 ((pm) > tr’D(fm—l);
2). define
fm = fm-1 — Cm®m,
where ¢, > 0 is a coefficient either prescribed in advance or chosen from a concrete

approximation procedure.
We call the series

(1.10) F~) cip
j=1

the Dual Based Ezpansion of f with coefficients c;(f) :==c¢;j, j =1,2,... with regard
to D.

Denote .
Sm(f,D) = _cjp;.
j=1

Then it is clear that
fm = f - Sm(fap)

We prove some convergence results for the DBE in Sections 2 and 3. In Section 3
we consider a variant of the Dual Based Expansion with coefficients chosen by a
certain simple rule. The rule depends on two numerical parameters t € (0, 1] (the
weakness parameter from the definition of the DBE) and b € (0,1) (the tuning
parameter of the approximation method). The rule also depends on a majorant p
of the modulus of smoothness of the Banach space X.

Dual Greedy Algorithm with parameters (t,b, ) (DGA(t,b,11)). Let X be
a uniformly smooth Banach space with the modulus of smoothness p(u) and let p(u)
be a magorant of p(u): p(u) < p(u), u € [0,00). For parameterst € (0,1], b € (0,1)
we define sequences { fm}oo_o, {m}oc_1, {em}5o_1 inductively. Let fo:= f. If for
m > 1 f1 = 0 then we set f; = 0 for j > m and stop. If f—1 # 0 then we
conduct the following three steps:

1). take any p., € D such that

(1.11) Ffp i (pm) 2 trp(fm1);

2). choose ¢, > 0 from the equation

b
(112) s lem /M 1l = 5 emrp(fim 1)
3). define
(1.13) fm = fm—1— Cm®m-

In Section 3 we prove the following convergence result.
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Theorem 1.5. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) and let p(u) be a majorant of p(u) with the property pu(u)/u | 0 as
u — +0. Then for any t € (0,1] and b € (0,1) the DGA(t,b, ) converges for each
dictionary D and all f € X.

The following result from Section 3 gives the rate of convergence.

Theorem 1.6. Assume X has a modulus of smoothness p(u) < yu?, q € (1,2].
Denote p(u) = yu?. Then for any dictionary D and any f € A1(D) the rate of
convergence of the DGA(t,b, i) is given by

__td-b)
| fmll < C(t,b,7y,q)m™ PO+0-2D | p:= a

2. CONVERGENCE OF THE DUAL BASED EXPANSION

We begin with the following lemma.
Lemma 2.1. Let f € X. Assume that the coefficients {c;}52, of the expansion

F~Y e fmi=F=> cip;
j=1 j=1

satisfy the following two conditions

(2.1) > eirp(fim1) < oo,

(2.2) ch = 00.

7j=1
Then
(2.3) lim inf {| f, || = 0.

Proof. The proof of this lemma is similar to the proof of Lemma 1 from [GK].
Denote s, := >, ¢;. Then (2.2) implies (see [B,p.904]) that

(2.4) ch/sn = 00.

Using (2.1) we get

> snrp(fa1)en/sn =Y cnrp(fa1) < 0.
n=1 n=1
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Thus by (2.4)

liminf s,rp(fr—1) =0
n— oo

and also (sp,_1 < s,)

liminf s,rp(fn) = 0.

n—oo
Let
(2.5) kli)n;o Snp D (fry,) = 0.

Consider {F}, }. The unit sphere in the dual X* is weakly” compact (see [HHZ,p.45]).

Let {F;}2,, F; ;= Fy, be a w*-convergent subsequence. Denote

"k

F :=w* — lim F;.

1— 00

We will complete the proof of Lemma 2.1 by contradiction. We assume that (2.3)
does not hold: Ja > 0 and 3N € N:

(2.6) [fm|l > o, m =N,

and will get a contradiction.
We begin by deriving from (2.6) that F' # 0. Indeed, we have

(2.7) F(f) = lim F(f)

11— 00

and
(2.8)  Fi(f) = Fi(fup, + Y _¢0i) = lfne, | + D ¢iFi(0) > & = s, 7D(f,)
j=1 j=1

for big i. Relations (2.7), (2.8), and (2.5) imply that F(f) > « and, hence F' # 0.
This implies that 3g € D : F(g) > 0. However,

F(g) = lim Fi(g9) < lim rp(fn,,) = 0.

1— 00 1— 00
We got a contradiction that completes the proof of Lemma 2.1.

Let us now consider a variant of the Dual Based Expansion when the coefficient

sequence C = {c;}$2 is prescribed in advance and does not depend on f. We will

call such a procedure the Weak Dual Greedy Approximation with coefficients C
(WDGA(C)).
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Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume C = {c;}32; is such that

oo
E Cj = 00,
j=1

and for any y > 0

(2.9) Zp(ycg') < 00

Then for the Dual Based Expansion of any f € X with coefficients C with regard to
any dictionary D we have

(2.10) liminf || f,,|| = 0.

m—r0o0
Proof. The proof is by contradiction. Assume (2.10) does not hold. Then Ja > 0
and dN € N such that for all m > N

[ fmll > > 0.

From the definition of the modulus of smoothness we have

(2.11) [fn-1 = cnnll + [[fa-1 + cnnll < 2/ fa1ll(X + plen/ [l fu-1l])-
Using the definition of ¢,,:

(2.12) Fy, (on) = tro(fn-1)

we get

(2.13) [ fa—1 4+ cnpnll = Fr, 1 (frn—1+ cnpn)

= [fn-1ll + cnF, , (on) = |l fr-all + cntrp(fa-1)-
Combining (2.11) and (2.13) we get

(2.14)  [Ifall = [fn—1 = cnnll < | fa-1ll(L 4 2p(cn /|| fa-all)) = entrp(fr-1).
We note that by Remark 1.1

I fa-tllp(en/ll fa-1ll) < aplen/a), n>N.
Therefore, by the assumption (2.9)

(2.15) > famtllo(en/lfa-all) < o0
n=1
This and (2.14) imply

Z p(fn-1) St ||f||+22||fn tlp(en/llfnall)) <

It remains to apply Lemma 2.1 to complete the proof.
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3. A MODIFICATION OF THE WEAK DUAL GREEDY ALGORITHM

We begin this section with a proof of Theorem 1.5. We give a definition of the
DGA(Tv b7 H)? T = {tk}ﬁo:p ty € (0, 1] here.

Dual Greedy Algorithm with parameters (7,b,u) (DGA(7,b,u)). Let X
be a uniformly smooth Banach space with the modulus of smoothness p(u) and let
p(u) be a majorant of p(u): p(u) < p(u), u € [0,00). For a sequence T = {t}7 4,
tr € (0,1] and a parameter b € (0,1) we define sequences {fm}oo_o, {@m o1,
{em}oe_q inductively. Let fo := f. If form > 1 fn,_1 =0 then we set f; =0 for
j > m and stop. If fi,_1 # 0 then we conduct the following three steps:

1). take any p., € D such that

(3.1) Ff i (om) 2 tmrp(fm—1);
2). choose ¢, > 0 from the equation

tmb

(3.2) 1fm—sllulem /I fm-1ll) = =~ cmrD(fm—1);
3). define
(33) fm = fmfl —CmPm.

Proof of Theorem 1.5. In this case 7 = {t}, t € (0,1]. We have by (2.14)

B4) | fmll = lfm-1 = em@mll < [[fm-1ll(X + 2p(cm /|| fm-11)) = emtrp(fm-1).

Using the choice of ¢,, we get from here

(3.5) [fmll < ([ frmall = 81 = b)emrp (fm—1)-

In particular, (3.5) implies that {||f,.||} is a monotone decreasing and

t(1 = b)emrp(fm-1) < [[fm-1ll = [[fmll

Thus
(3.6) Z CmTD(frm—1) < 00.
m=1

We have the following two cases:

oo

(I) Cm = 00, (I1) Zcm<oo.
1 m=1
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In the first case by Lemma 2.1 we obtain

[fmll = 0.

liminf ||f,|| =0 = lim
m— 00 m— 00
It remains to consider the case (II). We prove convergence in this case by contra-
diction. Assume

(3.7) Tim || fl| = @ > 0.

By (IT) we have f,, = foo # 0 as m — oo. We note that by uniform smoothness of
X we get

m—00

We have Fy_ # 0 and therefore there is a g € D such that Fy_(g) > 0. However,

(3.8) Fy (9) = lim Fy, (9) < lim rp(fn)=0.

m—r 00 m— o0

Indeed, by (3.2) and (3.7) we get

2
D (fm-1) < aclu(en/a) = = 0

as m — oo.
Theorem 1.5 is proved.

We proceed to studying the rate of convergence of the DGA(7,b, 1) in the uni-
formly smooth Banach spaces with the power type majorant of the modulus of
smoothness: p(u) < p(u) = yu?, 1 < ¢ < 2. We now prove a statement more
general that Theorem 1.6.

Theorem 3.1. Let 7 := {tx}72, be a nonincreasing sequence 1 > t; > ty--- >0
and b € (0,1). Assume X has a modulus of smoothness p(u) < vyu?, q € (1,2].
Denote p(u) = yul. Then for any dictionary D and any f € A1(D) the rate of
convergence of the DGA(T,b, ) is given by

m o tm (1—0b) q
[fmll < C(b,7, ) (1 + ZtZ) POHIm =0 p = a1
k=1 q
Proof. Similar to (3.5) we get
(3.9) [fmll < [ fm-ill = tm (1 = b)cmrp(fm—1)-

Thus we need to estimate from below ¢,,7p(frm_1). It is clear that

m—1 m—1

(3.10) | fm-1llasy = IF = ¢ioillaymy < Ifllawmy + D ¢

i=1 i=1
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Denote by, := 1+ Y7, ¢j. Then by (3.10) we get

| frn—1lla; (@) < bm—1-

Next, by Lemma 2.2 from [T3] we get

(3.11) rp(fm—1) =sup Fy,,_,(g) = sup Fy, . ()
g€D p€A1(D)

> el d oy Fm s (Frnet) 2 [ s | /B

Substituting (3.11) into (3.9) we get
(3.12) [fmll < [ fm—-1l(1 =t (1 = b)cm/bm—1)-
From the definition of b,,, we find

b =bm- 1+ Cm = b 1(1+ ¢ /b 1).
Using the inequality

14+z)*<l4ar, 0<a<l1l, x>0,
we obtain
(3.13) bim(1-0) < pim (0D () g (1 — B)em /b 1)
Multiplying (3.12) and (3.13) and using that t,, < t,,_1 we get
(3.14) 85O < W famma i@ < 711 < 1

The function p(u)/u = yu?~! is increasing on [0, 00). Therefore the c,, from (3.2)
is greater than or equal to ¢}, from (see (3.11))

tmb
(3.15) Y sl (/1 fm1lD* = ==l 1]l b1
tmd, 1 || fnea |7
3-16 / = qg—1 .
(3.16) = ()T
m—1

Using notations
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we get from (3.9), (3.11), (3.16)

2 1P
(3.17) [l < a2 - G Wt

m—1

Noting that b, > b,,—1 we derive from (3.17) that

(3.18) (Lfmll/bm)? < (I fmall/bm—1)P (1 = A8, (| frnr [l /b 1)P).

Taking into account that || f|| < 1 < A we obtain from (3.18) by Lemma 3.1 from
[T1]

(3.19) (I Fmll /)P < AL+ t2)71
k=1
Combining (3.14) and (3.19) we get
m py— tm (1—0) q
[l < Oy, )+ Y 6)77THn T, pi= .
k=1

This completes the proof of Theorem 3.1.

In the case 7 = {t}, t € (0,1] we get Theorem 1.6 from Theorem 3.1.

It follows from the proof of Theorem 3.1 that it holds for a modification of
the DGA(7,b, u) where we replace in the definition the quantity rp(f,,—1) by its
lower estimate (see (3.11)) || fm—1l|/bm—1 With by,—1 :=1+ Z;n:_ll ¢;. Clearly, this
modification is more ready for practical implementation than the DGA(T, b, u). We
formulate the above remark as a separate result.

Modified Dual Greedy Algorithm (7,b, 1) (MDGA(T,b, ). Let X be a uni-
formly smooth Banach space with the modulus of smoothness p(u) and let p(u) be a
magorant of p(u): p(u) < p(u), u € [0,00). For a sequence T = {ti}%> ¢, tr € (0,1]
and a parameter b € (0,1) we define for f € A1(D) sequences {fm}oo_o, {mtoe_1,
{em}ee_y inductively. Let fo := f. If form > 1 fn,_1 = 0 then we set f; =0 for
j > m and stop. If f,,—1 # 0 then we conduct the following three steps:

1). take any pm, € D such that

m—1
Fy,. (pm) 2> tmll frm—1l(1 + Cj)_1§
j=1
2). choose ¢, > 0 from the equation
m—1

mb _
plem/ i) = Zem(1+ 3 e

<
[y

3). define
fm = fm—l —CmPm-
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Theorem 3.2. Let 7 := {t}32, be a nonincreasing sequence 1 > t; > ty--- >0
and b € (0,1). Assume X has a modulus of smoothness p(u) < vyul, q € (1,2].
Denote p(u) = yul. Then for any dictionary D and any f € A1(D) the rate of
convergence of the MDGA(T,b, 1) is given by

m
_ tm(1=b) q
||fm|| < C(b,’y,q)(l + E tg) pP+tm(1=0) pi1= ——.
k=1

Let us discuss an application of Theorem 1.6 in the case of Hilbert space. It is
well known and easy to check that for a Hilbert space H one has

p(u) < (1+u®)Y?2 -1 <u?)2.

Therefore, by Theorem 1.6 with p(u) = u?/2 the DGA(t, b, 1) provides the following
error estimate

t(1—b)

(3.20) | fml < C(t,b)ym ™ 2za+ia=  for f e Ay(D).

The estimate (3.20) with ¢t = 1 gives

(3.21) Ifmll < CO)m~ 70 for fe Ay(D).

The exponent 2(12—__”1)) in this estimate is approaching 1/4 with b approaching 0.
Comparing (3.21) with the upper estimates (1.6) and (1.7) for the PGA we observe
that the DGA(1,b,u?/2) with small b has better upper estimate for the rate of con-
vergence than the known estimates for the PGA. We note also that (1.8) indicates
that the exponent in the power rate of decay of error for the PGA is less than 0.27.

Let us figure out how the DGA(1,b,u?/2) works in Hilbert space. Consider the
mth step of it. Let ¢,, € D be from (1.11). Then it is clear that ¢,, maximizes
the (fm—1,9) over the dictionary D and

(fm-1,9) = lfm-1llro(fm-1).

The PGA would use ¢,, with the coefficient (f,,_1, g) at this step. The DGA(1,b,u?/2)
uses the same ¢,, and only a fraction of (f,, 1,9):

(3.22) cm = bl fm-1llro(fm-1)-

Thus the choice b =1 in (3.22) corresponds to the PGA. However, it is clear from

the above considerations that our technique, designed for general Banach spaces,

does not work in the case b = 1. The above discussion brings us the following

surprising observation. The use of a small fraction (¢,, = b(fm—_1,9g)) of an optimal

coefficient results in improvement of the upper estimate for the rate of convergence.
We present some more results in this direction in the next section.
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4. THE WEAK GREEDY ALGORITHM WITH PARAMETER b

Motivated by results of Section 3 we consider here a generalization of the WGA
obtained by introducing to it a tuning parameter b € (0,1]. Using specifics of
Hilbert space structure we will prove more precise estimates that those obtained
from the general theory developed in Section 3. Let a sequence 7 = {tx}3,,
0 < tr < 1 and a parameter b € (0,1] be given. We define the Weak Greedy
Algorithm with parameter b.

Weak Greedy Algorithm with parameter b (WGA(b)). We define fg’b = f.
Then for each m > 1, we inductively define:
1). o=t € D is any satisfying

(0, @m?) >t sup (£ 1, 9);
g€D

2).
frb =t = bt ent et
3).
7~b Tb Tb
G (f;D Z J— 1’

Theorem 4.1. Let 7 ¢ V. Then the WGA(b) with b € (0,1] converges for each f
and all Hilbert spaces H and dictionaries D.

Proof. In the case b = 1 the statement is proved in [T2] (see Theorem 1.3 from the
Introduction of this paper). In the case b € (0,1) the proof repeats the proof from
[T2] and [T1] with the relation

IF Il = el = {frmas )

replaced by

7,b
LRI = 12 all® = b(2 = B)(frl sy oni!)?.
We will not carry it out here.
We proceed to the rate of convergence.

Theorem 4.2. Let D be an arbitrary dictionary in H. Assume T := {tx}3>, is a
nonincreasing sequence and b € (0,1]. Then for f € A1(D) we have

(4.1) If = GRP(£ D) < (A +b2—b) Y t7) G 0m/2@HEm),
k=1

Proof. We introduce some notations:

b
27 ym:<f777-l 1790m>7 m:1727"'7

am = || m
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and consider the sequence {b,} defined as follows
bo =1, by :i=bm_1+bym, m=12....
It is clear that f7* € A;(D,b,). By Lemma 3.5 from [DT] we get

(4.2) SUP<fm 19) = ||f;1b1|| /b1

From here and from the equality

F721P = 12 l® = b(2 = ) (s, o7)?
we obtain the following relations
(4.3) Am = Q1 — D(2 — b)y2,,
(4.4) b, = bm—1 + bYm,
(45) Ym Z tmam—l/bm—l-

From (4.3) and (4.5) we get
am < Gm_1(1 = b(2 = b)t2 am_1b.2% ).
Using that b,,_1 < b,,, we derive from here
amb, 2 < 1672 (1 —b(2 — D)2 am 1672 ).

By Lemma 3.1 from [T1] with A = 1 we obtain
(4.6) amby? < (14D(2-0)> )~
k=1

The relations (4.3) and (4.5) imply

(4.7)  am < am—1 —b(2 — D)YmtmGm-1/bm-1 = @m-1(1 — b(2 — Ot Ym /bim—1)-
Using the inequality (1 — 2)'/2 <1 — /2 we get from (4.7)

(48) 0 < 21 (1= 0L = 0/ 2)tmm b 1),

Rewriting (4.4) in the form

(4:9) bm == bm—l(]- + bym/bm—1)7
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and using the inequality

(I+z)*<1l+az, 0<a<l, =z2>0,

we get from (4.9) that

(4.10)

Multiplying (4.8) and (4.10) we obtain

Next, b,,_ 1 > 1 and t,, < t,, 1. Therefore

and

(4.11)

1-b/2)tm 1—b/2)tm
b£n71/ ) < bfnq/ s

al/2p(=0/2tm < 12 pUTbDmn o 2 <,

Combining (4.6) and (4.11) we obtain

alF(=b/2)tm < (1 4 p(2 — b) Z )= (=b/2)tm

what completes the proof.

Remark 4.1. It follows from the proof of Theorem 4.1 that it holds for a modi-
ﬁcation of the WGA(b) obtained by replacing in its definition SupgeD<f;L 1, 9) by

17 12 /b1, where by,—1 o= 1+ b3 (70, 7).
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