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Abstract

We study the numerical approximation of the Saturation Equation which arises in the formulation of
two phase fluid flow through porous media, idealized as either a convex bounded polyhedral domain or a
domain with smooth boundary. This equation is degenerate and the solutions are not guaranteed to be
sufficiently smooth for direct numerical approximation. Through regularization, a family of approximate
non-degenerate problems is considered along with their numerical approximations. Error estimates are
established for appropriately transformed continuous Galerkin approximations, followed by corresponding
error estimates for a fully discretized Galerkin method for this class of problems.

1 Introduction

In modelling immiscible two phase flow through porous media (see e.g. [15, 1, 9]), a class of saturation
equations of the form
0

55 TV (F(S)w) = V- (R(S)VS) = Q(S)  on Q2 x (0,T]. (1.1)

on a bounded domain © (2 C R%, d < 3), is derived which satisfies the boundary condition
(Ff/(SHYu—k(S)VS)-n=q on 9Q x [0, To] (1.2)

and has initial condition
S(z,0) = S%(z) on (1.3)

with 0 < S%(z) < 1, for all = € Q. For simplicity we let |Q| = 1.

In these equations S is the saturation of the invading fluid (see [1, 9, 15]) and it follows from the general
theory [4] that 0 < S < 1. The diffusion coefficient k¥ = k(S) is the conductivity of the media, which is
assumed here to depend only on the saturation S. The fractional flow function f governs the transport
term V - (f(S)u) where u is the total velocity of the two phase flow. We assume in this analysis that u
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is sufficiently smooth and is provided, but in practice, it is obtained by solving another (possibly coupled)
elliptic partial differential equation which models the total pressure of the two phases. The term Q = Q(S)
represents the source/sink terms and ¢ denotes the boundary flux. We assume throughout that the domain
Q is sufficiently “nice” in order that the standard analysis for elliptic problems [2] be valid; in particular
we require elliptic regularity and second order error estimates to hold (see the Appendix for details). This
is the case, for example, when () is either a convex polyhedral domain satisfying a maximal interior angle
condition [12] or has a smooth boundary [2].
For a given fractional flow f, we require that there be a constant C*, such that

C*I£(b) = f(a)|* < (K(b) — K(a))(b - a). (1.4)

Lemma 2.1 below shows that this requirement is reasonable.
We also suppose the diffusion coeflicient k satisfies the growth condition

c1|s|# 0<s<
k(s) > { c2 a; < s<as (1.5)
csll — s ax<s<1

where 0 < a1 < % < ag < 1 are given and assume 0 < pq, e < 2. Define

pooi= max(u, p2)
2+u
= 1.6
v T a (1.6)

and set .
K(€) = /0 k(r)dr.

Because of possible roughness of the solution to the degenerate problem (1.1)—(1.3), one often regularizes
the conductivity to obtain a non-degenerate formulation

%Sﬂ + V. (f(SB)u) - V- (kB(S,@)VS,@) = Q(SB) on € x (O,TO] (1.7)
F(Ssyum— 2 K(S5) =g on 89 x [0,T) (13)
Sg(z,0) = S°(z) on (1.9)

where Kg(§) = f(f kg(r)dr , and kg — k in an appropriate sense as the regularization parameter 3 converges
to zero. We define Cy(8) by
Co(B) = IKs — K|/} (1.10)

fo<pg< % and k(0) = k(1) = 0, an example of an acceptable perturbation kg of k is defined by

kg(§) = k(&) for k(&) > 0; kg(€) lies between ¢ and %(5, otherwise. (1.11)
where
5 i 5(8) = min(k(8), k(1  B)). (1.12)
For this particular perturbation (see [10, 11]) there holds
Co(B) < c(B3(B))". (1.13)

In an earlier paper [11], error estimates were established for any perturbation of k£ and some of those results
which we require are summarized in Section 2. The equations (1.7)—(1.9) constitute the problem that we
approximate numerically by a transformed Galerkin Finite Element procedure.

In Section 3 we first approximate the solution by a continuous time Galerkin approximation, i.e. the
space variable is discretized. This variational method yields a solution Sj convergent to Sz in a controlled



manner as b — 07. Our previous knowledge of the rate of approximation of S by the solution Sg of the
regularized equation provides then an estimate of the error ||.S — S| in the desired function spaces.

In Section 4 we proceed to discretize in time and provide several error estimates for a fully discretized
(backward in time) solution. We extend here the results of [16, 18]. M.E. Rose in [16] treats the one
dimensional case of this problem and assumes a single and more regulated degeneracy for k. In that case the
operator T' can be expressed explicitly and the problem can be transformed into a purely parabolic problem.
D.L. Smylie in [18] treats the multidimensional case for the parabolic equation. The paper of Nochetto and
Verdi [14] also establishes error estimates for the same type of problem, using numerical integration, again
for the case of one degeneracy: k(s) = s™, m > 1. An example for our setting would be any k for which
k(s) > s#1(1 — s)#2, for 0 < p1, 2 < 2. Compare Corollary 3 of [14] to our Corollary 4.1.

As previously mentioned, the total velocity, total pressure formulation of two phase flow in porous medium
in several dimensions presents additional analytical and numerical difficulties for the saturation equation.
The treatment of the transport term in [11], reproduced here as Lemma 2.1, is very helpful in our estimates.
Our arguments in the proofs of Lemma 3.1 and Theorem 3.1 are somewhat different from [16], although we
follow the same general line as in that paper.

In section 4, by manipulating the inequalities in a different manner, we are able to improve the convergence
rate in the time step as given in [16]. We also give a proof for the existence of a solution of the fully discretized
scheme, for the case that the total velocity u is not a function of the time variable ¢.

We next describe additional notation which will be used throughout the remainder of this paper. We
define (f,g) := (f,9)a := [, fgdz when this has a meaning (extended when appropriate to the distributional
sense), and in particular we set fq := |—§12‘( f,1)q. We drop the subscript € when there is no ambiguity. The

notation || f|[z» := ||f||Lr(q) is used for the standard Lebesgue norm of a measurable function, when this
quantity is finite. Similarly, we denote by ||f||Lr(Le) := ||fl|zr(0,7,Le(2)) the mixed Lebesgue norm for f,
while || f|lzr(ma) == [|fllLr(0,1,Ha()) designates the mixed Sobolev-Lebesgue norm of a function. We use C,

¢, to denote constants which may change from line, but which are independent of the parameters 3, h and
At, unless explicitly specified.

Finally, we would like to thank the referee for valuable suggestions and pointing out appropriate references
which improved the error estimates for numerical approximations by a logarithmic factor.

2 Regularization Results

We summarize here some results from [11, 10], which are required in the error analysis that follows.

Lemma 2.1 If f € C*([0,1]) with f'(0) = f'(1) = 0, then there is a positive constant C* so that for all
0<a<b<1 we have

C* |£(b) = f(a)|* < (K(b) - K(a)) (b —a). (2.1)
This lemma will typically be applied in the integral form

C 1 f(w) = f()l 720 < (K () = K(v), u—v). (2.2)
Conversely, if (2.1) is satisfied, then
[F'(©)] < CVE(E) (2.3)
Lemma 3.1 in [11] imples that there is a positive constant C** so that

C** Jlu—wll73t, < (K (u) = K(v), u—v) (2.4)

is valid for all u,v € L*t#. Moreover, the inequalities above remain true if k is replaced by the regularized
ks (or K is replaced by Kg) with constants independent of 8. Finally, we observe that when K is Lipschitz,
we have:

(K (u) = K(v)g < | K(u) = K(v)|[7
< Iklloo (K () = K(v), u —v). (2.5)



The next Theorem gives the error estimates for S —Sg, when the initial problem (1.1)—(1.3) is replaced by
the regularized nondegenerate problem (1.7)—(1.9). We assume for the remaining of this paper, to simplify
the analysis, that Q =0 and ¢ = 0.

Theorem 2.1 (Theorem 4.1 of [11]) Assume that the coefficients f and k satisfy the conditions (1.4)-(1.5).
Let Sg be the solution to regularized equations (1.7)-(1.9), and S the solution to (1.1)-(1.8), then

To
sup (1S5~ Sl +0 [ (Ka(Sp) = Ka(S), S5 = 8) (r)dr < Golf) (2.6)
0<t<Top 0
2
|55 - 5(5)], ., < Co8) (27)
and
Hsﬂ - S||L2+u (L2+n) < CO(B) (2.8)

where Cy(B) is defined by (1.10).

Another useful result is the following which establishes estimates for the solution to the regularized equation.

Lemma 2.2 Assume the hypotheses of Theorem 2.1 hold. If Sg is the solution to (1.7)-(1.9), then there
exist constants C,Cy,Cy (independent of B) such that
a8,
H A < C1+ G|l oy (2.9)
L% (0,0, L1 (2))

X - H\/kﬂ Vs, L SO DI (2.10)
L2(L2
H\/kﬁ(sm(smt oy FITES i < O+ VK] (2.11)
L2(L?2)

This Lemma provides the elements for the proof of the following result (see Theorem 4.4 of [11]).
Theorem 2.2 Assume the hypotheses of Theorem 2.1 holds and define

m(B) = Oénqu,g( s). (2.12)
Ifv= ﬁ—l‘j, then there is a constant C, independent of 3, such that
1(S8)ell (2 < Cm(B) 7% (2.13)
and hence e
H 21V f(Sp)u < Cm(B) T (2.14)
LY (L")

We note that the respective estimates (2.11) and (2.10), using the proof of Theorem 4.4 of [11], immedi-
ately imply the inequalities

1

1(S8)tllL2 L2y < Cm(B)~2 (2.15)

)

IAKS(Sp)L2(w2) < Cm(B)~2. (2.16)
If we choose the specific regularization where kg is defined by
ka(s) := max(k(s), ") (2.17)
and set
5(8) = i),
then Theorem 4.6 of [11] gives the following estimates.



Theorem 2.3 Assume the hypotheses of Theorem 2.1 hold. Then

2

sup (K(Ss) ~ K(S), S5 = §) +n|[V(K(S) - K(9)|,  <Ca(8) (2.18)
0<t<Tp (L?)
1Ss = SITH povny < C 8(B) (2.19)
2
HK(SB) a K(S)‘ L2(H1,[0,To]) < CoB). (2.20)

3 The Continuous Galerkin Method

3.1 The Finite Element Space

We give a brief description of the approximation subspaces which provide the finite element solutions for
the Galerkin problems. For general background references of the methods used in this section, see [2] and
[12, 19]. We let { M}, }o<n<1 denote a family of finite dimensional spaces, with M, C H'(Q) and assume that
Mjp, has the approximation property:

inf [|f — xllze@) < Ch?|flwzs for all f € W2P(Q). (3.1)
xXEMp

We will also need the inverse estimate assumption on M), (see, for example, Section 4.5 of [2]):
lIxllz: < ChYIx|| 22 for all x € Mj,. (3.2)
which by duality implies
IxII72 = 060 < e lixllr - < CR7Hixllze Il )~

and consequently
||XHL2(Q) < ChilHXH(Hl)* for all X € M,,. (33)

An important case is that for §2, a convex bounded polygonal domain in R? with a triangulation 75 = {K}
where the parameter h (0 < h < 1) is defined as follows:  for a triangle K € T, define hx and px by

hi = diam(K) (3.4)

and
prc i= sup{diam(C) : C is a circle inscribed in K}, (3.5)

then
h = max{hx : K € Tp.}. (3.6)

The space of piecewise linear elements for this triangulation is defined by
My, :={¢ € C°(Q): ¢/K is linear for all £ € Ty} (3.7

We assume, in addition, that 7 is a regular family, i.e. there exists a constant d; > 0 such that

PK
— >d. .
o > dy (38)

K

in which case [2, 12, 8, 5] there exists p = p(Q2) > 2 so that M}, satisfies the direct approximation estimate
(3.1) forall 1 < p <D (see (A.13) of the Appendix for the dependence of P on ). If we assume 7 is a
quasi—uniform triangulation, i.e. (3.8) is satisfied and there exists dy > 0 such that

hic > dah, for all K € T, (3.9)

then M}, defined by (3.7) also satisfies the inverse estimate (3.2) (cf. [2, 13]).



3.2 The Discretized Problem

Although analytically the saturation lies in the interval [0, 1], small numerical oscillations may occur and so
we extend the domain of the functions f and kg as follows:

k if
O ={ 0 HeZs (3.10)
ro={ fu st (3.11)
We continue to define the primitive Kz by
€
Ks(6) = /E h(7)dr (3.12)

and observe that it is a strictly increasing C' function on R, since kg(§) > 0 as long as 8 > 0. Hence Kg
has a C! inverse function Hg:

Hg(€) = K5 (€) Vé € R. (3.13)

We consider the ordinary differential equation (actually a coupled ODE system):

(& HaVh).x) — Vi), 9) + (V3 920 = 0 (3.1

required to hold for all x € M}, and ¢ € (0,Tp]. This system has the initial condition:
P Hg(V,(0)) = P,S° (3.15)

where S¥ is as in (1.3), and P, is the L? projection on Mj,. We solve for V}, in M}, where V, is the Galerkin
approximation to Kg(Sz). We then set S, = Hg(V4), so that Sp approximates Sg. The operator Pj, o Hg
is a continuous, nonlinear, coercive map from M), into itself [16] and is thus bijective. Therefore by (3.15),
V1 (0) exists in Mjy,.

Suppose that {e;}* is a basis for M, with m = m(h) = dim(M},), so that for all x € My, x(z) =
Yo xiei(z). Then (3.14) is equivalent to the system of m coupled O.D.E:

%(Ph(Hﬁ(Vh))a ei) = (f(Hp(Va))u, Vei) + (VVi, Vei) =0 (1<i<m) (3.16)

This can be rewritten in a vector form as a Cauchy problem:

{ 4 p,Hg(Vy) = F(PyHg(Vh)) (3.17)

PyH3(Vi(0)) = P,S°

With our assumption on f, kg and u, the function F' is Lipschitz, so we are guaranteed the existence and
uniqueness of the solution S, = P, Hg(V},) to (3.17). We have previously observed that P, Hp is bijective,
so we have that V}, = (PhHg)_IS’h exists in Mj,.

For convenience we define Sy, := Hg(V},) and rewrite (3.14) as

((Sn)erx) = (f(Sn)u, VX) + (VEp(Sk), VX) =0,  Vx € Mp. (3.18)

By approximating K3(Sg) by Vi, € My, the approximation of Sg by Sy, = Hg(V4) is shown in Theorem 3.1
below to have higher rate of convergence than approximating Sz directly by an element of Mj,.



3.3 The main results

As stated above we give our main estimates for the error ||.S — Sy|| in two theorems. We need the following
discrete version of inequality (2.11) with Sg replaced by Sh:

Lemma 3.1 If V}, is the solution to (3.14)-(3.15), and if we set Sy, = Hg(V},), then
To ~
| (ko) ae | VRS0, L < Ol + Il (3.19)

Lo (L?)

where C' = C (T, u) = exp(C{1 + ||u||2Loo(L°o)}), and n a positive constant.

Proof. In (3.18), let x = Vix = Kg(Sh);. Then
((Sn)e, Kg(Sh)e) — (f(Sn)u, VKp(Sh):) + (VEs(Sh), V(Ks(Sk)t)) = 0,

or equivalently

((Sh)es Kp(Sh)e) + thHvKﬁ(Sh)HLz = (f(Sn)u, VKg(Sh)s), (3.20)

where we use the fact that A and 2 5i commute. Applying the product rule on the right-hand side of (3.20),
and substituting, we obtain

(S)er K5(S1)0) + 5 VK (S3) 3 =

C;lt(f(Sh)u VEs(Sh)) — ((f(Sn)ra, VKp(Sh)) — (f(Sn)us, VEg(Sn)) - (3.21)

By (2.3)

2

17 (Sn)eullZz = [/ (Sk)(Sn)eullfe < cllullZe |[1/ks(Sh)(Sn)e

L2
= cl|ul|7 < ((Sh)e, Kp(Sh)e)- (3.22)
Thus (3.21) implies

d
(SW)es K (51)0) + 5 IVK5(S1) 3
d
< S5 VER(S) + aull fSweullhs + 1 [VEa(SIE:
A St + 5 IVEs(SIE, (3.23)

where o is an arbitrary positive constant. This yields, by (3.22),

|VKB(Sh)||L2

N
IN &

di (F(Su)u, VE5(Sh)) + oellull o ) ((Sn)e Ks(Sh)e)
+ (%1 + 5) ||VK6(Sh)||2L2 + %”f(sh)ut”QLm (3‘24)

Now, for oy sufficiently small, we can hide the second term of the right-hand side of (3.24) in the left-hand
side of (3.23). Also || f(Sk)uel|z2 < ¢|lug]|L2, given the smoothness assumptions on f. So (3.24) becomes

S (S K(S)e) + 5 VK 5(Sw)I13»

2%'
d
< 5 (f(Sh)u, VE5(Sh)) + C(w)|[VEg(Sh)ll72 + Cllug|Zzzzy  (3.25)



Finally using the Gronwall Lemma, we get

To
/0 ((S)er K5 (S)e)dt + o[V K (S22

< C(u){ sup [(f(Sh)u, VE5(Sh))(t)| + Cllullzaizz) ). (3.26)

0<t<To

with C(u) = exp(C(u)). But

1
S |(f(Sk)u, VE5(Sk))(t)] < C[[f(Sh)ullpee L2y + §0HVKB(Sh)Il2Loo(L2)- (3.27)
>t>1o
Combining these last two inequalities, we obtain the Lemma by taking n = %a. O

Remark 3.1 From Lemma 3.1 it follows that

CTESIES!

IVEs(Si)llp=(r2) < Ca){l[ullfo(ze) + luellZocze)}s (3.29)

where the constants are independent of B and h.

=~ 1
< Clu){llullge(r2) + [[uellZ2re)} (3.28)
L2(L2)

and

With this Lemma, we are now in position to formulate and prove the main theorem of this section. The
theorem states that V}, converges to K3(S3), and that S, converges to S, the solution to (1.1)—(1.3). We note
that the rate of convergence of Vj, to Kg(Sp) is higher than that of Sy, to Ss, since the elements incorporate
attributes of the diffusion coefficient.

Theorem 3.1 Suppose p and v are given by (1.6), and m(B),Co(B) are as defined in (2.12) and (1.10),
respectively. Furthermore, assume that 0 < p < p(Q2) — 2, where () is defined by the relation (A.18). Let
S be the solution to the degenerate equation (1.1)-(1.8) with Q@ = 0 and g = 0, and with coefficients f and
k which satisfy conditions (1.4)-(1.5). If My, satisfies the approxzimation (3.1) and inverse (8.2) properties,
and V}, solves (3.14), then the approzimate solution Sy, := Kg(Vh) satisfies the inequality

To
15 = Shlle ey + [ (Ka(S) ~ Ks(Sh). 5 )
< ch?'m(B) 7 + Co(B). (3.30)
with constant ¢ independent of B and h.

Remark 3.2 The condition, 0 < p < p(2), on the degeneracy of the conductivity, is relatively mild. For

example, if the mazimal interior angle ©(?) of Q is no larger than %’r, then by its definition in (A.13)
D — 2 = 2 and there is no additional restriction on . If © increases to %’r, then the mazimum value of p

allowed is reduced to %

Proof of Theorem 3.1. The proof will be split into two main steps by writing
S—5,= (S — S/B) + Ph(Sg - Sh) + (I - Ph)(Sg - Sh).

The two steps will estimate respectively, the second and third terms, while inequality (2.6) of Theorem 2.1
is used to estimate the first term by Co(5).

In order to obtain the desired results by applying T'(Sg — Sp,) as a test function in the weak formulation
of the regularized problem (1.7)-(1.9), we first observe that for all ¢ > 0

(SB — Sh)Q =0. (3.31)



Indeed, equations (1.7)—(1.9) imply

((Sg)e»x) — (£(Sp)u, Vx) + (VKp(Ss), Vx) = 0 (3.32)
for all x € M},. By subtracting (3.18) from this equation, we obtain
((Sg = Sn)e; x) — ((£(Sp) — £(Sn))u, VX) + (V(Kp(Sp) — Ks(Sh)), VX) =0 (3.33)

If we set x = 1 € M}, in this equation, then 2 (Sg — Sp,)q = 0, in which case, (Sg — Sp)a = (S° — S(0))q-
for all ¢ > 0. But the initial condition (3.15) for the Galerkin solution implies

(8% = Sh(0))a = (S° = Sh(0),1) = (Pu(S° = Sx(0)),1) = 0,

which verifies that mean values are preserved.

Step 1: We derive the estimate:

To
IP4(55 = Sty +1 [ (K(S5) = Kp(Sh). 55 = S0t
< ChYm(B) " Tr (3.34)

with the definition of the norm || - HH;1 given in the Appendix. We use as test function ¢ = T'(Sg — Sp) €

H1(Q) in the weak formulation of the regularized saturation equation for Sg and use ¢ = T},(Sg — Sp) € M},
for the Galerkin formulation (3.18) with solution S}, where we recall that T}, is defined as EpoT. Subtracting
these two equations and rearranging, we obtain the reference equation for Step 1:

(S5 = S0)0s TS5 = Sn)) + (V(K(Sp) = Kp(Sn)), VT (S5 = 1)) =
— (V- (£(88) — F(Su)w, Th(S5 — Sn))
— ((S8)e + V- £(Se)u, (T = Tu)(Ss = Sn)) - (3:35)
We have used here the fact that the additional term
(( = Bn)Ks(S1), S5 = 1)

vanishes since Kg(Sp) = Vi, € My, and so (I — Ep)V;, =0.
For the first term on the left hand side of the reference equation (3.35), we use the identity

Tnf = ThPrf Vf e (HY, (3.36)
which follows directly from the definitions of T and the projections, in order to write
1d
((Ss — Sn)e, Tn(Sp — Sn)) = 5 [1Pa(Sp — Su)llF-1- (3.37)

For the second term on the left hand side of reference equation (3.35), we use the properties of the operator
T and the fact that Sg — S}, has vanishing mean in order to see that it reduces as

(V(Kp(Sg) — Kp(Sh)), VT'(Sg — Sn)) = (K(Sp) — Kp(Sh), S — Sh)- (3.38)

To handle the first term on the right hand side of equation (3.35), we use Cauchy-Schwartz, the arithmetic-
geometric mean inequality, relation (2.2), and the properties of T' (see (3.36) and (A.27)), respectively, to
obtain

(V- (7(85) — £(S)w Ti(S5 — 50)
< 11(S5) = £z llulloe IVT(S5 = S0)]l22
< S7(S) = F(Sn)IBs + @) [VTA(S5 — S

IN

7 (Ko(S5) — Ka(51),55 — $1) + c(w) [Pu(S5 — i)+ (339)



which is of the desired form for employing the standard method of burying terms and using Gronwall’s
lemma. We must first prepare the remaining terms. For the second term on the right hand side of reference
equation (3.35), we set for convenience the variable W := (Sg); + V - f(Sg)u, use the fact that T' — T},
is a symmetric operator and follow in a similar manner to the estimates used in (3.39): here Holder’s
equality with conjugate indices v and 2 + p replaces the Cauchy-Schwartz inequality, and inequality (2.4)
replaces (2.2), which results in

(W (@ =T)i85 = $ul)| < 1S5 = Sullzass T = Tw) (W)

EES

4
< 1 (Ks(85)~ Ks(51), 85— ) + CIT ~T)W)},  (3.40)

< 155 = Sullzsts + CIT — Tw)(W)IIZ,

In this last expression, the rightmost term may be estimated by using the fact that 7, = E,T, and then ap-
plying the finite element error estimates for the elliptic approximation, as outlined in (A.21) of the Appendix,
in order to obtain

(T =T)W)llr = [I(I = En)T(W)| L~

ch?||T(W) w2~

<
< ch?|W]| (3.41)

where the last inequality follows from the mapping properties of the operator T (see (A.14) below) in the
range 1 <y =24 p < p(Q). This restriction on + is equivalent to a restriction on p which depends on the
parameter ©(Q) appearing in the definition of H(Q2) given in (A.13).

If we substitute the identities (3.37) and (3.38) into the reference equation (3.35) for Step 1, and follow
by using the inequalities (3.39), (3.40), and (3.41), we obtain

1d 1
§%||Ph(sﬁ — Sl + 5 (E5(Sp) = K5(Sn), Sp — Sh)
= c(u)[|[Pu(Sp — Sn)ll5-1 + ch*[WII7 (3.42)

where W = (S3):+ V- f(Sg)u. Applying Grénwall’s inequality, and using our fact (2.14), we have established
the desired estimate (3.34) for Step 1 with norm for H~! in place of that of H, h ! But the inverse property
of My, implies (A.28) (in the Appendix) and therefore we have

CllPu(Ss — Su)llarys < 1Pa(Sp = Sp)ll g, < [[Pa(Sp — Sn)ll(arey-- (3.43)
and the proof of Step 1 is complete.

Step 2: We show that
I(I = Pu)(Sp = Sn)llzoe((arrys) < CR7. (3.44)

Define parameter 0 < € < 1 by
1
€:=hT+r, (3.45)

where we may assume that h is small enough so that € < min{ay,1 — a2}, where a; and as were prescribed
n (1.5). We introduce as in [16] and [18] a new dependent variable S§, defined as follows:

e | max(Sg,¢€) if Sp < an
Sﬁ T { min(SB, 1-— 6) if S/B > Qo (346)

Obviously, with S defined in this way, we have

|Sg — Spl <€ (3.47)
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and
k,@(SE) > Cet. (3.48)

We define S, similarly and obtain the same estimates (3.47) and (3.48) where Sz and S§ are replaced by Sp,
and Sj, respectively. Using (3.48) we see

IVEs(S5)llz = ks (S5)V Sl = Ce|[ VS5l (3.49)

which implies
1988l (ze) < € #IVER(SE) o= 22) (3.50)

But in the weak sense VKg(S§) = X{c<s,<1-¢} VEKp(Sp), so our earlier estimate (2.11) implies that
IVE3(S§)| L (r2) < [[VEp(Sp)||lpee(r2) < C (3.51)
and thus combining with (3.50) we obtain
VS5 llzmza) < O (3.5
Similarly, if we use (3.29) this same proof shows that
IVShllLeo 2y < Ce*. (3.53)
Next recall the approximation property of the L?>—projection, [2, 12] which states for j = —1,0,1 that
(I = Pn)dllzrs < Chl|@|| i+ Vo € HITH(Q) . (3.54)
It then follows directly that
(I = Pr)SpllLee(z2y < (T = Pr)(Sp = Sp)llzee(z2) + [[(T = Pr)ShllLee(z2)
< Ce+ ChlSgllpeary < Ce+he ™). (3.55)

where we have made use of inequality (3.47) and the mapping properties of Py, the approximation property

(3.54) applied with j = 0, and the estimate (3.52). But from its definition, ¢ = AT and so substituting
into (3.55) above, we get

1

(I = Pa)Splpoe(r2) < Chiti . (3.56)

Similarly ||(I — Pp)Sh||pe(z2) < Ch7## and so we obtain

I = Pa)(Sp = Sw)lloe(12) < ChTH. (3.57)

Upon another application of the error estimate (3.54) with j = —1, we see that ||(/—P)(Sg—Sh)|| oo (1) <
Chhi+# and the inequality (3.44) stated in Step 2 is verified.

Finally, by combining the inequalities established in Steps 1 and 2, together with the estimate for S —.S3
provided by Theorem 2.1, the proof of Theorem 3.1 is complete. |

We illustrate some immediate consequences of Theorem 3.1 and its proof by a particular choice of the
perturbation
kg(s) = max(k(s),coBf*) 0<s<1.
In this case, it is straightforward to estimate that C(8) < CpB2T* and m(B) > coB*. Finally, let 8 = B(h)
be given by
B = Boh* with \ = 52020, (3.58)

for a fixed positive constant Sy.
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Corollary 3.1 Suppose 0 < u < p(2) — 2, with p() defined as in (A.13). Let v be given by (1.6) and S be
the solution to the equation (1.1)-(1.8) with @ = 0 and q = 0, whose coefficients f and k satisfy conditions
(1.4)-(1.5). If My satisfies the approzimation (3.1) and inverse (3.2) properties, then the approximate
solution Sy, := Kg(V},), where Vi, solves (3.14) with B as in (3.58), satisfies the estimates

2+p A

IS = Shllpee(aryy < Ch= (3.59)
1Kp(Sh) — Ka(Sp)llzesy < CRZ (3.60)
1S = Shllpa+u(pe+ny < CR (3.61)

IS = Sallpeo(rzy < Ch7ZAL (3.62)

Proof. The estimates (3.59)—(3.61) are by now clear. Inequality (3.59) follows directly from (3.30) with the
designated assignment of 5. Inequality (3.61) follows from (3.30) of Theorem 3.1 together with inequality
(2.4). Inequality (3.60) follows similarly, but uses the simple pointwise inequality |Kg(b) — Kg(a)|? <
|E|loo (K5(b) — Kg(a))(b — a) which is uniform in . Finally, to establish the estimate (3.62) we notice that
in the course of the proof of Theorem 3.1 (see (3.3) and (3.34) and (3.57), respectively) that we have

1Pu(Ss = Su)ll 22y < Ch™*|[Pa(Sp = Su) |7 ((rryy <C W2 ~2m(B) " (3.63)
I(Z = P)(Sp — Sn)ll b (r2) < ChTHE. (3.64)
The proof is completed by combining this with the estimate (2.19) from Lemma 2.3. O

3.4 Additional Error Estimates

The following theorem was stated in [16] without proof in the one dimensional case where K has one
degeneracy. In this subsection we give a multivariate proof, if K has two degeneracies, for the special case
where the regularization kg is defined by

ks(s) := max(k(s), 8") (3.65)

which, as we have seen, implies C'(8) < ¢ 82T#, and m(8) > B*. In order to establish this theorem and to
provide the Galerkin error estimates in the next section, we assume for the remainder of this paper that
K3(Sp) is sufficiently regular. In particular, we assume

1K5(Sp)llw=+ < Cy (|AKp(Sp)l[Lx + 1) - (3.66)

This inequality holds, for example, under a diffusive flux assumption

0K ;3(Ss)
on

Indeed, if this condition holds, then since 1 < v < 2, it follows that v < B(Q2) and so the elliptic regularity
(see A.12) holds for the Neumann problem over domains €2 which satisfy our standing assumptions. Hence,

=0 on 0QN. (3.67)

1K5(Ss) — Kp(Sp)allwz~ < C([[AKp(Sp) |~ + [1Ks(Ss)|lLv)- (3.68)

In what follows we use C' and c for constants which are independent of the parameters 8 and h, but may
depend on the Darcy velocity u.

Theorem 3.2 Suppose the hypotheses of Corollary 3.1 hold and B, are given as in (3.58). Furthermore,
suppose that either condition (3.66) or condition (3.67) holds, then

IS — Sh||Loo(L2+u) < Chﬁ min(1,1) (3.69)

1K (S) — Kp(Sh) || 21y < ChZminLm) (3.70)
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Proof. By Theorem 2.3, it suffices to establish the estimate

2 < C hkmin(l,p)‘

sup (Kﬁ(sﬂ) — Kp(Sh), Sp — Sh) + HV(KB(SB) N Kﬂ(Sh))‘ r2(r2)

0<t<T

Set Wy, = En(Kp(Sg)), and let x = Wy, — K5(Sk) € Mp,. Then (3.33) becomes

((Sg)t — (Sh)e, Wh — Kp(Sh)) — ((£(Sp) — f(Sh))u, V(Wp — Kp(Sh)))
+(V(Kp(Sg) — Kp(Sh)), V(Wh — Kp(Sr))) =0 (3.711)

which can be rewritten as

(85— S, Kp(S5) ~ K(Sn)) + [V (Ka(S5) - Kn(Su)I3:
= ((£(S8) = £(Sn))u, V(Wi = Ks(Sh)))
+ (S — Sn)t: K(Sg) — Wh)
+ (Sg — Sh, (K5(Sp) — Kp(Sh))t)
+ (V(Kp(Sp) — Kp(Sh)), V(Kp(Sg) — Wh)) (3.72)

The first term on the right-hand side of (3.72) can be rewritten as
((f(Sp) = £(Sr))u, V(Wh — Kp(Sn))) = ((f(Sp) = f(Sk))u, V(Wh — K5(5p)))
+((f(Ss) = F(Sh))u, V(Kp(Sp) — Ks(Sn)))  (3.73)

So we can bound this term by
1(7(5) = (S0l [V (W3~ K (85)llz2 + CIF(5) — F(Sw)ull3
719 (K (Ss) — Ka(Sw)lE. (3.74)

We can then hide the last term of (3.74) in the left hand side of (3.72). The first term of (3.74) is bounded
as follows:

1(£(Sg) — £(Su))ull 2|V (Wh — Kp(Sp))|| 2
< ClIf(Sp) = F(Su)llL2lI(I — En)Kp(Sp)l m
< ClSp = Sullz= (I — En) Kp(Sp) |l a2 (3.75)

where we have used the fact that f is Lipschitz. Applying the elliptic approximation estimate for H' to this
inequality, followed by the estimate (3.66), we then get

((7(89) = (S0, V(Wa = Ks(S)))| < CRISs = Sullsa K (Ss) o
< Ch|Sg = Sull2(|AKs(Sp)ll2 + 1) (3.76)

The second term on the righthand of (3.72) is bounded similarly:

(85 = S0 Wi = Ka(S9))| < 11085 = Swillaa (1 = En) Ks(Sp)llz
< OB [|(Sg = Sn)ell2 (AKp(Sp) |2 + 1), (3.77)
while the third term is estimated by
‘(SB — Sh, (Kp(Sp) — Kﬁ(sh))t> < [1Sg = Shllr2+e [ (Kp(Ss) — Kg(Sh))ell - (3.78)
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Finally, the last term on the righthand side of (3.72) is bounded as follows:
|(V(Ka(S8) = Ks(Sh)), V(I = En)Ka(Sp))|
< 11V (Ks(Ss) ~ Ks(Su)l3s +C (T = En)K(S5)
< 1IV(Ks(S) ~ Ks(Si)l3s + C R (IAKH(Sp) ez +1).  (3.79)

We can hide the first term on the righthand side of (3.79) in the left hand side of (3.72). Now combining
the inequalities (3.72), (3.76)-(3.79) together, we obtain

(55— S Ka(S5) — Ks($1)) + IV (Ks(Ss) — Ka(s)3
< C{nlISs = Sullze + B 11(Ss = Sa)illze + b2} (1AKs(Ss)llz2 + 1)
+C {1185 = Snll 2+l (K (S5) = Ks(Sn))ello + 1£(S5) — F(Su)lz | - (3.80)

Now integrate over the interval [0, Tp] and use Holder’s inequality to get

1
onax (Sp— Sn, Kp(Sp) — Kp(Sn))() + 5[V (Ep(Ss) — Kp(Sn))I72(r2)

Ap

< C {hHSg — Snllp2su(rarny + B2|(Ss = Sn)ellraczzy + h2} h==
+ C {1185 = Snlzaencuaen 1(Ks(S5) — Ka(Sn))elliow + 1(£(Ss) = F(Sw)ullzaee) |
+ (57 = 5n(0), Ka(8°) - K5(S4(0))) (3.81)

where we used the fact from (2.16) that [|AKg(Sg)[2(L2) < cm(B) 2. The last term of (3.81) is O(h*), by
(3.59). Therefore, using (2.11), (3.61), (3.28), (2.15), (2.16) and (3.58), respectively, we get

sup (Kp(Sp) — K(Sh), S — Sn) + %HV(KB(SB) — Kp(Sn)1Z2(z2)

0<t<To
< C{RMRTT £ B2 4 R 4 B2RP 4 A}
< Ch (3.82)
The proof is completed by using (2.4)-(2.5) and (2.19)-(2.20) together with the triangle inequality. O

4 Discrete Galerkin Method

In the previous section we have derived error estimates for a continuous Galerkin method (the time variable
remaining continuous) applied to the regularized problem (1.7)—(1.9). In this section we discretize in time
(backward scheme) and give corresponding error estimates. Again, here we follow M. E. Rose’s analysis in
[16], but are generalizing to the multidimensional case with two degeneracies, and making modifications of
the analysis to establish a higher rate of convergence in the time step.

The finite difference scheme used here is implicit with V' = FVh"“, where F' is a nonlinear function.
Thus one must show that this function is invertible for At chosen sufficiently small. We show this is the
case when u constant in time. Therefore at each step V" — V,:“H is well defined which leads to a sequence
of nonlinear algebraic equations. Finally we derive the error estimates for S — S}, where S; = Hg(V}*) and
Hjp is defined by (4.13).

4.1 The Discretized Problem and Existence of a Solution

We consider the backward-difference time discretization
<H6(th+1) — Hg(Vy')

Ko 2L ) (1t 7 ) v + (T, 9 =0 (4.1)
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for all x € My, n=0,1,..., N — 1 with
P,HVY = P,S° (4.2)

The operator P,Hp is bijective and the results of [16] guarantee a solution V,). We show that for the
time step sufficiently small, the mapping V;* — th+1 given by 4.1 is well defined. We get from (4.1) that

Vit = Fy ! (4.3)

for some function F' : M} — Mp. To show V' — V}:H’l is well defined it is enough to show the function F'
appearing in (4.3) is bijective. We show this in two ways, the first indicating why the nonlinear equations can
be solved for small time step, and the second giving a quantitative estimate for At to guarantee invertibility.

Indirect argument for invertibility.
Let (e;)T" be a basis for My, where m = m(h) = dim(Mp,). Set x = e; in (4.1). Then
(Hp(Vi')ei) = (Ha(Vyth),er) = A{(f (Hp(V, )™, Vey) — (VY Vey)} (4.4)
for 0 < i < N — 1. This can be rewritten in the vector form
PuHg(Vy') = PoHg(Vi' ') + AtF(PoHg(Vy ) (4.5)

where F (P, Hg(V;"™)) is the vector in M}, with components (—f(Hz(V,"*1)) + VV," ™, Ve;). If we choose
max At sufficiently small then we see by (4.5) that the mapping Py Hz(V;"!) v P, Hg(V;?) is bijective, and,
since Py Hp is bijective, we deduce that VFZ"H — V;* is bijective for small At.

Direct argument for invertibility.

Here we provide a sufficient condition on At to show that the nonlinear function F is bijective and that the
nonlinear equations are invertible. We assume for this analysis that u is constant in time, or at least its
variation in time is negligible.

Let V;* (resp. V;™) be the iterated solution at time nAt (resp. mAt). Then by (4.1) we have

<PhHﬁ(th);tPhHﬁ(V}zn),X> + (F(Hs(VP)) = F(Ha(V ), Vy)
_ CMMWW—&%MTU

At

w>+WWT“W“%VM- (4.6)

Set x = V" — V"1 and use the relation V;* = FV,"™! to get

At TR .

+ (FHs(Vy™h) = f(Hp (V" )))u, V(i — V)

_ <PhHB(th+1) — PoHg(V")
n At

ww“—m”ﬂ+wwwwkwwﬂm;@. 7)

We can bound the second term of the left hand side of (4.7) as follows:

[((F(Ha (V™) = PV ))u, T (V! = vt
< SN HV) = FH VG ul + SV =V B (48)

Now using Lemma 2.1 applied to Kz (in place of K) we get
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[((FH(V™ ) = F(HR V), V (V= Vs

||“||ioo(L<>o)
20+

1 n m
+§||V(Vh A Vi s

< (Hg (Vi) — Ha(Vym ), vprtt — vty

= Wl ) — e, - v
5 IV - 2, (49)
So the identity (4.7) leads to
(PuHp(FVY) = Py Hg(FV; ), vkt — vt

t”“”iw(Lw)

+A 50

(PHA(V) = PuHp (V) Vit — vt
> (PaHg(Vi'th) = PuHa(Vit), Vit — vt
1
+S ATV = V|, (4.10)

and so,

(PnHp(FVy™h) = PuHp(FV,™ 1), Vit — vt

ull2 1
> (1 _ At%) (PhHﬁ(V}:lJrl) P Hp(VHY), VL - sznﬂ)

1

+ SAVV = VL. (4.11)

Now we use the fact that P,Hp is coercive [16] to get from (4.11)

(PoHp (V') = Py Hp(FV™ ), Vit — vt
2o (Lo
> (1 = At - v
1

£ A -V (4.12)

Thus, if the standard type of existence condition on the time step

||11Hioo(Loo)
1- AtT >0 (4.13)

for nonlinear equations is satisfied, then P, HgF is bijective; since it is clearly continuous [16], [3] and P, Hp is
bijective [16], then F is also bijective. Thus by taking At to satisfy (4.13), we can perform the backward solve
to produce the solutions V;?, V)1, ..., V;™ to the sequence of nonlinear algebraic equations which approximate
the solution to the nonlinear differential equations (3.14)—(3.15).
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4.2 Error Analysis

We are interested in estimating the error S(t,) — Hg(V}*) of the discrete time Galerkin approximation to
the differential equations. We set S7* := Hg(V;"), in which case the equations (4.1) and (4.2), respectively,

become
<S,’;+1 ~Sp

A x> — (F(SpthHu" ™, V) + (VK(SPT),Vx) =0 for all x € My, (4.14)

P,S) = P,S° (4.15)

where S° is the initial saturation given as in (1.3). We then have the following fully discretized version of
Theorem 3.1.

Theorem 4.1 Suppose p,y are defined by (1.6) and m(B) is as defined in (2.12). Let Sg be the solution
to the regularized equation (1.7)—(1.9) with Q@ = 0 and q = 0, and with coefficients f and k which satisfy
conditions (1.4)-(1.5). Let Sy = Hg(V}!), where V;* € My, n=0,1,..., N — 1 solves (4.1)-(4.2). Then

N-1
Jmax (1S5 = SpllPgy. + 1 At (Ka(S5) = Ka(Si), 571 - 5p+7)
- 0

where S = Sg(tn).

Proof. Subtract (4.14) from (3.32) to get

gntl _ gn gntl _ gn
B B _“h h _ n+1y _ n n+1
( - R ) = (83 — fSE)u, V)
+(V(Kp(S5H) — Ka(S;™)), V)
asntl  gn+l _ gn

R 5 _

+< o Ap x| =0 (4.17)

for all x € M. If we set
n+1 n
a ¢ - At )

then (4.17) can be rewritten as

(07(S5 = Sn)",x) = ((F(S5™) = F(SET)u", Vx)
. <asg+1  Sgtt- sy

n+1ly n+1 —
. . ,x> + (V(Ks(85™) ~ Ka(SpHY), ¥x) = 0. (4.18)
Next we set x = Th(Sg"‘l — S in (4.18) to get

(0% Pu(Sp — Sn)™, Tn(SpHt — Spthy)
+(V(Ep(SEHY) — Kp(Spth), VIn(S5™ — Sp*)

= (ST = FSETH T, VTR (S5T = Sih)

oS5t
- < e Ot S, Th(SHH — S;;“)) : (4.19)

where T}, is defined by (A.24).
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The identity
{||¢"“||H—1 1671513 + *H3+¢”HH—1 = (Tn(0%9"),¢" ), (4.20)

(T'p, @), is established using the definition of Ej,

which is the discretized analogue of the fact (Ta—‘f, qﬁ) = %di
E,T. If we apply this identity to ¢ = P, (Sg — Sh) €

and Ty, for ||¢]|%, . = (Tho, ¢), and properties of T}, =
h
My, then we obtain the estimate

1

S5z (1P (S = S = 1P (S5 = SPI- |

1 n n n n n n
< E(Ph(SBH — St = Pu(SE — SE), Tu(S5T = Spt)). (4.21)
Upon substituting this estimate into identity (4.19) we obtain
n+1 n+1\(2 mn\ |2
PS5 = S s — gacll (S — S
+(V(EG(S5T) — Kp(Sp™), VIn(S5™ — S3™)

2At

< ((FSETH = FSTY L VT (SEH = Spth))

asptt  sprt s
—( 6ﬁt - =f N 2 Th(S5t - s;;“)). (4.22)

But, we get by definition of E}, (See (A.18), and because Th(SgJrl - Sy € My,
(V(Ks(S5™) = Ka(Si ™)), VI(S5+ = i)
= (VEW(Kp(S5T™) — Kp(Sp™), VTL(S5 — Spth)). (4.23)

Next using the definition of T}, (see (A.22) and (A.24)), and the fact that (Sg+1 — S g =0 (set x =1
n (4.14) and use (3.15)), we have

(V(Ks(S5™) — Ka(Sp™h), VIL(S5™ = S3™)
= (Ba(Ks(S5™) — Kp(Sih), (S5 = Sp™h)
= (Ks(S5™) — Kp(Sp™), S50 = S3™)
+ (Bl = DEs(S3H), S5+ - 5p1) (4.24)
since V"™ = K3(S;'™") € Mj,. We combine estimates (4.22) and (4.24) to yield
l n n n
ong IPASE™ = ST sy — 5 IPA(SE — ST lEm)-
+(Kp(S5™7) — Kp(Spth), 557 — spth)
< ((F(SE™) = F(SET )L, VL (S5 = Spth)
+| (- Bogacsyt), spt - sptt)

6Sﬁ Sg+1 B Sg n+1 n+1
_ (W - L T(SET - s | (4.25)

The first term on the righthand side of (4.25) can be bounded as follows:

((F(SETH) = FSETY)L, VT (S5 - Spth)
1

< SCOUASET) = FSETDIIE: + 20* IVTL Py (S5 = Sy h)1Ze
1 * n n n n
< SCOUASET) = FSETDIL: + 55 20* 1P (S5 = SR (4.26)
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where C* is as in (2.2). By Lemma 2.1 the first term on the righthand side of (4.26) can be hidden in the
left hand side of (4.25).
The second term on the righthand side of (4.25) is bounded as follows:

(I = Bn)Kp(S5H), 8571 = i) < Ol - En)Ks(S5™)11

* %k

8

by the arithmetic—geometric mean inequality. We can again hide the second term on the righthand side of
(4.27) in the left hand side of (4.25). Using the error estimate for the elliptic projection and the inequality
(3.66), we have for the first term

+

1S5* = Spt AL (4.27)

I(Z = En)Kp(S5* 7, < CRIAK(S5IIT, (4.28)
It remains to deal with the last term on the righthand side of (4.25). For this, we have

A M) Ml S S ¢ d 4.29
A= a ), St = (429)

where we use the Taylor expansion of Sg about ¢,, and I, := [t,, t,+1]. By (1.7) it follows that
Sput = (~V - F(Sa)u+ AKs(S)): (430)
Using (4.29) and (4.30) in the last term of (4.25) we get

oSzt Sptt—sy
( 8ﬁt _ "B N ﬂ,Th(SgH—SZH))

= (np ) (V2 + ARSSN s ~ D)nTa(s3™  57)  (431)

The divergence theorem together with (1.8) and (4.31) give

ggntl  gntl _gn
< B _ B B 7Th(Sg+1 _ S;LH—I)

ot At
! n+1 n+1
= (E /In(f(S,e)u)t(T)(th — 7)dr, VT (S5 — Spth)
- <A1t/1 (VK3(S8))e(tnsr — 7)dr, VTH(S5H — SZ+1)> (4.32)

We estimate each of the terms of the righthand side of (4.32) separately.

The first term is bounded as follows:

(Ait / (S ))er) b1 = 7, VT (S Slf“>)

1 . .
S Kt/, 1(£(Sp)0)e(T)l L2 tngr — 71T VTH(SET — Spth) |2 (4.33)
By the Cauchy—Schwartz inequality we have

i/l 1(£(Se)w)e(7) |2 |tns — 7ldr

1
2

1 tnt1
< 0l ([ = rar)

= (A2 (£(Sp)w)ellz2 (22 (52),1.) (4.34)
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So (4.33) becomes

<Ait /I (f(Sp)u)e(T)(tns1 — T)dT, VThPh(Sngl _ S}?Jrl))
(A1) [(f(S Sp)u)ell2 (20,1, )||VThPh(S’"+1 S

(A8)/2[[(F(Se)w)ellZ2 (2,10 T 5 IIVThPh(S"+1 Sp I

IN

IA

(A1) /2]|(f(Sp)w)ell L2201, + —||Ph(5"+1 Sy (4.35)
h
where we used the identity (A.27) for the last equality .

The second term on the righthand side of (4.32) can be rewritten as follows:
1
(8 )| (FRaSDultrir - )i V(3 = 5741
In
1
= (3 ]| (TEREA(S s = r)ir 91557 = 57 )

- < < / (BnK5(S5))e(tnss — 7)dr, ST+ — 5;;+1> . (4.36)

Here we made use of the definition of Ej, (see (A.18)) and the definition of T}, (see (A.22)—(A.24)). Using
again the Cauchy—Schwartz inequality and (4.36) we get

1
(%

/ (VK3(S8))i(tns1 — 7)dr, VTL(S5H = Spth))|

< 5 [ UBRRSs (s = 857 - 87 N (a0
Also

[ VKA SN (1~ e

1
2

tni1
< IEns(Sahlwoaay [ (s — 72 )
tn
< | EnKs(Sp)illL2(L2(0),1.)(AL)? (4.38)
So (5.37) becomes
1 n n
(g [, (FKo(SDultnss — 7)im, VT (S = 8741
< (A)Z||BwKp(Sp)ellzz(z20),n) IS5 = S5 le2a) (4.39)
which then gives
1 n n
(a7 ], (TS5 ltnn = 7)r, V(55" = 5:40)

(At)%||EhKB(Sﬁ)tHZ2 (L2(Q),1,)
C**

IN

+

2+
HSn+1 Sn+1||L2€Q

IN

C(At) 2 ||EhKB(SB)tHL2 (L2(Q),1,)

C** n n
+T\|55H S +1||§72qu(9 (4.40)
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Now using estimates (4.21), (4.26), (4.27), (4.28), (4.35) and (4.40), after hiding the appropriate terms, we
get

1

S IPh(SE = ST,

-
;"

— 5 IPASE — DI

1 n n n n
+Z(Kﬂ(55+1) — Kg(Sp™h), S5+t - spth)
< C{lIPa(S5™ - S"H)Hz i+ PP AKB(SYITA
At
Ly 1(f(Se)will 22 (0,1,
+(AL) 2| BnE 3 (S8)ell 11200} (4.41)

Next, multiplying (4.41) by At, summing from n = 0 to n = m — 1, with 0 < m < N, and using the fact
that P,(S§ — S})) = 0, we obtain

l n n n n
S I1Pa(SE = SPII%, Kp(S5™") = Ka(Sp™), 57" = Spt)

m—1

AtIIP (S5 = Spt 50 +h2 Y At AKs (S5,
0

”(f(Sﬂ)u)tH%Z(LZ(Q),In)

+
+°M

+ (A= Z 1 EnKs(Sp)ell 121200, )} (4.42)

Next using the discrete Gronwall Lemma (see [10],[6]) and the fact 1 <y < 2, we get

N-1
o IPH(S5 = Sl + 1 2 A(Ka(S5™) - Ka(S ), 83+ - 1)

N-—

{ ZAtHAK (SEIINT-
0
L

AL (I(f(Sp)w)ellZ2(12) + 1 EnKp(Sp)ell 7 Lz))} (4.43)

Since
> AUEs(SH)y2q = 1K) 1T wam
0<n<N
as At — 0, we have
1
> AtEs(SE)yen < Cm(B) (4.44)
0<n<N

where m(f) is defined by (2.12), and we have used the inequalities (3.66) and (2.14) together with the
equation (1.7).
For the second term of the righthand side of (4.43), we observe by (2.11) and (2.3), and [18] that
lf(Sg)ell>(z2y and ||EnKp(Ss)tllL2(2) are bounded independently of 3, and h. Thus (4.43) becomes
N-1
max (PS5 = S+ Y Ae(Ra(S5H) — Ka(7 ), 557 - 57+)
0

< C{R¥'m(B) T + (At) T} (4.45)
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An immediate consequence of (4.45) is the following.

N-—1
ST IEs(SETY) — Ka(SphI2.At < C{R'm(8) T + (At)7= ) (4.46)
0
and
N-1 ) es
3 ArSptt - SR, < C{hPm(B)T T + (At (4.47)
0

To obtain the desired estimate for Sj — S, we will use (4.45) together with an estimate for (I — Pp,) (S5 —
Si1). This estimate however requires the following Lemma.

Lemma 4.1 For Kg and S} as in Theorem 4.1, there is a positive constant C so that

max ([VEa(SP)llze < C: (4.48)

Proof. 1In (4.14) set x = Kg(Sp™') — Kp(SP) € My, to get

'n+1_ n
(Sh N Sh ,Kﬂ(S}?H) — KMS};)) — (f(sg+1)un+1,v(KB(Sg+1) _ KB(&?)))
+ (VEs (S5, V(Ka(Sp ™) = Ka(Sp)) =0 (4.49)

This yields (Cauchy—Schwartz)

Sf?+1 — SITIL n+1 n 1 n+1y2 1 ny||2
— g Be(SpT) — Ks(SR) ) + 5IIVEs(Sy™)lze — SIVEs(SE)lIz2
< (FSETHu*h V(K (S — Ks(SR)))  (4.50)
The righthand side of (4.50) can be rewritten as follow
(F(SH ), T (Ka(Sp) — Ka(S))
— (PSP VG (SpH) — (F(Siu, VEG (7))
+H(f(Sp)u" = (S Hum, VEG(S])

IN

(f(SpTHu™*, VE(SpHh) — (F(Sp)u™, VE5(SE))

C n n n n n
o1/ (Sk)u ~ F(SyTHu"|[Le + CALIVER(S)I

C n+1 n+1 ny|12
o IS @ = w2 (451)

The last term on the righthand side of (4.51) is bounded by

1 n

5 CA e[ [ £ (ST (4.52)
Now hide the second term of the right side of (4.51) in the left hand side of (4.50) by inequality (2.2), by
making C sufficiently small. Combine (4.50) and (4.51), sum over 0 < n < m, and use the discrete Gronwall

Lemma, to complete the proof of the Lemma. O

In order to complete the proof of Theorem 4.1, we use the inequality Jhax IVKs(Sg)llz2 < C established
by Lemma 3.1, and follow the analysis done in (3.44) through (3.57), in order to get

n—+1 n—+1
e (I = Pa) (S5 = S Yl any- < CRY (4.53)
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The proof of the theorem is completed by assuming the inverse estimates (3.2), and using estimates (3.43),
(4.45), and (4.53). O

If, as in section 3, we take 3 = Boh* with A = 2;1;;7%’;2, and if we consider the specific perturbation

defined by (2.17), then the conclusion of Theorem 4.1 becomes
N—1
Lmax S5 SE . 3 ACRA(SET) — Ka(SE ), 857 - S5
== 0
< {1 (A} (4.54)

Finally we have the following

Corollary 4.1 Under the hypotheses of Theorem 4.1 we have

n L y+2
oax 1S (tn) = Sillts) < C{B*Im(B)7TF +C(8) + (A1) =} (4.55)
and
N-1 ) s
D ALS(tng1) = SETHITHE < C{RPTm(B) T + C(B) + (A1)} (4.56)
0

where C'(3) is defined by (1.10), and m(3) defined by (2.12).

Estimate (4.56) does not require the inverse estimate assumption (3.2). But we do need this assumption
for estimate (4.55). Estimate (4.56) is a direct consequence of Theorem 2.1 and estimate (4.47). Estimate
(4.55) is a direct consequence of Theorem 2.1 and Theorem 4.1.

A Appendix on Poisson Solutions: Regularity and Approximation

In [11], properties of the Poisson Solution Operator T' were given which were needed in our development and
are summarized here for convenience. In addition, we define the Mean-Value Preserving Elliptic Projection
onto approximating subspaces, the corresponding discrete version of the operator T, and give some of their
properties which are required for our analysis.

A.1 The Poisson Solution Operator
The elliptic boundary value problem

—Aw = f, inQ
g—: = 0, on 8Q (A]‘)
wo = 0,

has a unique solution w =: Sf with w € H! when f € H~! and fq vanishes (see Sections 5.2-5.3 of [2]).
Therefore for any f € H~! the boundary value problem

—Au = f—fq, InQ

gu = o, on 0N (A.2)
ug = va

has a unique solution u € H' given by u := S(f — fq)+ fa, and we define the Mean-Value Preserving Elliptic
Solution operator T : (H')* — H' by T(f) = u. A more convenient equivalent norm for H' is defined by
(A.9) below and is closely related to T'. The weak formulation of (A.2) is given by

(vu7v¢) = (fa ¢) - (fﬂa¢)
= (f,¢) — fada (A.3)
= (f,¢) = (Tf)ada
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for all ¢ € H! and so

(V(T$),V8) = (£,8) ~ fase. (A.4)
In particular, if we take ¢ = T f, then we obtain
INTflZ2 = (£, Tf) = (fo)* = (£, TF) - (Tf)a. (A.5)
The operator T is linear, symmetric and positive definite [18, 11]
(T'f, 9) = (f, Tg) for all f,g € (H")". (A.6)
and from (A.5) it follows that
(Tf, ) = IVTfll72 + (THa = IVTfll7= + (fa)*. (A.7)
With these properties in mind we can define on (H')* the norm:
1
11l () = (T'f, f)> (A.8)
which is the dual norm for H', when H'! is equipped with the equivalent norm
1
Nulller = (Va2 + (ua)?)?. (A.9)
With these definitions we get the relationship
(Tf, f) =T f Iz = ITflZ- (A.10)

where ~ means equivalent within fixed constants independent of f. The proof of the equivalence is a simple
application of Poincaré’s inequality (see e.g [7]) in one direction and Hélder inequality in the other.

Proposition A.1 Suppose f belongs to (H')*, then

(Tf, )2 = I fll(rry~ (A.11)
in the sense of the norm (A.9).

The results of Chapter 4 of [12] further extend the properties of the operator T' to more general Sobolev
spaces over convex polygonal domains in R2. In particular, elliptic a priori estimates of the form

[ullw2r ) < ca{llAullre +[lul[Ls }, (A.12)

are established (see, inequality (4,1,2) of [12] and its proof using Theorem 4.3.2.4 and Remark 4.3.2.5), under
the assumption that 1 < p < p(Q2), where

B(Q) = <1 - ﬁ) - (A.13)

and O(R) is defined as the maximal interior angle of the polygon 2. Hence in this range of p it follows that

ITfllw2r(e) < cofllf = fallee + ITfl[Lr} < el f]]Le- (A.14)

The last inequality on the right hand side of inequality (A.14) (i.e. the boundedness of T on LP) follows by
the Sobolev embedding theorem (since d < 2), the fact that the result holds in the case p = 2, and Holder’s
inequality.

From [11], we also have the following result:

Proposition A.2 For smooth f, the operators T and % commute

2wy =1 (A15)
Furthermore, if f € H*(Q) and

g—i =0 on 09, (A.16)
then

T(Af) = A(TY). (A.17)
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A.2 The Mean-Value Preserving Projection

Let {M}}r>o be a family of finite dimensional spaces (see, for example, Chapter 4 of [2]) such that M} C
HY(Q). Let f € H', then

(fn)a fa (4-18)

has unique solution in M},. We define the mean—value preserving operator Ej, : H'(Q) — My, by Ex(f) :=
fr where fp is the unique solution to (A.18). By the definition of the projection Ej and orthogonality it
follows that

{(th,vX) = (Vf,Vx), Yx€M,

0 < IV(f = Enf)llZ> + IVEflZ- = V2

and so for f € H'(Q), there holds
IVERf|[L2 < IV fl|z>- (A.19)

1En fllers < 1 flrn (A.20)

In fact, by using a duality argument (see Section 7.5 of [2]), the projection Ej can be shown to be bounded
on W1P(Q) for all 1 < p < oo, and therefore a corresponding Cea estimate holds for the elliptic projection.
This and another lifting argument then provides a mean-preserving second order elliptic error estimate for
E}, of the form

If = Enfllze < ch®|| fllwzrie) (A.21)

if 1 <p’ <p(Q), where p is defined as in (A.13) and p’ is the conjugate index to p.

A.3 The discrete analogue of the Solution Operator
We consider the discretized elliptic problem of finding for each wy, € M}, a solution f € H(2)* such that

Vwy, V = — fa, x)s Vx € M
(Vwn, VX) (f = fa:x) X € My (4.22)
(wn)e = (fa
By the definition of the solution operator T' to (A.2) there holds
VTf,V = — fa, Vx € M,
(VTf,Vx) (f = fa,x) X € My (4.23)
and so
Ty :=EpoT : HY(Q)* — M, (A.24)

is the solution operator to the discrete problem (A.22), that is wy, = En(T'f). It follows directly [18, 11] that
the operator T}, is linear, symmetric in the sense

(Tnf, 9) = (f, Thy) for all f,g € (H')*, (A.25)

and is nonnegative since

(Twf, ) = IVTufl|%2 + (fa)? > 0. (A.26)

Although x — (TrX, X)% is only a semi-norm on (H')*, it is a norm when restricted to Mj,

Il = (T 0 = (I9Tx2 + (xa)?) b (A27)
In fact, Lemma 4.4 of [17] established the following:
Lemma A.1 If ||x||(a1)- is defined by (A.11), then there is a positive constant C so that

Clixllgry- < Il < Il ¥x € My (A.28)
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By combining the elliptic error estimates (A.21) with the elliptic regularity of T' (A.12) the following
lemma follows immediately.

Lemma A.2 If the discrete solution operator Ty, is defined by (A.24), then
(T = Tn)(F)llLe < ch?|[fllLe (A.29)

if max(p,p’) < B(Q), where B(Q) is defined as in (A.13).
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