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Abstract
A singularly perturbed convection-diffusion problem posed on the unit square is considered. Its solution
may have exponential and parabolic boundary layers, and corner singularities may also be present. Pointwise
bounds on the solution and its derivatives are derived. The dependence of these bounds on the small diffusion
coefficient, on the regularity of the data, and on the compatibility of the data at the corners of the domain
are all made explicit. The bounds are derived by decomposing the solution into a sum of solutions of elliptic

boundary-value problems posed on half-planes, then analyzing these simpler problems.
1. Introduction

This paper treats the following singularly perturbed convection-diffusion problem in the unit square

Q= (0)1) X (0)1):

Lu:=—eAu+pu, +qu = f in Q,
(1.1) u(z,0) = gs(x), u(z,1) = gp(z) for 0 <z < 1,
w(0,y) = guw(y), u(l,y) = ge(y) for 0 <y < 1.

The coefficients p and g are positive constants while the parameter € lies in (0, 1]. The functions f, g, ge, s, gn

are assumed to satisfy, for some non-negative integer £ and « € (0,1),

(1'2) fe CZZ’E(Q): Guw>Y9e; 9s, In € Cﬂya([oa 1])

A specified amount of compatibility between the boundary data and the solution is assumed at the 4 corners
of . In particular, it may happen that gs(0) # ¢,,(0), etc. Consequently certain corner singularities form
part of the solution to (1.1), and these will interact with the boundary layers induced by the convective
nature of the problem.

The purpose of the paper is to give pointwise bounds on @ for the derivatives of the solution to (1.1)
and to determine explicitly how these bounds depend on the parameter €. As one would expect, the bounds
at each point (z,y) also depend explicitly on the distance from (z,y) to the 4 sides and 4 corners of (). Thus
the bounds describe the effects of the corner singularities at the 4 vertices, the boundary layer at x = 1, and
the characteristic boundary layers at y = 0 and y = 1.

One reason for this study is to understand the structures in the solution induced by the interaction
between the corner singularites and the boundary layers. These structures are not revealed by an asymptotic
expansion of the solution (as in, e.g., [4]), but they are revealed through a study of derivatives. The final
result, Theorem 5.1, shows how, at an incoming corner, the corner singularity is propagated along the axis

by a characteristic boundary layer, and how the corner singularity behaves near the intersection of the

* This work was partly supported by the RiP-program at Oberwolfach, Germany. B. Kellogg was partly
supported by the U.S. National Science Foundation. M. Stynes was partly supported by the Arts Faculty
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1 Mathematics Department, National University of Ireland, Cork, Ireland (m.stynes@ucc.ie)
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characteristic and outgoing boundary layers. These results would seem to illustrate, in the simplest case,

what might take place in a fluid flow near entrant and exit corners.

A second reason for the study is that it is useful in numerical analysis. To analyze the discretization
error of any numerical method for (1.1), derivative bounds are crucial. The bounds on derivatives in this
paper can be used in the analysis of both finite element and finite difference methods. Furthermore, they
suggest how to design an efficient mesh for the numerical solution of the problem. (This will be dealt with in
a subsequent paper.) The bounds suggest the stretched mesh refinement that should be used in the several
layer regions, and they suggest the mesh refinement strategy that should be used at both the “incoming
corners” (0,0) and (0,1), and the “outgoing corners” (1,0) and (1,1). It seems plausible that similar mesh

refinement strategies could be of use in more complicated problems with many layers and corner singularities.

Several authors have previously obtained bounds for derivatives of solutions of singularly perturbed
problems in regions with corners. In the case p = 0, Han and Kellogg [3] gives pointwise bounds for the
derivatives of the solution. The present paper may be considered an extension of [3] to the convective case.
LinB and Stynes [7] consider a convection-diffusion problem in a square, with a non-horizontal convective
direction. It is assumed that the data is compatible at the corners, so there is no internal parabolic layer and
corner singularities are excluded. Bounds for the derivatives are derived. In Kellogg [5] the problem (1.1) is
considered in an outgoing sector, which excludes boundary layers and so is an easier case. The analysis of
Roos [9] is for the problem (1.1) in the case of compatible boundary conditions and outlines how pointwise
bounds on derivatives might be obtained, but some of the arguments are unclear and certain critical details
seem to be overlooked. Shih and Kellogg [10] give a detailed discussion of an asymptotic expansion for (1.1),
with limited information on derivatives. A somewhat different and more revealing expansion is used in the
present paper. Finally, Shishkin [11, Chapter IV] obtains pointwise bounds for derivatives of solutions of
problems like (1.1) with variable coefficients, but compatibility conditions are assumed at the corners of the

square.

Our methods use decompositions of the problem into various simpler elliptic problems. Thus, asympotic
expansions, with their related ordinary and parabolic differential equations, are not used. Eqn. (5.11)
expresses the solution as a sum of solutions to half-plane and quarter-plane problems plus a remainder. The
remainder satisfies a problem of the form (1.1) with data that is compatible to all orders at the vertices and
is exponentially small. Thus derivatives of (5.11) give a representation of derivatives of the solution u with

exponentially small remainder.

The plan of the paper is as follows. Section 2 discusses the problem (1.1) in the positive quadrant,
and with f = 0. This quarter-plane problem contains the essential difficulties of (1.1), and its solution is
decomposed into a sum of three half-plane problems. In Section 3 two of these half-plane problems are
analyzed using maximum principle arguments. The third half-plane problem is more difficult; its solution
contains both corner singularities and a parabolic boundary layer. It is analyzed in Section 4, using a Green’s
function representation of the solution. Section 5 returns to (1.1), whose solution is decomposed into a sum
of quarter-plane problems and half-plane problems. Each term in the sum is analyzed using the preceding
results. The final result is presented in Theorem 5.2.

We shall use the Holder space C"%(Q) where 0 < a < 1, the Sobolev space H™(Q) with norm ||-|| g (@),

and for various sets S the Sobolev space W™ (S) with norm || - || m,c0,5. If m =0 we write || - ||co,s-

2. The quarter-plane problem

Let us denote the first quadrant by Q = (0,00) x (0,00). In this section we are concerned with the
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quarter-plane problem

—eAu + puy +qu=01in Q
(2.1) u(z,0) = g(x) for z > 0,
u(0,y) = h(y) for y > 0.

We suppose that g, h € C?6%(R*) for some integer £ > 0 and « € (0, 1), and satisfy for some constants G
and H, the inequalities

(2.2) 19" (2)] < Gy, KW ()| < Hee *2e=Y/VE  for k=0,---,2¢.

We also assume that the data g, h satisfies the first v + 1 compatibility conditions for the problem (2.1).
The zeroth compatibility condition is the continuity of the data at the origin: ¢(0) = h(0). For v > 0
the compatibility conditions express compatibility of the differential equation and the boundary data at the

origin. In the case that g(z) =0, the compatibility conditions are
(2.3) R (0) =0 for k=0,---,v.

From the theory of corner singularities, if the data satisfies the first ¥ + 1 compatibility conditions with
v < £ — 1, then the solution u lies in C?**1%(Q), while u € C?4%(Q) if v = £. The value v = —1 is used to
indicate that no compatibility condition is assumed. For the theory of corner singularities, see [2], and [3] in
the case of a 90° angle.

In this section we give a decomposition of the solution that will enable us, in Section 4, to bound the
derivatives in Q. For the decomposition we start by extending g to a smooth function g; on R, which vanishes
for x < —1. By choosing C' appropriately, we can also assume that |g§i) (z)] < Ce ®® for all x > —1 and
i =0,1,...,2¢, where a; is some positive constant that satisfies a; > q/(2p). Let u; satisfy the “grazing”
half-plane problem

(2.4) —eAuy +puy gz +quy =0 for y > 0,
. ui(z,0) = ¢g1(z) for z € R

It will be shown in Theorem 3.10 that w; satisfies
(2.5) | Dy Dyu (z,y)| < Ce M 1/2e=92/(20) = VIV/2VE) Gy for m 4+ n < 20.
Let hi(y) = u1(0,y) and let uy = u — u;. Then u- satisfies the quarter-plane problem

—eAus + pus , + qus =0 for y > 0,
(2.6) uz(x,0) =0 for z > 0,
u2(0,y) = ha(y) == h(y) — ha(y) for y > 0.

Using (2.2) and (2.5) with m = 0, it is seen that ho satisfies
(2.7) 1S (y)] < Ce™*/2e~ VA VE) (Goy + Hyp) for k=0---,2L.

Since w; is a smooth function, uy has the same smoothness as u. Therefore the data of the problem (2.6)
has the same compatibility at the origin as the data of the problem (2.1). From (2.3) the compatibility
conditions for the problem (2.6) are hg%) (0)=0for k=0,---,v.
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Let u3 be the odd extension of us to y < 0 and let hs be the odd extension of hs to y < 0. Then us
solves the incoming half-plane problem

—eAug + pus ; + quz = 0 for > 0,

(2.8)
u3(0,y) = hs(y) for y € R.

However hg or its derivatives may not be continuous on the y-axis. In fact, we see that if the first v + 1
compatibility conditions of (2.1) are satisfied, then hz € C?**12(R).

The discontinuities in hz are dealt with by means of a certain construction. If v = —1let dy = 1. If v
is a non-negative integer satisfying v < ¢ let dp, - -, d,4+1 be the solution to the Vandermonde system
v+1
0, k=0,---,v
2kp ) ) IR
(2.9) D di2 —{1, k=v+1.
pn=0
Let by41,- -, be be distinct positive numbers. Define
v+1
Cj(y) = Z du(sgn y) eXp{_Qubj|y|/\/g)}7 .] =v+ 17 T 76'
n=0
Thus
v+1
(9 (20) = £ Fp2k S g, 270,
n=0
Using (2.9),
(2k) _ _ :
(2.10) G (£0)=0for k=0,---,v, j=v+1,---,L
Define a function ¢ by ( = Zﬁ-H ¢;j¢; where the ¢ — v numbers ¢;, j =v +1,---,¢, are chosen so that
(2.11) R (+0) = B (+0) for k=v +1,--- L.

The equations (2.11) form a linear system of £ — v equations in the £ — v unknowns ¢;. When written out,

the equations (2.11) are
‘

3T P (+0) = (+0) for k= v + 1, L.
j=v+1

Inserting the formulas for the derivatives, these equations become
v+1 ?
(-1 (Z du22’“‘> 3 ek = PP (40) for k= v+ 1,1 L.
n=0 j=v+1

This gives a non-singular Vandermonde system for the c¢; and, since 5k|hg2k)(+0)| < C(Goy + Hoyy), the
numbers ¢; exist and satisfy
lcj| < C(Gag + Hyg) for j=v+1,---,L.

Let z be the solution to the incoming half-plane problem

—eAz + pzy +qz =0 for > 0,
2(0,y) = ((y) fory e R

4
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Let uqy = uz — 2. Then uy satisfies the incoming half-plane problem
—eAug + pug p + qua =0 for z > 0,
us(0,y) = ha(y) := ha(y) — ((y) fory € R.

By our construction, hy € C**%(R) and

(2.13)

(2.14) In{E) ()] < Ce*/2e=el/VE (Gyy + Hyy) for k=0, 1,...,2L.
Assembling the above functions, we have established the decomposition
(2.15) u=u; +us =u; +ug =u; +us+ zin Q.

To obtain bounds for the derivatives of u we shall obtain bounds for the derivatives of each of the terms in
the right-hand side (2.15). The function wu; is given by the grazing half-plane problem (2.2) and bounds for
its derivatives are obtained in Theorem 3.10. The function u4 is given by the incoming half-plane problem
(2.13). Its boundary data decays exponentially so us has large y-derivatives near y = 0; its behaviour is
analysed in Theorem 3.6. Although z is the solution of the incoming half-plane problem (2.12), the bounds
for incoming half-plane problems given in Section 3 do not apply as the boundary data are discontinuous at
y = 0. As has been remarked, these discontinuities correspond exactly to the incompatibilities in the data
of the problem (2.1). Thus z contains the corner singular functions that are present in the solution of (2.1).

The function z is analysed in Section 4. Bounds for the derivatives of u are established in Theorem 4.11.

3. Bounds on derivatives of solutions to half-plane problems

In this section we consider four boundary value problems on the half-planes I1, = {(z,y) € R? : z > 0}
and IT, = {(z,y) € R? : y > 0}. These problems arise both from the decomposition of u given in Section 2

and from a further decomposition that will appear in Section 5.
3.1. Growth conditions

A maximum principle will be used to bound the derivatives of the solution of each boundary-value
problem. Since the half-plane is an unbounded domain, growth conditions are needed on the data for the
solutions to exist and for the maximum principle to be satisfied. The derivation of these growth conditions
is given in detail below for the incoming half-plane problem (the other problems are analogous): a Green’s
function for the problem is written in terms of modified Bessel functions of the first kind (cf. [10]), and then
the desired growth condition, which merely ensures that the Green’s function integrals defining the solution
are finite, follows easily from standard properties of Bessel functions.

Consider the “incoming half-plane problem”
(3.1) Lv = —eAv + p1vg + pavy +qu = f for z > 0, v(0,y) = h(y) for y € (—o0, c0),
where p; and p, are unspecified constants. Set v (z,y) = e~ (P12+P28)/(2%)y (2, ). Then
—4e®Avy + K2uy = fi(w,y) := dee” Pt/ (o) £ ) for 2 > 0, v1(0,y) = hy (y) := h(y)e P2¥/ (39

with &% = pi+pi+deqand n = y/(2¢). Setting § = z/(2¢), n = y/(2e), v2(&,m) = vi(w,y), fo(&m) = filz,y),
h2(n) = h1(y), this becomes

(3.2) —Avy + K20y = fo(&,m) for € >0, va(0,1) = ha(n).
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The Green’s function for this problem is easily verified to be
1
G mo,7) = ﬁ[Ko("&P) — Ko(kp1)]

where p = \/(E—0)2+ (n—T7)%, p1 = \/(5 + a) + (n —7)?, and Ky is a modified Bessel function of the

second kind [1]. Hence with p» = /& + (n — 7)2, the solution formula for (3.2) is
(3.3) / / (0, 7)[Ko(kp) — Ko(kp1)]|drdo + = / ho (T K1 (kp2)dr.
2’”” o=0 =—00

Returning to the original variables, the solution formula is

v(z,y) = 2M€e"’”“’2y)/ > / /ﬁ e~ (Pt /22) (5 1)Ko (kr/ (2€)) — Ko(kry /(2€))]dtds

(3.4)

+ %me(p”"'pzy)/(%) /_0o e P2/t ) K1(m'2/(26))

where r = \/(z —8)2 + (y — )2, 11 = /(. + 8)2 + (y — )2 and ro = /22 + (y — £)2.

If the functions f» and hs are such that the integrals in (3.3) are convergent, then the solution vy of (3.2)
exists and is given by (4). Furthermore, if fo and hs are non-negative, then v is non-negative. Recalling
that |K;(t)] < Ct~'/2e~ for t > 1, this leads to the following integrability conditions on fs and hy for the

existence of a solution vy, and hence for the maximum principle:

/ / (0% + ) 4 oo, )| "7 Y dodr < 00,
o=1J|7r|>1

/ 732 ha (P e dr < oo
|T[>1
In terms of f and h, and setting r = (2 + y?)'/2, these conditions become

[ e e 9 dudy < oo,
(35) z=1J|y|>1

/ |y|73/2|h(y)|e*('i\y\+pzy)/(2€)dy < 00.
y>1

3.2. Incoming half-plane problems

We shall consider two incoming half-plane boundary-value problems. First, based on (3.5), one has the

following statement of conditions for the maximum principle for the operator L on II,:

Lemma 3.1. Set r = /22 + y2. Let ® € C?(Il,) satisfy L® > 0 on II,, ®(0,y) > 0 for y € R and

o0 o0
/ / (1+7)"YV2L®(2,y)e P/ dedy < oo,
z=0 =—00

o0
| @) 0.e Iy < .
—o0
Then ®(x,y) > 0 in H,. If U € C*(Il,) satisfies |LU (z,y)| < L®(x,y) in I, and |U(0,y)| < ®(0,y) for
y € R, then |U(z,y)| < ®(z,y) in II,.

It can easily be checked that the barrier functions used in this sub-section satisfy these growth conditions.
The first incoming half-plane problem comes from Section 5. Let U(x,y) be defined on II, by

(3.6) LU = f*onII,, U(0,y) =0 for all y,

where f* is smooth. We seek bounds on the derivatives of U. A problem such as (3.6) has no outflow
or characteristic boundaries, and since the boundary = 0 and data f* are smooth, one expects that all
derivatives of U are bounded independently of €. This will be shown rigourously in the next few Lemmas.
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Lemma 3.2. Let n be a non-negative integer. Let f* € W™ (Il;). Then ||DyUl||co,n, < |If*|ln,co11, /4

Proof. From the boundary conditions, Dy U(0,y) = 0 for all y. Differentiating (3.6), L(DyU) = Dy f*
on IL,. Set w(x,y) = ||D} f*|lco,m,/q on ;. Then w(0,y) > |Dy(0,y)| for all y and Lw = ||Dy f*||oo,m, >
|Dy f*| on II,. Thus w is a barrier function for DyU, and the result follows from Lemma 3.1. m

Lemma 3.3. Let n be a non-negative integer. Let f* € W™tL°(I1,). Then there exists a constant C' such
that ||DzD;LU||OO,Hm < Ol f* Nt 1,00,11, -

Proof. Set w(z,y) = z||Dy f*||co,11, /p for all (z,y) € II;. Then w(0,y) =0 = |DyU(0,y)| for all y. Also
Lw(z,y) = (1 +2q/p)[|1Dy fllcoe 2 1Dy f*[loo,n. = |Dy f*(2,y)] = L(Dyu)(z,y) on IL,.

Thus w is a barrier function for DjU, and it follows from Lemma 3.1 that |DyU(z,y)| < 2||Dy f*|lco,m, /P
on IL,. As DyU(0,y) = 0 for all y, this inequality implies that

DU (2, y) — DRU(O,
GB1) DD, = | tim 2eU @Y = DT

z—0t T

<Dy f*llco,mm, /p for all y > 0.

But [L(D;DyU)| = |D:Dy f*| < ||DzDy f*|lco,11, on II;. Using this inequality and (3.7), one can use a
constant, barrier function and Lemma 3.1 to get |D, DU (z,y)| < p~'||D} f*|loo, 1, + ¢ | D2 D} f*]lco,11, On

IT,, and the Lemma follows. m
Given a differential operator D = D;* Dy, set |D| = m + n.
Lemma 3.4. Let m and n be non-negative integers. Set D = D*D}}. Let f* € WIPI+2.20(11,). Then there
exists a constant C' such that
|1D;DU||oo,mt, < C(If*lipj42,00mm, + [1PUllo 11, + 1Dy DU ||oo 11, )-
Proof. Let
U(z,y) = DU(z,y) — DU(0,y) — zp~ ' [Df*(0,y) — ¢DU(0,y)]-
Then U(0,y) = 0 for all y and
LU(z,y) = Df*(z,y) +D;DU(0,y) — ¢DU(0,y) + cxp ' [D;Df*(0,y) — ¢D; DU(0,y)]
— [Df*(0,y) — ¢DU(0,y)] — zgp~ ' [Df*(0,y) — ¢DU(0,y)]
= [Df*(z,y) = Df*(0,y)] +eDyDU(0,y) + eap™' [DyDf*(0,y) — ¢DyDU(0,y)]
—zqp~ ! [Df*(0,y) — ¢DU(0,y)],
which implies that
|LU (2, 9)| < @)l f*]l|pj41.00.1, + D DU |01, +exp™ (1 +q)([ID; D f*||oo,m, + [|D; DU | 0,1m,.)
+aqp™ (1 + @) (IDf*[lso,n, + [1DU |0, )-

But L(2ep~tz + 2?) = 2ep~!(p + qx) — 2 + 2pz + qz* > 2px. Consequently we can choose a constant C
sufficiently large and independent of ,U and f* in such a way that the function

(3.8)  W(z,y) = Ci [ezl|DyDU|lom, + (2ep~ " + @) (Il p)12,00,m. + IDUlloo 11, + 105 DU|lso,11,)]
is a barrier function for U(z,y). By Lemma 3.1
(3.9) U (2, )| < ¢(x,y) for all (z,y) € M.
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Now for all y,
U(x,y) + ap~' [Df*(0,y) — ¢DU(0,y)]

)

DUL(0,y) = tim 2U@Y =DUOY) _
z—0t T z—0t T

which by (3.8) and (3.9) implies that
| DU (0,y)—p~ [Df*(0,y) — ¢DU (0, y)]]
< G [ellDyDU |so,m, + 2ep™ (1 lipj42,00,11. + 1DUlloo,m, + [1D5DU o0, )]

But L(DU) = Df*, so (—eD3DU — eD,DU + pD,DU + qDU)(0,y) = Df*(0,y) for all y. Invoking
(3.10) now shows that [(eD; DU + €Dy DU)(0,y)| < Cie[p|| Dy DU ||oo,m, + 2(||f* Il pj42,00,m. + DU |0, +
|D2DU |so,11,)]- It follows that
(3.11)  [D2DU(O,y)| < CoIDEDU set, + 2C1 (1| by, + 1DUlao,) for all g,
where Cy =1+ (2 + p)Ch.

Furthermore, L(D2DU)(x,y) = D2D f*(x,y) for all (z,y) € II,. From this identity and (3.11), one can
use a constant barrier function and Lemma 3.1 to get

(DDU)(2,y)| < CollDyDU lo, 1, + 2C1(1f*[lp42,00,1, + IDUllso.) + ¢ IDZDF* [loo1, on I,

which proves the desired result. m

(3.10)

Finally we combine the previous three Lemmas in the following definitive result.
Theorem 3.5. Let m and n be non-negative integers. Let f* € W™t Then there exists a constant C
such that
1D DyUlloom, < ClIf*Ilmn,o0,1. -
Proof. We use induction on m. The cases m = 0,1 are proved in Lemmas 3.2 and 3.3. Let k be a

positive integer. Assume that the Theorem holds true for m = 0,1,...,k. Let n be a non-negative integer.
Applying Lemma 3.4 with D = D¥=' D2 and invoking the inductive hypothesis yields

1D Dy Ulloo,t, < CUIF* Ntnt1,00m. + 1DUlloo,m1, + 1Dy DUloo,m,) < Ol lktn+1,00,11, -
Yy y
That is, the Theorem holds true when m = k + 1. By induction we are done. m

The second incoming half-plane problem defines u4 in (2.13). That is, we seek bounds on the derivatives
of the solution of the boundary-value problem

(3.12) Lus =0o0n I, wu4(0,y) = ha(y) for y € R,
where hy € C?4%(R) is an odd function of y and

3.13 W (y)| < Ce™/2e=Valll/ Ve for | =0,1,...,20.
( ) | 4 Y P ’

In (3.13) the boundary data behaves like a characteristic boundary layer sampled at x = 0, and one expects
that this layer behaviour will be convected downstream; furthermore, there is no other reason to expect layer
behaviour in the solution ug. The particular assumption (3.13) comes from Theorem 3.10, because in (2.13)
part of the data hyq comes from the solution of a grazing half-plane problem. While (3.6) is also an incoming

half-plane problem, its solution U contains no layers and so is quite different in nature from u,.
Define ¢1(z,y) = exp(—qz/(2p)) exp(—/qy/(2y/2)). Then on Il,,

(3.14) Loy (z,y) = Asgr(z,y), where Ay = —e(q/(2p))*> —q/4—q/2+ ¢ > 0 for e < p°/q.
This inequality implies that
(3.15) L(z¢1)(z,y) = zL1(z,y) — 2e(d1)z(x,y) + ph1(z,y) > po1(z,y) on Il,.

These barrier functions will be used in the following result, which bounds the derivatives of ug4.
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Theorem 3.6. Let € < p?/q. Then there exists a constant C such that for all (x,y) € Il,,
(3.16) | D Dyua(z,y)| < Ce"?¢, (z,|y|) for m >0, n >0 and 2m + n < 2.

Proof. The data of the problem imply that uy, € C?6*(11,).

We use induction on m to prove first that for all (z,y) € II,,
(3.17) |Dy" Dyua(z,y)| < Ce "2 ¢, (z,y) form >0, n >0 and 2m +n < 2(.

If m = 0, then by (3.13) one can choose a constant C such that for n < 2¢ one has |h{™ (y)| < Ce"/2¢,(0,y)
for all y > 0. Now (3.14) implies that

L(C’s”/2¢1 (z,y)) >0= L(D;Lu4(:c,y)) on IL,.

Thus Ce™2¢, is a barrier function for Djuy on 11, and the case m = 0 is complete.

Next, assume that (3.17) holds true for m = k, where k is some non-negative integer, and all n satisfying
2k +n < 20— 2. Let n be a fixed non-negative integer with 2(k + 1) + n < 2¢. Set

ia(x,y) = Dy Dlus(z,y) — D5 D}us(0,y).
Then 4(0,y) = 0 for all y and (3.12) implies that Liy(z,y) = 6D’;DZ+ZU4(O,y) — qD’;DZU4(0,y). By the
inductive hypothesis, for 2k +n + 2 < 2¢ we get
|Lia(z,y)| < Ce™" 1 (2, y).

Hence, by (3.15), one can choose a barrier function to prove |iy(z,y)| < Ce "/2x¢,(x,y) on I, provided
that 2k +n 4+ 2 < 2¢. Thus for all y > 0,

lim Uy (Z’, y)
z—0t T

| DEF DTy (0,y)| =

‘ < Ce™?¢1(0,y).

From (3.12), L(D}™ Djug)(z,y) = 0. Recalling (3.14), it is now clear that one can construct a barrier
function showing that | DEF! Dl (z, y)| < Ce™? ¢y (x,y) on II, provided that 2k +n+2 < 2¢. That is, (3.17)
holds true with m = k + 1 and the induction is complete.

The bound of (3.17) implies (3.16) for y > 0. But the function h4(y) is odd, which implies that us(z,y)
is an odd function of y. It follows that (3.16) holds true also for y < 0, which completes the proof. m

The function ¢; decays rapidly away from y = 0, so (3.16) shows that all layer-type behaviour in uy4
occurs in a narrow region immediately downstream of that small portion of the y-axis where h4(y) changes

rapidly. This is consistent with our intuition.
3.3. Grazing half-plane problem

Next, consider the “grazing half-plane” problem that defines the function u; in (2.3). The associated

conditions for a maximum principle on II, are stated in the next Lemma.

Lemma 3.7. Set r = \/x2 +y2. Let ® € C*(II,) satisfy L® > 0 on II,, ®(z,0) > 0 for z € R and

/ / (14 7r)"Y2Ld (2, y)e "/ ) dzdy < oo,
e=0Jy

=0 =—00
0 o]
/ / (1+ r)_1/2L<I>(m,y)e_q“71Tda:dy < 00,

/ (1 + 2)732®(z,0)e~ P2/ ) gy < oo,
0

0
1+ |z))~%?®(z,0 em1r el gy < 00,
(

— 00



where k = \/p? + 4eq. Then ®(z,y) > 0 in II,. If U € C*(I1,) satisfies |LU (z,y)| < L®(z,y) in II, and
|U(z,0)| < ®(z,0) for x € R, then |U(z,y)| < ®(z,y) in II,.

Our concern is derivative bounds for the solution of the following problem:
(3.18) Luy =0onII,, wui(x,0) = gi1(z) for all z,

where g1 = 0 for z < —1, |g§i) (z)] < Ce~™® for x > —1 and i = 0,1,...,2¢; here a; is a positive constant
that satisfies a; > ¢/(2p).
For y > 0 the solution of the reduced problem in (3.18) is the function 0, which is in general inconsistent

with the boundary data at y = 0, so we expect u; to have a characteristic boundary layer along y = 0.

Lemma 3.8. Suppose that 0 < m < 2. Then there exists a constant C' such that
(3.19) D7 ui(z, y)| < Cllgillm,oo (2, y) on II,.

Proof. Now L([|g1llo,c0,r¢1(2,9)) = Azl|g1llo,c0,1(2,y) > 0 = Luy(z,y) on I, and [ui(z,0)] =
lg1(z)] < Cllg1llo,cor®1(,0) since a3 > ¢/(2p). A barrier function argument shows immediately that
lu1(z,y)| < Cllg1]loor®1(z,y) on II,. That is, (3.19) holds true when m = 0.

For m > 0, the function D™u; is the solution of a problem similar to (3.18) but with boundary data

9™ (2); applying Lemma 3.8 with m = 0 to this problem yields (3.19) with m > 0. m

For each integer n, let 7 denote the smallest even integer that satisfies i > n.

Lemma 3.9. There exists a constant C' such that forn =1,2 and m =0,1,...,2¢ — 2,

(3.20) | D Dy (2, y)| < Ce™"|lgillmn,00r1 (2, y) on 1L,

Proof. Solving the equation Lu = 0 for u,, and invoking the cases m = 0,1,2 of Lemma 3.8 to bound

the z-derivative terms, one gets easily
|Dyui (2,9)] < Ce™|g1ll2,00,r01 (2, y) on II,.

This proves (3.20) with m = 0 and n = 2.
We deduce the case m = 0 and n = 1 by means of an interpolation argument (cf. [8]). Let (z,y) € II,
be arbitrary but fixed. By the mean value theorem there exists y* € (y,y + 1/€) such that

|Dyu(a,y*)| = |[us(z,y +v/2) = ui(@,y)]/VEl < Ce™?||gullo .o mdi (,y),

where we used Lemma 3.8 and the fact that ¢ (z,y) is a decreasing function of y. Hence

Yy
Dyur(v,9)| = [Dyus(ay) + [ Dty
t=y*

*

Yy
< Ce™ 2|1 llo,00 1 (2, y) + C e lgill2,c0mpr (, 1) dt
t=y

< Ce™2|g1||,00 R 01 (2, 3) + 1 (2, y™)]
< Ce7 2| g1 |l2.00 61 (2, ).

Lemma 3.9 has now been proved for the case m = 0. For m > 0, the function D[*u; is the solution of

)

a problem similar to (3.18) but with boundary data gi’” ; applying the case m = 0 of the Lemma to this

function yields (3.20). m
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Theorem 3.10. There exists a constant C' such that forn =0,1,...,20+1 and m =0,1,...,20 — 7,

(3.21) | D Dy (w,y)| < Ce™"2|lgillmn,00r1 (2, y) on 1L,

Proof. We use induction on n. For n = 0,1, 2, the result is already proved in Lemmas 3.8 and 3.9. Fix
an integer k > 2. Suppose that the result holds true for n = 0,1,..., k. Now D’;_lLul = 0 yields

leDE uy (2, y)| = [(—eD2DE uy + pDe DE~ uy + gD~ uy) (2, y))|
< Ce=(k=1)/2 (Ellgilly i oor PRIl T 0or + alloilli— oo 2) 61 (2, 9),

where we used the inductive hypothesis. Hence

1Dy un (2, y)| < Ce™F D2 g g oo 1 (2, 9).

For each m, the bound

D7 Dy (,y)| < Cem B2y || o i (@,y)

then follows in the usual way by considering the half-plane problem for which D]*u; is the solution. By the
principle of induction the proof is complete. m
3.4. Outgoing half-plane problem

Finally, Section 5 leads to the “outgoing half-plane” problem
(3.22) MW = —eAW —pW, + ¢W =0on II,, W(0,y) = Wy(y) for all y.
Note that in the definition of the operator M the convection term has sign opposite to that in L, so the
convective vector here is out of II,. The appropriate maximum principle for this problem is given in
Lemma 3.11. Set r = \/22 + y2. Let ® € C?(Il,) satisfy M® > 0 on II,,, ®(0,y) > 0 for y € R and

/ / (1+ 7")_1/2M<I>(:t:,y)e_q“71rdxdy < 00,
e=0Jy

=0 =—00

/ (1+ [y) 22 (0, y)e 11/ ) dy < oo,

— 00

where k = \/p? + 4eq. Then ®(z,y) > 0 in I,. If W € C*(Il,) satisfies | MW (z,y)| < L®(x,y) in I, and
[W(0,y)| < ®(0,y) fory € R, then |W(z,y)| < ®(z,y) in II,.

The first result is applicable both to W and, subsequently, to other functions.

Lemma 3.12. Suppose that M Z(z,y) =0 on I1,, Z(0,y) = Zo(y) for all y and || Zo||co,r is finite. Then
|Z(2,9)| < | Zollcoge /= for all (z,y) € IL,.

Proof. Consider the function ¢(z,y) = || Zo||ooge™P*/%. Then ¢(0,y) = || Zollor > |Z(0,y)] for all y,
and M¢(z,y) = ql|Zo||core P/ > 0 = |[MZ(x,y)| for all (z,y) € II,. The maximum principle of Lemma
3.11 yields |Z(z,y)| < ¢(z,y) on II,. m

Set Co=1, C; = (2p~ ' +p)(1+4q), and C; = pC;i_1 + (1 4+ q)C;_s for i =2,3,.. ..

11



Lemma 3.13. If ||Wy||co,r Is finite, then

(3.23) W (z,y)] < Col|[Wolleore P25 for all (z,y) € I1,.
If ||Wo|2,00,r is finite, then

(3.24) W (z,9)| < C1l|[Woll2.c0re e /5 for all (z,y) € II,.

Proof. Inequality (3.23) is immediate from Lemma 3.12. To prove (3.24), we must first bound |1, (0, y)]|.
Set 8(z,y) = W(z,y) — Wo(y)e P*/¢ on M,. Then 6(0,y) = 0 for all y and

|MO(z,y)| = |[eWg'(y) — aWo(y)le /| < (W5 lloor + allWolloo R)e /"

Set
4e
P(z,y) = F(SIIWé’Iloo,R + ql[Wolloo ) (€777/29) — e7P2/%).

Then ¢(0,y) =0 =6(0,y) for all y, and

de p2 —px/(2¢e —px/(2¢e —px/e
MO, Y) = 2 (EWy o + alWoll ) [4—56 pe/() | g (e pe/(29) _ /)

> (W lloo.r + | Wolloo,r)e P2/ (22
> |M6(z,y)| for all (z,y) € II,.

By Lemma 3.11, |8(z,y)| < ¢(z,y) for all (z,y) € II,. Consequently for all y we have

A o0+ x
_ gy 0@0) + Woly)e P2 = Wo(y)
z—0t T
B, y) o |erE -1
< 1 LA Leal 1 -
- z—lg)l"' T + |W0(y)| zi{g‘* T
4e p D
= E(”W(;IHOO,R + qHWO“oo,R)Q_E + z |Wo(y)]
(3.25) < Cre™H [ Wollz,c0,&-

Apply Lemma 3.12 to W, to get |W.(z,y)| < C1||[Woll2.coze te P*/ on 1I,. m
We can now give a bound on all derivatives of solutions of (3.22).

Theorem 3.14. Let m and n be non-negative integers. Suppose that ||Wo||m+n,cor is finite. Then
(3.26) |Dy" Dy W (z,y)| < ConIWollmtn.com e ™e P2/ for all (z,y) € II,.

Proof. We first prove the result using strong induction on m under the assumption that n = 0. The
cases m = 0,1 have been dealt with in Lemma 3.13.

Assume that the Theorem (with n = 0) holds true for m = 0,1, ..., k, where k is some positive integer.
Suppose that [|[Wollz77 , p is finite. The function Wy, satisfies MWy, = 0 on II; and Wy, (0,y) = Wy'(y)
for all Y . That is, Wy, is the solution of a problem similar to (3.22) but with boundary data Wy'. Observe
that [|Wy'[lz— .. g is finite. By the inductive hypothesis (with m =k — 1) applied to W,

(3.27) D5 Wy (2, 9)] < Crma Wl o m e * e P/ < Cha[Wolligg oo me e P/°
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for all (x,y) € II,. When the equation MW = 0 is differentiated k — 1 times with respect to z, one gets

eDy MW (2,y)| = |(—e Dy ' DyW — pDgW + qDy ' W)(,y)|
< (Crar WolliT ooz F 2 + PCRIIWollg o 28" + ¢Ck—1 [Wollg=g oo pe ¥ ) e P*/*

< CrirWollig o & e 7/ for all (z,y) € T,

by (3.27), the inductive hypothesis, and the definition of Cj41. This proves the result for the case m = k+ 1.
By the principle of induction, the proof is complete for the case n = 0.

If n > 0, then apply the result just proved to the function DyW, which satisfies a problem similar to
(3.22) but with boundary data W.". m

4. Bounds for z

In this section we obtain bounds for the derivatives of the function z that appears in the expansion
(2.12). The bounds are obtained by working directly with the solution formula for the incoming half-plane
problem that defines z. As a consequence of these bounds, bounds for the solution of (2.1) are derived at
the end of the section.

From (2.10), z is the solution to the problem Lz = 0 with boundary data ¢ = Zj ¢j¢;. By linearity it
suffices to study the problem Lz = 0 with boundary data ¢;. Fixing j and using the notation b, = 2*b;, (;

is given by
v+1

Gy) =D du(sgn y)e v/ Ve,
n=0

We shall use the following notation: z, is the solution to the following half-plane problem: Lz, = 0 on I,

zu(0,y) = (sgn y) exp(—5u|y|/(2\/c:)) for y # 0. Thus z(z,y) = Z:E) duzu(z,y) on II,. From (2.7) the
numbers d,, satisfy

v+1
(4.1) > dbk=0for k=0,
pn=0

Equations (4.1), which are an expression of the compatibility satisfied by the data of (2.1), will be used in
what follows. The value v = —1 signifies that g satisfies no compatibility; in this case, the d, satisfy no
linear relations.

We seek a bound on all derivatives of z on the half-plane I, = {(z,y) € R? : > 0}. Our methodology is
the following: first bound z (Lemmas 4.1 and 4.2), then differentiate an integral representation of z to bound
all its even-order y-derivatives (Lemmas 4.5 and 4.7), use this result to bound the odd-order z-derivatives
(Lemma 4.9), and finally invoke these bounds in a Kellogg and Tsan-type argument that bounds all mixed
derivatives of z (Theorem 4.10). In the final result (Theorem 4.11) we obtain derivative bounds for the
solution of the quarter-plane problem (2.1).

We start with the solution formula for z,. From (3.4) with f = 0, p1 = p, p» = 0 and h(y) =

(sgn y) exp(—bulyl/(2vZ)),

° : 1
(4.2) @mwzi#wm/<mﬂﬂMm@—mwmmw,
2em T

— 00

where r2 = /2% + (y — £)? and the functions {K;}32, are the standard modified Bessel functions of the first
kind that vanish at infinity [1, §9.6]. Since z,(0,y) is discontinuous at y = 0 the maximum principle cannot
be used directly to obtain bounds for z,. However bounds are readily obtained, for r < ¢, from (4.2).
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Lemma 4.1. For all (z,y) € I, with r < e, we have |z,(z,y)| < C for each p.

Proof. Since x < ¢, (4.2) implies that

g T2

C 1
(4.3) |zu (@, y)| < - (/ +/ ) — Ky (kr2/(2))dt = Jy + Ja,  say.
[t—yl<e Jlt—y|>
To estimate J;, observe that < ¢ and |t — y| < € imply that xkry/(2¢) < C, so K1(kr2/(2e)) < Ce/ry (see
[1,(9.6.9]). Hence

(4.4) Jlg@/ Sdt=C a dt < C,
It

€ —y|<e T2 t—y|<e r? + (t - y)2 -

as the indefinite integral here is C'arctan((t — y)/z) and |arctan(-)| < 7/2. In J3, |t —y| > ¢ implies that
kra/(2€) > K/2 > p/2 > 0, so [1,(9.7.2)]

K (kr2/(2¢)) < C(e/ra) /e 72/ (32) < C(e/ry)t/2erltul/(22)

Hence

(4.5) Iy < @/ %e—n\t—yvms) it
[t—y|>e Ty

By the inequality 2ab < a? + b2,

Hence

xr xr
(4.6) J<C — _dt+Cet / e Rty 29 g <
t—y|>e T2+ (t —y)? lt—y|>e T2

since the first indefinite integral is C arctan((t — y)/z) and in the second integral z/ry < 1, after which this
integral can be evaluated exactly. Combining (4.3), (4.4) and (4.6), the proof is complete. m

From §3, recall the function ¢ (x,y) = exp(—qz/(2p)) exp(—,/qy/(21/2)). Define
¢2(z,y) = exp(—qz/(2p)) exp(—Py/ (2VE)),

where # = min{,/g,bo, -, by4+1}. Then Lo (x,y) = Ases(w,y), where Ay = —e(q/(2p))*—3*/4—q/2+¢ > 0
for ¢ < p?/q. For each p > 0, set

I,,={(z,y) € R*: x>0, Va2 +y2 > p} and Q, = {(z,y) € R? :2 >0,y > 0, /22 +y2 > p}.

Lemma 4.2. There exists a constant C' such that for all (z,y) € II,, |z.(z,y)| < Coa(z,ly|) for p =
0> ]-7 eVt 1 and |Z(1‘,y)| S CQSZ(:U: |y|)

Proof. The bound on |z| follows immediately from the bound on the |z,|. Fix . Lemma 4.1 implies
that |z, (z,y)| < Coa(z, |y|) for \/W < /g, so it remains only to prove this inequality on f[m’ﬁ. The
boundary conditions for z, form an odd function of y, and it then follows from Lz, = 0 that z,(z,y) is an
odd function of y. Thus to estimate |z, (z,y)| on II, /., it is enough to estimate |z, (z,y)| on Q z. As z,
is continuous and odd on I, 2, (z,0) = 0 for all z > 0. Now z, is defined on @ 7 by Lz, = 0 and certain
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data on the boundary of Q) : on the curved part of Q) z we know only that |z, < 1, while on the two
straight parts we have z,(z,0) = 0 and the boundary data z,(0,y) = exp(—IA)uy/(2\/E)) for y > y/¢. Thus
we can choose C' so that C'¢s is a barrier function for £z, on Q = » and the desired result follows. m

We now prepare for the derivative bounds. Let s =¢ — y in (4.2). Then

ol y) = = epe/29) | _ T geeve L g (s
e 2me s§=—00 vV 2 + s2 2e
+/Oo ebulst)/ove) L g (EVEZESTY
s=—y Va2 + 2 2e

Differentiating, on I, we have

(2)y (2, y) = 5 eP®/9) [—%/W utstn/eve) L (wm) i

2me \/1‘2 —+ 52 2e
7 0 N 2 2
L7 / e-bultn/eve) 1 g [RVTEESTY 0L 2 (591
2ve Js——y Va2 + s2 2e T 2
where r = /22 + y2. Differentiating again, a computation gives
b T e O [2 KT
(4.7) (zu)yy (@, y) = Zzzu(xay) + e e/ )a_y {;Kl (2—6)] on II,

where we used the earlier formula for z,(x,y). The identity (4.7) gives a simple relationship between z, and
its even-order y-derivatives. It enables us to bound these derivatives in Lemma 4.5.
Set A = kr/(2¢) and define the operator o by

1 a(+)
O=3a
Now
a() _8() Ox _ ky () _ [\ (1) 0() _ (K
(4.8) B ~ox oy 2o \z=2)\3)ax T =)o)
Hence (4.7) can be written as
(4.9) (2)yu( )_i)_i ( )+ﬂ pz/(%)@ lK()\)
' Wy Y) = g B Y T 2 © 27 \3WY )

We shall differentiate (4.9) repeatedly to obtain a formula for D2*z, (z,y).

Lemma 4.3. Let k be a non-negative integer. There exist constants ay,,,, which depend only on k and m,
such that

2k K%Y 1 pas K2\" om—2k—1_m [ 1
m=k+1
for all (z,y) € 0.

Proof. Use induction on k. The case k = 0 clearly holds true with ap; = 1. Fix k > 0 and assume that
(4.10) is valid for that k& and some constants oy k41, ..., Qg 2k+1. Define ag, to be 0 for m < k + 1 and

15



m > 2k + 1; these supernumerary terms enable us to write the sums below in a compact form. Then, using
(48),

D2k+1 Ky lK A _ 0 ™ 2\ 2m—2k—1_m lK A
VU aE GEW) =gy | 2 arn(gz) v (REO)

m=k+1
2k+2 I<.‘,2 m 1
= Z [(2m — 2k — ].)ak-7m + ak’m71:| <@> y2m—2k—2o_m (XKl (A)) .
m=k+1

Differentiating again, a computation gives

2
2k+2 | K7Y 1
Dy + 4—620' (XKl(A)>:|
0 2 2\ om—2k—2 _m (1
= a—y { Z [(Qm -2k — l)ak,m + ak7m_1] <4_62> Y o (XKl()\)>
m=k+1
2k+2
= Y {akmet + (4m = 4k = Dagm + (2m - 28)(2m = 2%k + Dot }
m=k+1
Ii2 m+1 S on . 1
(E) y2 2k 10 +1 (XKl(/\)>
2k+3

=3 {ak,m_g + (4m — 4k — 5) o m—1 + (2m — 2k — 2)(2m — 2k — 1)a,€,m}

m=k+2
I§,2 m o 1
(462> v # o </\ 1(>\)>’

since 2m — 2k —2 = 0 when m = k+1 and ag x—1 = ag,r = 0. That is, we have shown that (4.10) holds true
with k replaced by k& + 1 and agt1,m = Qkm—2 + (dm — 4k — 5)ag,m—1 + (2m — 2k — 2)(2m — 2k — D)ok m
for m = k+2,...,2k 4+ 3. By the principle of induction, the proof is complete. m

We next require an identity.

Lemma 4.4. For k=0,---, one has D*z(x,y) = A + B, where
v+1 82 k
A:Zdu 4_72 Zu(l‘,y),
pn=0

. k-1 |v41 B2\ 7| 2kt o \m
_ x/(2¢e m m i v 2m—=2(k—j)+1,,—m—1
B = - P/ (22) Z Zd“ (4_5> Z (—D)™ag—j—1,m (25) Y (k=) 41y K1 (N,

j=v+1 | p=0 m=k—j

and the outer sum in B is interpreted as 0 if v +1 > k — 1.

Proof. If k = 0 then B = 0 and the result, is obvious. Assume k is a positive integer. Applying D3*~?
to (4.9) and invoking Lemma 4.3 yields

2k b 2k—2 KT 2 ~ 2\ 2m—2k+1 1
D zu(z,y) = 4_2Dy “zu(m,y) + ﬁem/( ©) Z Qk—1,m (E) y?mo AL g <XK1()‘)> .

m=k
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Using this identity recursively, we get

Dzkzu(may)
2\ ? - o b2 263 K2\ . 1
_ | 2 px/(2¢e 2m—2k+3 _m [ —
= = D; u(z,y) + 271'52 e i Z Qk—2,m <4 2) Yy o ()\Kl(/\)>

m=k—1
2k—1 m 1
2m—2k+1 _m
+Zak 1m<4 2) y o (XKl()\)>]

P2 k k-1 b2 J 2k—2j-1 m . 1
= <4—Z> Zu(.r,y)—i- em/(% Z( > Z Qp—j—1,m <452> y?m2 k=it gm <XK1()\)>

j=0 m=k—j

Hence D}*z(x,y) = A + B; where, using the compatibility condition (4.1),

B, = KT epz/(22) kz:l Vzﬂd <b2>J %225 lak -1, ( >my2m2(kj)+1am (1[{1()\))
2 m 2
2me == sl 4e A

e k=1 |v+1 b2 I 2k—2j-1 m 1
_ z/(2¢) B 2m—2(k—j)+1 _m [ =
= 271'5‘2 €p Z Zdu (45) Z Af— —j—1m <4€2> Yy J g ()\Kl()\)> )

j=v+1 [ p=0 m=k—j

by (4.1). Now [1, (9.6.28)] provides the useful identity

m (%fﬁ(/\)) = (=1)"™AT" K1 (V),

SO
k—1 PH J"I 2k—2j—1 2\ ‘

B, = 271-52 eb/(2¢) Z [Zd (45) J Z .(—1)m04k7j71,m (@) y2m72(k73)+1/\7m71Km+1(/\)_
j=v+1 | p=0 m=k—j

Recalling that A = kr/(2¢) gives B; = B. m

Now we can proceed with the estimation of derivatives. Set

0 ift<0,
H(t)_{1 if>0,

and

SR G P
16e+/22 + y? 2p

Lemma 4.5. Let r* > € be given. Fore <r <r* and k=0,1,..., there is a C = C(r*, k,v) such that
(4.11) |D§kz(x,y)| < Cek [¢2($, ly) + H(k —v — 1)r”+1_k¢3(x,y)] .

Proof. If £ = 0 the result is immediate from Lemma 4.2, so assume that k is a positive integer. Let
(z,y) € II, with e <7 < r*. Lemma 4.2 implies that

v+1
(4.12) A< Ce S ] 2w, y)] < O™ da(a, ly))-

n=0
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For r > & we have A > k/2 > p/2 > 0, so by [1, (9.7.2)] there exists C such that
(4.13) 0 < Ki(\) <CAXY2e X for0<i<2k+1.

Thus in estimating B one must bound exp[(pz — xr)/(2¢)]. Now

pT — KT p*z? — K7r? . Py’ —deqr® _ —p*y® — deqr? < py’ gz

4.14 = =
(4.14) 2e 2e(px + Kr) 2e(px +rr) dekr - 8r 2p’

where in the final inequality we used k = \/p? + 4eq < 2p for ¢ sufficiently small. Applying these inequalities
and using z < r, the quantity B is bounded by

k-1 2k—2j-1 . o\ 1/2 o -
L3 et s et (5 e (o (<2)
j=v+l m=k—j D

—1 2k—2j-1 2 m—(k—j)+1/2 oy g
—k: k
oSy e (%) o (-2 ) exe (57

Jj=v+1 m=k—j

k—1 2k—2j—1 o -
—k,.j—k _ _ i
<C Z Z e "ri ™ exp < 165r> exp ( 2p>

j=v+1 m=k—j
(4.15) < CeFrrtt g (a,y),

since r < r*, where we used the standard inequality t*e~“* < C for all t > 0 and fixed A > 0. Using our
bound (4.12) for A, using (4.15) to bound B, and recalling that B vanishes when v +1 > k — 1, the proof is
complete. m

In the next result the assertion of Theorem 4.5 is simplified by absorbing ¢3 into ¢» and by removing
the function H.

Corollary 4.6. Let r* > ¢ be given. Fore <r <r* and k =0,1,..., there is a C = C(r*, k,v) such that
(4.16) D z(x,y)| < C[e* + e T F] ga(x, [y]).

Proof. We assert that there is a constant C' such that ¢3(z,y) < C¢a(z,|y|) on I,. If py?/(16er) >
Blyl/(2v/2), then clearly ¢3(x,y) < ¢a(x, |yl). If py®/(16er) < Bly|/(2y/2), then |y| < 83y/Er/p, so

2k _ 2.k 2 _
exp (wpr ) d2(, [y|) > exp < 23:3) exp <4ﬁ 48 r) > exp < 239 ) > ¢s(z,y),

p

so the assertion is shown. Combining this fact with 0 < H(-) < 1, (4.16) follows from Lemma 4.5. m
We now treat the case r < e.

Lemma 4.7. For k =0,1,..., there is a C = C(k,v) such that if r < 2¢,
(4.17) |DYz(w,y)| < C [e7F + 7V P22k

Proof. Taking r < e and referring to Lemma 4.4 one has |4] < Ce~*. Since |Kp41(A)] < C'A~™7 1 for
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A< C (see [1, (9.6.9)]),

k—1 v+1 2k—2j—1 )
|B| < Cre ! Z lz EJ] Z Efmy2m72(k7])+1rfmfle+1()\)

j=v+1 = m=k—j
2k—2j-1
SCZ‘E Z Z e—m 2m 2(k— j)-‘rl —m— 1(7‘/6)_m_1
j=v+1 m=k—j
2k—2j—1
— er —1 Z E 72 k—j)+1 Z y2m —2m
j=v+1 m=k—j

< Czr2et 2 el iy 2(k—j)+1 2(’c P p—2(k—=j)
j=v+1
k—1
= Cgyr—272k Z e=Ip?
j=v+1
S CmyT7272k:671/717_21/+2

— CS_V_1T2V+2_2k.
In the penultimate step we have used the fact that 0 < r?/e < 4e < 4. We therefore get

|Dzkz(1‘,y)| <CeF e 122720 for r < e

]
To get estimates for odd order derivatives we need an interpolation inequality.
Lemma 4.8. Let f € C*[y,y + §] for some § > 0 and some y. Then
If'(y)l <2671 max |f(n)|+& max |f"(n)].
n€ly,y+90] n€ly,y+0]
Proof. By the mean value theorem there exists 1’ € (y,y + d) such that
If' 0 =07 Ffly+0) — f(y)| <207! max |f(n)].
n€ly,y+4]
Hence )
7
! =1f'(n') - "(s)ds| < 267! max +4 "
£ = |70 = [ 1) ds <2570 max 1)1+ 0 e 150
]

The odd-order y-derivatives of z can now be estimated.
Lemma 4.9. Let r* > € be given. For k =0,1,..., there is a C = C(r*, k,v) such that
(4.18a) |D§k+1z(m,y)| < Cle™ 712 g e v =ty H=2k] for r < ¢,
(4.18b) |D§k+1z(m,y)| < Cle k12 4 g7 k120 =hH1/2 0 (2 |y]) for & <7 < r*.
Proof. As z(z,y) is an odd function of y, without loss of generality we can take y > 0. Let (x,y) be

a point with r < e. Set I = [y,y +r] and r' = /22 + y'2 where y’ € I. The quantities r/r' and r'/r are
bounded in I. From Lemma 4.7,

ma)I<|DZkz(x,y')| < C(E_k +E_V_1’I'2V_2k+2), mg}(|D2k+2 (:C y)| < C( —k—1 +8_V_17“2V_2k).
y'e Y’
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Using Lemma 4.8 with f(y) = D2*z(x,y) and & = r we obtain
|Dzk+1z(m,y)| < C(T’ilﬁik + 671/717,_21172’64’*1 + T,Efk:fl + 671/71T21/72k+1)'

We want to show that each of the 4 terms on the right hand side of this inequality is bounded by the right
hand side of (4.18a). For the second and fourth terms this is seen by inspection. For the first term, we have
r ek < Ce v 1p2v=2k+1 provided r2¢ 722 < Ce®~v~1, and this is true since 72 < r < €. For the third
term, since r < Ce we have re #*~1 < ¢~%~1/2_finishing the proof of (4.18a).

Next, let (z,y) be a point with & < r < 7*. Set J = [y,y +¢'/?r] and r' = \/22 + y'2 where y’ € J. The
quantities r/r' and r'/r are bounded for y' € J. Also, ¢2(z,|y'|) < ¢2(z,|y|) for y' € J. Therefore, from
Corollary 4.6,

(4.19)
max 1DyF2(z,y")| < Cle™® + e " F ) o (a, ly)), max 1Dy 22(2,y")| < Cle™ ™+ 751 F) g (a, Jy)).

Suppose v < k. By Lemma 4.8 with f(y) = D}*z(z,y) and § = e'/211/2 one gets
|Dzk+1z(m,y)| < C(S_k_l/Q’f’_l/Q + 6—k—1/2ru—k+1/2 + E_k_1/27“1/2 + E_k_1/2’f'”_k+1/2)¢2($, |y|)

We want to show that each of the 4 terms on the right hand side of this inequality is bounded by the right
hand side of (4.18b). For the second and fourth terms this is seen by inspection. Since v < k — 1 we have
pEL/2 < pr=k+1/2 for ¢ < p*, Applying this inequality to the first and third terms, we obtain (4.18b). In the
case v > k, inequality (4.19) implies

?gﬁi'l)zkz(w,y’)l < Ce™Fgy(x, ly)), r;}g§|DZk+22(w,y')l < Ce™ o (w, [y|) for e < v <7

Lemma 4.9 with § = £'/2 then gives (4.18b). m
The main result of this section follows. It extends the previous bounds to all derivatives of z.

Theorem 4.10. Let r* > ¢ be given. Let m and n be non-negative integers. Then there exist a constant
C, which depends on r*, m,n and v, such that

(4.20a) |D;”D;‘z(:r,y)| < 0[67”/2 +gvttomen g 67”711/1(1/,m,n,r)] for r <,
(4.20b) |D;”D;‘z(:r,y)| < Cen/? [1 4 prHmmen/2l G () |yl for e <7 < ¥,
where

2wa2=m=n|ln | ifm 40 < 20+ 2
T nr I m n

v,m,n,r) = . - ’
W ) {r2”+2_m_” ifm+n>2v+2.

Proof. We use induction on m. The case m = 0 is covered by Corollary 4.6, Lemma 4.7, and Lemma 4.9.
Let M be a non-negative integer. Assume that (4.20) holds true for m = M and all n > 0. We shall use a
variant of the argument in [6, Lemma 2.2] to deduce a bound on |[DY+*D?z(z,y)|, where n > 0 is fixed and
satisfies (M + 1) +n > 2v + 1.

Now 0 = (Di”D;‘)Lz = L(Di”D;‘z) on II,,. That is,

where we set w(z,y) = DY D2z(x,y) and s(z,y) = (DY D2z + ¢DY DI'z)(x, y).
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Fix (z,y) € II, with r < 1. Let £ € (2, + 1). Multiplying (4.21) by the integrating factor —e e P*/*
then integrating from £ to x + 1, we obtain

z+1
el + 1,y)e PEHV/E _ (6, y)erE/s = —e=! / P s(t,y) dt,
t=¢

ie.,
r+1

(4.22) we (€,y) = we(a + 1,y)e PEFI=0/e 4 o1 / e P02t y) dt.
1=

Integrate (4.22) from E =z to { =z + 1:

rz+1

rz+1
w(z +1,y) —w(z,y) = ep (1— e P Y, (e +1,y) +2! / / e P19/ 5(t,y) dt de.
t=¢

=x
Hence
rz+1

(4.23) we(r+1,y) = P [w(x +1,y) —w(z,y) —e ! /

r+1
—p(t=8)/eg(t ) dt d€| .
5(1—6—1’/5) /t:g e s(t,y) 3

=z

In (4.22) take £ = z and substitute (4.23):

pe*p/s ) z+1  potl o
=21 —op/2) - — e —p(t—¢§)/¢c
wa(,y) = 6(1—6*17/5) {w(l‘—f—l,y) w(r,y) — € /zz /t:g e s(t,y) dtdf]
z+1
vl / e "D st y) dt
t=x
pe P/e o1 oo
:m {w(m-i—l,y)—w(x,y)—/tzz S(t’y)/zzg Lo P8/ g¢ gt
z+1
(4.24) +5—1/ e Pm0)/Es(t,y) dt.
t=x

But f;:z e tePt-8/=d¢ < C and e ? ftz;;l e Pt=2)/= 4t < C, so the identity (4.24) implies that

(4.25) walaey)| < Cloto + Ly)| + oG] +_pax Is(e.y)])

Suppose that ¢ < r < r*. For fixed y (and fixed m,n), the bound (4.20b) is monotonically decreasing
as a function of = if m +n/2 > v + 1, while if m +n/2 < v + 1 then r*+1=™-7/2 < C. In both cases it
follows that when using (4.20b) to bound terms of the form |w(-,y)| and |s(+,y)|, the worst case occurs when
the first argument is as small as possible. Thus (4.25) and the inductive hypothesis imply that

)| < O [L 7 H1-Mn2] G (a, Jy]) 4+ e (/2 [1 o LMD g gy )

(4.26) < Cem/? [1 + 7“"+17(M+1)7n/2] pa(z, [yl),

which is the desired inequality.
Now suppose that < e. Instead of using (4.24), we multiply (4.21) by the integrating factor —e~'e=P%/¢
then integrate from x to /€2 — y2. This yields

527y2

wy (Ve2 —y?y)e PV st-y?fe wz(m,y)e*’”/g = —5*1/ ef”t/ss(t,y) dt,

t=x

21



ie.,
52 2

w,(2,y) = w, (V2 — 7, y)e PV /e 4 oo / eP=D s (1, y) dt.
t=x
Hence
E2fy2
(4.27) lwe (z,9)] < |we (V2 —y2,y)| + 6,1/ e PE=)/2|5(t, )] dt.
t=x

We use (4.26) to bound |w,(1/€2 — y2,y)| and the inductive hypothesis to bound |s(t,y)|, obtaining

|lwe(z,y)] < C {5*”/2 [1 + 5”+1*(M+1)7n/2j|

+e7t / e~Plt—)/s [a‘"/Q v ti=M=n ==Ly (y, M, n, /12 + y2)] dt
t=x
22 g2

Yy
+ / eTPlt—o)/e [s—(”+2)/2 e HI=M=(n2) 4 cmv=lyy(y Mon + 2,/ + y2)} dt}
t=x

[e2—y2
< C {8—n/2 +6V—M—n +6—l/—1/
t

=T

[e2—y2
< C {8—n/2 +6V—M—n +6—l/—1/

t=x

Y, M,n+ 2,/ +y2)dt}

w(u,M,n+2,t+y)dt}

(4.28) <C {5_”/2 g tI=(MAD=n ==Ly, Nf 4] g, r)}
on evaluating the integral. This is the desired inequality.
This completes the inductive step, and the theorem is proved. m

Ifm+n>2v+2andr <ethen e’ """ < Ce v Y)(v,m,n,r). Also, ) <Cifm+n<2v+2. It
follows that (4.20a) implies

(4.29a) |D;”D;‘z(x,y)| < 0[67”/2 + 6"“7’”*”] form+n<2v+2andr<e,
(4.29b) |D DYz (z,y)| < C’[a‘”/Q +e7" 7 In r|] form+n=2v+2andr<e,
(4.29¢) |D;”D;‘z(a:,y)| < C’[E_”/2 + 6_”_1r2”+2_m_”] form+n>2v+2andr<e.

Using Theorem 4.10 we return to the quarter-plane problem of Section 2 and prove

Theorem 4.11. Let g, h satisfy (2.2) and suppose the first v + 1 compatibility conditions for the problem
(2.1) are satisfied. Let u satisfy (2.1). Then for r* > ¢ and integers m and n satisfying 2m +n < 2{ there is
a constant C' depending on r*,{ and v such that

(4.30a) |D;”D;‘u(a:, Y)

< CO(Go + Hyp) [67”/2 + s”“*m*”] form+n<2v+2andr <e,
(4.30Db) |D;”D;‘u(x,y)| < C(Gap + Hay) [5_”/2 +e7" 7 In r|] form+n=2v+2andr<e,
(4.30c) |D;”Dgu(a:,y)| < C(Gae + Hzp) [6_”/2 + 6_”_1r2”+2_m_”] form+n>2v+2andr<e.

(4.30d) |D;”Dgu(a:,y)| < C(Gap + Hap)e™™? [1 + r”“*m*”/Z] e 17/ e=BY/2VE) for ¢ < p < p*.

Proof. We use the decomposition (2.15). From Theorem 3.10, [DF*Dl'uy | < Ce=/2e=12/(2P) e=V1u/(2V%)
for m+n < m+n < 20 Setting m = 0 it follows that (2.6) holds, and therefore (2.14) holds. Applying
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Theorem 3.6 we find that |D*Dl'uy| < Ce™/2e~12/(2P)e=Va/(2V) for 2m + n < 20. The derivatives of 2
are bounded using Theorem 4.10. m

5. The unit square problem

We now return to the problem (1.1). Our purpose is to derive pointwise bounds for the derivatives of
the solution u. Our method consists in expressing the solution as a sum of half-plane problems and quarter-
plane problems (see (5.13)) plus a remainder term. The remainder term satisfies (1.1) with data that is both
completely compatible at the corners and exponentially small. The final bounds show the various phenomena
experienced by u: boundary layer on the side x = 1, characteristic boundary layers on the sides y = 0,1,
and corner singularities at the four corners of Q.

To start, let f* be a smooth extension of f from @) to the half plane z > 0. Also, let g} and g} be
smooth extensions of g,, and g, from [0,1] to (—o0,00), and let g¥ and g} be smooth extensions of g5 and
gn from [0, 1] to [0, 00). Let U be the solution to the incoming half-plane problem

LU = f* for z > 0,

(5.1)
U(0,y) = gy,(y) for —oo <y < oo.

Similarly, let W be the solution to the outgoing half-plane problem

LW =0forx <1,

(5.2)
W(l,y) = g:(y) —U(1,y) for — oo <y < oo.

Sharp derivative bounds for U and W are given in Theorem 3.5 and Theorem 3.14.
Next we define “incoming corner functions” zgg and zp; as solutions to the following quarter-plane
problems:
Lzpo=0for0<z, 0 <y,
(5.3) zoo(z,0) = g (z) — U(x,0) for 0 < z,
200(0,y) = 0 for 0 < y;

Lzpy =0 for 0 <z, and y < 1,
(5.4) zo1(z,1) = gn(x) —U(z,1) for 0 < z,
201(0,y) =0 for y < 1.

Set u' =u —U — W — 290 — 201. Then u' is the solution of the problem

Lu' =0in Q,
(5.5) u*(z,0) = gl (x), u*(z,1) = gL(z) for 0 <z < 1,
u'(0,9) = gu(y), w'(1,y) = ga(y) for 0 <y <1,

where
g;(l‘) = —W(l‘,O) - 2’01(1‘,0),
(5 6) grlz(x) = —W(l‘, 1) - 2‘00(1‘, 1)7
9e(y) = —200(1,9) — 201 (1, )



Theorem 4.11 gives information regarding the functions zgp and zp;. The values of zgg, 291 and g}u that
appear in the data (5.6) are exponentially small. The data of the problem (5.5) are compatible to arbitrary
order at the corners (0,0) and (0, 1), but the compatibility conditions at the corners (1,0) and (1, 1) are not
necessarily satisfied. To handle these incompatibilities we define functions z19 and z;; as solutions to the
some quarter-plane problems. For this, let x(¢) be a smooth function on (0, 1) with x(¢) = 0 near ¢t = 0 and
X(t) = 1 near ¢ = 1. Define 219 and z1; by the problems

Lzyg=0forz <1, 0<y,
(5.7) z10(x,0) = —x(z)W(x,0) for z < 1,
z10(1,9) = —x(1 —y)200(1,y) for 0 <y;

Lz =0forx <1, y<1,
(5.8) z11(x,1) = —x(x)W(z,1) for z < 1,
z11(L,y) = =x(y)zo1(1,y) for y < 1.

We will need some information concerning the “outgoing corner functions” 219 and z1;. This is derived
in the following lemma.

Lemma 5.1. Let r* > ¢ be given. Let g and h be functions on Ry that satisfy

|99 ()] < Gjede /" for j = 0,21,
|h9) (y)] < ng—j/2e—cy/\/§ for j=0,---,2¢,

for suitable sequences {G;},{H;}. Let p,q be positive and let z satisfy

L'z = —eAz —pz; +qz =0in Q,
(5.9) z(x,0) = g(z) for x > 0,
2(0,y) = h(y) for y > 0.

Suppose the first v+ 1 compatibility conditions for the problem (5.9) are satisfied. Then for integers m and
n satisfying 2m + n < 2¢ there is a constant C depending on {,v and r* such that

(5.10a)  |DJ'Dyz(z,y)| < Ce ™" [5*”/2 + 6"“*”‘*”] form+n<2v+2andr<e,
(5.10Db) |D;”D;‘z(:v,y)| < Cgm2m—n [5_”/2 +e " In r|] form+n=2v+2andr<e,
(5.10c) |D;”D;‘z(x,y)| < Qg 2mom [6*”/2 + 6*”*17“2”*2*’”*”] form+n>2v+2andr<e.

(5.10d) |D;”D;‘z(x,y)| < Qg 2m—n [1 + r”“*m*”/Z] e PP/ U/VE for e <p < ¥,
Proof. We make a transformation of the problem. Let z = e ?*/¢y. Then
Lz = L*(ef’”/gv) = e*m/g{ —eAv + pug + qv},

so v satisfies the boundary value problem

—eAv + pv, +qu =0in Q,
v(x,0) = g1 (z) for x > 0,
v(0,y) = h(y) for y >0,
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where g = eP?/% g satisfies

@) <0 Y | DmerlE||gtme) (z)] < Ce

mi1+me=m

We apply Theorem 4.11 with £ = m + %ﬁ and Gy = e~fGy. Since 2m 4+ n < 2¢, Theorem 4.11 and the chain

rule give the asserted estimates for D;*Dj/z. m

The derivative bounds in Lemma 5.1 contain both corner singularities and a rapid exponential decay

away from z = 1.

L — 219 — 211, we see that u? satisfies the problem

Setting u? = u
Lu?=0in Q,
(5.11) u?(z,0) = g2(x), u?(z,1) = g2(z) for 0 <z < 1,

u?(0,y) = g2, (y), u’(Ly) = g2(y) for 0 <y <1

where
92 (x) = =201 (x,0) — z11(x,0) — (1 — x(z))W (x,0),
(5 12) gi(l’) = —2’00(1’, 1) - 210(33: 1) - (1 - X(l‘))W(Z’, 1);
' 92(y) = =W (0,y) — 210(0,) — 211 (0, ),
92(y) = —[1 — x(1 — y)]200(1,y) — [1 — x(¥)]201 (1, ).

We now consider properties of the boundary data (5.12). First, we note that using Theorem 3.14,
Theorem 4.11 and Lemma 5.1, each of the functions g2, g2, g2 and g2 appearing in (5.12) is exponentially
small.

Second, we assert that the data of (5.12) are compatible to arbitrary order at the 4 corners. Consider
first the corner (0,0). One has

gf(m) = —201(z,0) — 211 (2,0) — W(z,0) near z = 0,
95 (y) = —210(0,y) — 211(0,y) — W(0,y).

Since z19(z,0) = 0, 201(0,y) = 0, these can be written as

92(z) = —z01(2,0) — 211 (2,0) — z10(2,0) — W (z,0) near x =0,
9a(y) = —210(0,3) — 211 (0, 9) — 201 (0,y) — W(0,y).
Now each of the functions zo1, 211, 210, W is smooth at (0,0), and it follows that the data is compatible at

(0,0) to arbitrary order. A similar argument shows the compatibility at (0,1). Next consider the corner

(1,0). One has
g2(z) = —201(x,0) — 211 (x,0) near z = 1,

9:(y) = —z01(1,y) near y = 0.

But z11(1,y) =0 near y =0, so
g2(z) = —z01(2,0) — z11(z,0) near x = 1,
9:(y) = —201(1,9) — 211 (1,y) near y = 0.

Each of the functions zo1, 211 is smooth at (1,0), and it follows that the data is compatible at (1,0) to
arbitrary order. A similar argument shows the compatibility at (1,1).
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Using the fact that the data in the problem (5.11) are both exponentially small and compatible to all
orders, one may show that derivatives of u? are bounded, uniformly in ¢, in Q.
From the above construction one has

(5.13) uw=U+W + 200 + 201 + 210 + 211 + 1°.

The derivatives of each of the terms in (5.11) have been estimated. This leads to our final theorem giving
bounds for the derivatives of w.

To state the theorem, for A, n = 0,1 we set ry, = \/(z — A)2 + (y — u)2. Thus, 7, denotes the distance
from (z,y) to the vertex (A, u) of Q. We also let vy, denote the compatibility of the data at the point (A, p).

Each term T, below describes the behaviour induced in the solution by the vertex at (A, u); the terms Tg,,
also include the effect of the parabolic boundary layers along y = . The term T'r describes the effect of the
exponential outflow layer at x = 1.

Theorem 5.2. Let m,n be non-negative integers satisfying 2m +n < 2¢ and m +n < 2¢ — 2. Then for all
(z,y) € Q, the solution u of (1.1) satisfies:

|D* Dyu(z,y)| < C(1+ Too + Tor + Two + Th1 + Tk)

where
Ty = E—me—p(l—m)/s’

and where for 4 = 0,1,

Top = ™2 47t 1mm=" for m 4+ n < 2w, + 2 and o, < €,
Tou = e™"/? 4 emvou=!|In Tou| for m 4+ n = 2vy, + 2 and 1o, < €,
Tou = e/? 4 5_”0“_1r§:°”+2_m_n for m +n > 21y, + 2 and 7o, <€,

Too = &~ "/? [1 + r6’8°+1_m_n/2] e~Y/VE for e < 700,

T01 = Ein/Z |:]. + T'ggl+1_m_n/2j| €7c(17y)/\/g for e S To1,

and
Ty, =g #m=n [5_”/2 + 5”1““_’”_”} for m+n < 2vy, + 2 and 1, <€,

Ty, = g m-n [6*”/2 +e " HlIn 7“1“|] form+n =21, +2and r, <e,
Ty, = ™" [5*”/2 + E’VIH’lerI“JrZ*m*"] for m +n > 21, +2 and ry, <,
Tip =g~ 2m—n [1 + rfé”“fm*”/z} e PU=2)/ee=cU/VE fo1 & < pyy,
Ty = 2™ " [1 + rﬂl—H_m_nﬂ] e PA=0)/ee=c=0)/VE for ¢ <.
The constants C' and ¢ depend on m, n and /.

Proof. We use the decomposition (5.13). Theorem 3.5 yields [|Dy'DyUllcc,@ < Cllfllm+n.co@ <
C||fll2z¢,00,¢@- From Theorem 3.14,

|DZ* DyW (z,y)| < Clllgellm+n,co,0,)) + UL ) lmtn,cor) Te < Clllgell2,00,0,1) + UL, )ll26,00,2) T

From Theorem 4.11, | D} Dy zoo (z,y)| < CToo. Applying Theorem 4.11 with y replaced by 1 —y, one finds
that |[D7* D} 201(x,y)| < CTor. From Lemma 5.1, DDy zi0(z,y)| < CTio. Applying Lemma 5.1 with y
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replaced by 1 — y, one finds that |D}* Dy 211 (2, y)| < CTi1. To bound u? we note that the boundary data
(5.12) of the problem (5.11) belongs to C?¢(]0,1]). Let G € C?(Q) be an extension of this boundary data
to all of Q. Let u® = u? — G. Then u? satisfies the problem

(5.14) Lu*=—-LGin Q, u>=0onT.

The boundary data of the problem (5.14) is compatible to order v = ¢ at the 4 corners of ), so (see the
discussion in §2) u® € C%¢(Q). An energy argument shows that

(5.15) e WPl (@) + 1| 2q) < CIEGIL2(q)-
Writing —Au® = e }[LG — pu3 — qu?], one obtains

[l (@) < Clle™ [LG = pu = qu’llza@) < O *2||LG|12q),

where we invoked (5.15). Continuing, one obtains
16| g (@) < Ce™F YD LG|| o) for k=0, -, 2C.

Since the data (5.12) are exponentially small, we obtain ||u?|| w2 (@) < C, and from Sobolev’s inequality,
[4?[l2¢-2,00,0 < C- m
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