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Abstract

We study that over a certain type of trees (e.g. all trees or all binary trees) with
a given number of vertices, which trees minimize or maximize the total number of
subtrees (or subtrees with at least one leaf). Trees minimizing the total number of
subtrees (or subtrees with at least one leaf) usually maximize the Wiener index, and
vice versa. In [10], we described the structure of binary trees maximizing the total
number of subtrees, here we provide a formula for this maximum value. We extend
here the results from [10] to binary trees maximizing the total number of subtrees
with at least one leaf—this was first investigated by Knudsen [8] to provide upper
bound for the time complexity of his multiple parsimony alignment with affine gap
cost using a phylogenetic tree.
Also, we show that the techniques of [10] can be adapted to the minimization of
Wiener index among binary trees, first solved in [5] and [6].
Using the number of subtrees containing a particular vertex, we define the subtree
core of the tree, a new concept analogous to, but different from the concepts of
center and centroid.

Keywords: center, centroid, subtree core, number of subtrees, Wiener index, multiple
parsimony alignment with affine gap cost, caterpillar, binary tree, tree



1 Terminology

All graphs in this paper will be finite, simple and undirected. A tree T' = (V, E) is a
connected, acyclic graph. We refer to vertices of degree 1 of T as leaves. The unique
path connecting two vertices v,u in 7' will be denoted by Pr(v,u). For a tree T" and
two vertices v, u of T, the distance dy(v,u) between them is the number of edges on the
connecting path Pr(v,u). For a vertex v of T, define the distance of the vertex as

gT(U): Z dT(vau)v

ueV(T)

the sum of distances from v to all other vertices. Let

T =5 3 orlo)

veV (T)

denote the Wiener indexr of T, which is the sum of distances for all unordered pairs of
vertices.

We call a tree (T,r) rooted at the vertex r (or just by 7T if it is clear what the root
is) by specifying a vertex r € V(7). For any two different vertices u,v in a rooted tree
(T,r), we say that v is a successor of u, if Pp(r,u) C Pr(r,v). Furthermore, if u and v
are adjacent to each other and dp(r,u) = dp(r,v) — 1, we say that u is a parent of v and
v is a child of u.

If v is any vertex of a rooted tree (T,r), let T'(v), the subtree induced by v, denote the
rooted subtree of T" that is induced by v and all its successors in 7', and is rooted at v.

The height of a vertex v of a rooted tree T" with root r is hy(v) = dr(r,v), and the
height of a rooted tree T is h(T) = max,cr hr(v), the maximum height of vertices.

A binary tree is a tree T such that every vertex of T has degree 1 or 3. A rooted binary
tree is a tree T' with root r, which has exactly two children, while every other vertex of T’
has degree 1 or 3. A rooted binary tree T is complete, if it has height h and 2" leaves for
some h > 0. In addition, we also take a single vertex to be a rooted binary tree of height
0.

A caterpillar tree is a tree, which has a path, such that every vertex not on the path is
adjacent to some vertex on the path. A binary caterpillar tree is a caterpillar tree, which
is also a binary tree.

For a tree T and a vertex v of T, let fr(v) denote the number of subtrees of T' that
contain v, let F(T') denote the number of non-empty subtrees of T.

2 The subtree core of a tree

Much research has been devoted to define the “middle part” of a tree. The first such

result is due to Jordan [7]. In a tree T, the branch weight of a vertex v, bw(v), is the

maximum number of edges over all subtrees of T which contain v as a leaf. By definition,

the centroid C(T) of T is the set of vertices minimizing the branch weight. Jordan [7]

showed that either C(T") = {c}, and bw(c) < 25+, or C(T) = {1, ¢2}, where ¢; and ¢, are
n—1

adjacent vertices with bw(c;) = bw(cz) = "3, and in both cases all other vertices have

branch weight strictly exceeding . Zelinka [11] gave an alternative characterization of



the centroid: C'(T) contains exactly those vertices u of V(T'), which minimize the distance
function of vertices, i.e. gr(u) = >, oy dr(u,v).

Jordan [7] also defined the center of a tree T', as the set of vertices minimizing the
function eccentricity ecc(u) = max,cy(r) dr(u,v), and showed that the center contains
one vertex or two adjacent vertices. (For a contemporary reference, see [9] 6.21 and 6.22.)
Adém [1] studied further concepts of centrality in trees.

Here we are going to define the “middle part” of a tree in a new way. Recall that fr(v)
denotes the number of those subtrees of T', which contain v. Define the subtree core of T'
as the set of vertices maximizing fr(v).

Theorem 2.1. The subtree core of any tree T' contains one or two vertices, and if the
subtree core contains two vertices, then they must be adjacent.

Proof. First we are going to show that fr is strictly concave along any path of 7', and
hence fr is maximized at a single vertex or two adjacent vertices on any path of T'.

X Y A
& J &
T

Figure 1: z,y, 2z are the roots of XY, Z respectively.

For any tree T ( Fig. 1), consider three vertices z,y, z such that zy,yz € E(T). Let
X,Y, Z denote the components containing x,y, z after the removal of the edges xy and
yz from T'. Observe the identities

fr(z) = fx(x) + fx (@) fy (y) + fx (@) fr(y) f2(2),

fr(2) = f2(2) + f2(2) fr (y) + f2(2) fr (v) fx (),

fr(y) = fy (W) + [x (@) fy (y) + F2(2) fy (y) + Fx (@) fy (y) f2(2).
Comparing fr(z) + fr(z) and 2fr(y), we obtain

2fr(y) — fr(x) — fr(2) = 2fv(y) + (fx (@) + f2(2))(fr(y) — 1) > 0,

and therefore fr(.) is strictly concave along any path of 7. If fr(v) were maximized in
3 different vertices of 7', then any two of them must be consecutive on some path, which
yields a contradiction. O

Next, we are going to show that the concept of the subtree core differs from both of the
concepts of the center and centroid. Consider tree Tj in Fig. 2. The center is {z}, the
centroid is {y}, while the subtree core is {z}.



To

Figure 2: An example showing that the three “middle of the tree” concepts are distinct.

3 Extremal trees for the number of subtrees

It is well-known that the Wiener index among trees on n vertices is minimized by the star
K ,,—1 and is maximized by the n-vertex path P,_;, see Entringer, Jackcon, and Snyder
[4], or Lovasz [9] 6.23. We are going to show the counterparts of these simple results for
the number of subtrees.

Theorem 3.1. The n-vertex path P,_1 has (";rl) subtrees, fewer than any other tree on
n vertices. The star Ky ,—1 has 2" ' +n — 1 subtrees, more than any other tree on n
vertices.

Proof. For T = P,_; (the path with n vertices), F/(T) is the number of ways to choose
a sub-path (the number of ways to choose 2 out of n vertices as the end-vertices for the
sub-path, allowing that the 2 vertices being the same), so F'(P, 1) = (”;1).

For any n-vertex tree T', let V(T') = {vy,vq,...,0,}. Then, for any 1 < i < j < n,
Pr(v;,v;) is a subtree of T, so F(T) > (*}') = F(P,_;). If T is not a path, then it has
a vertex of degree > 3. This vertex and its 3 neighbors define a subtree not counted by
the Pr(v;,v;)’s, and therefore F(T') > ("1).

It is easy to see that F(Ky, 1) =2""'+n—1. We will show by induction on n, that for
any non-star n-vertex tree T', F'(K;,_1) > F(T'). The base case n = 1 holds vacuously.

For any n > 2, suppose the claim holds for trees with fewer than n vertices. Let T be a
tree that maximizes F(T') among n-vertex trees. Consider 2 adjacent vertices z,y of T,
let X,Y be the two components of T' — xy after deleting the edge xy, such that r € X
and y € Y. Let us use the notation a = |V(X)|, b = |V(Y)|. Then we have a + b = n.
According to the decomposition,

F(T) = FX)+FY)+ fx(2)fy(y) < F(K14 1)+ F(Kyp 1) +20 100 (1)
< 242 242 <2 L2 = F(Ky), @)

since the function 2*~! 4 2"~*~1 is maximized on the interval [1,n — 1] precisely in the
endpoints of that interval.

Equality holds in (1) and (2) if and only if @ = 1 and Y is a star, or b =1 and X is a
star. In both cases, T' is a star as well. Thus, the induction step is completed. O

To present our main results, we have to give more definitions. Call a rooted binary tree
ordered, if for every k > 1, the vertices at height k£ are put in a linear order, such that if «
and v are vertices at height k£ + 1, and they have distinct parents, then the order between
u and v at height k + 1 is the same as the order of their parents at height k.

A rooted binary tree is good, if (i) the heights of any two of its leaf vertices differ by
at most 1; (ii) the tree can be ordered such that the parents of the leaves at the greatest



height make a final segment in the ordering of vertices at the next-to-greatest height. For
brevity, we often refer to such trees as rgood binary trees. A single-vertex rooted binary
tree is also rgood.

A binary tree is good, if it is obtained from two rgood binary trees T} and 75 by joining
their roots with an edge, if (i) for any two leaves, their respective heights in 7} and/or T
differ by at most 1; (ii) at least one of 77 and T, is complete.

Note that good and rgood binary trees are unique in the following sense: if we have two
good (rgood) binary trees with same number of vertices, then we can label their vertices
such that they are isomorphic to each other. The concept of height can be naturally
extended to vertices of good binary trees, as shown on Fig. 3.

Figure 3: An rgood binary tree (on the left) and a good binary tree (on the right). Vertices
at height k of the rgood binary tree and of the two rgood parts of the good binary tree
are shown on the line R x k.

Fischermann, Hoffmann, Rautenbach, Székely, and Volkmann [5] proved:

Theorem 3.2. Among binary trees with n leaves, precisely the binary caterpillar tree
mazimizes the Wiener index.

Fischermann et al. [5], and independently Jelen and Triesch [6] proved:

Theorem 3.3. Among binary trees with n leaves, precisely the good binary tree minimizes
the Wiener indez.

We proved in [10]:

Theorem 3.4. Among binary trees with n leaves, precisely the good binary tree mazximizes
the number of subtrees.

We publish the proof of Theorem 3.4 in a separate paper because of its length. We also
proved:

Theorem 3.5. For any n > 2, precisely the n-leaf binary caterpillar tree, which has
ontl L on=2 4 subtrees, minimizes the number of subtrees among n-leaf binary trees.

We postpone the proof of Theorem 3.5 to a later Section.

We see here an amazing and not yet understood relationship between the Wiener index
and the number of subtrees. Unfortunately this relationship does not extend as expected.
After the results presented in this Section, it might be natural to conjecture that “within
certain classes of trees of a fixed parameter, the smaller F(T) is, the bigger o(T') is”.

However, using the tree in Fig. 4 we construct binary trees 7" and 7", such that F(T") >
F(T") and o(T") > o(T").

In the binary tree T' in Fig. 4, = and y are leaves; T} — {v; } is a complete binary tree of
height 3 on 15 vertices; T — {v2} is a complete binary tree of height 2 on 7 vertices; T
is a binary caterpillar tree on 10 vertices; T} is a binary caterpillar tree on 16 vertices.
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Figure 4: Constructing a counterexample.

Let A; = fr,(vi), Bi = gr;(vi), N; = |[V(T;)] for i = 1,2,3,4. Simple calculations show
that Al = 677, Ag = 26,A3 = 47, A4 = 383, N1 = N4 = 16,N2 = 8, N3 =10. It is €asy to
verify that

fT(Z’) =1 + A1 + AlAQ + A1A2A3 + 2A1A2A3A4,

fT(y) =1 + A4 + A4A3 + A4A3A2 + 2A4A3A2A1,

4 4

gr(z) =Y (B;+iN;) =126+ > B;,

=1 =1

4 4
gr(y) = Z(Bfwfi +iN5 ;) = 124 + B;,

=1 =1
and therefore gr(z) > gr(y). Also,
fT(l‘) — fT(y) = (Al — A4)(1 + A2A3) + (A1A2 — A3A4) = 359163 > 0.

Take any rooted binary tree X with root r, which has more than one vertex. Define 7"
as the union of T and X with z being identified with r, and define 7" be the union of T’
and X with y being identified with . Then we have the counterexample by

F(T') = F(T") = fx(r)(fr(@) - fr(y)) > 0,
o(T)—o(T) = 3 delv,r)(gr(x) - gr(y)) > 0.

veV(X)

4 Alternative binary representation of integers

To find a formula for the number of subtrees of rgood and good binary trees will require
a novel unique representation of the number n > 1 as a sum of powers of 2 that we will
write as

l

n= 22’”. (3)

i=1

We describe this representation recursively. We define k; by the inequality 2 < %n <
2k1+1 If we have already defined ki, ko, ..., k;_1 and Z;: 2k < n, then k; is defined as

7



follows: if n — 1;} 2kt — 2™ for some m, then k; = m and we have the terminal term in
the representation. Otherwise define k; by the inequality 2% < %(n — 11 2’“‘) < 2kitl,

The definition of k; differs only in one aspect from the definition of the generic k;: in
the first step powers of two are split further, while in the generic step they are not. This
means in particular that for any n > 1, we have [ > 2. If [ = 2, then ko +1 > ky > ko > 0,
and ki = ko if and only if n = 2871 We always have k; = |log,(2n)].

The representation is clearly unique and has the properties that the terms are decreasing;:
k1 > ko > ...; and that the representation is hereditary in the following sense: if n is
represented as Y'_, 2% then for all j <1 —1

> 2 (4)

is the representation of the numerical value of the sum in (4).
We use a simple Lemma from [10]:

Lemma 4.1. Removing the root of a rooted binary tree T, we obtain two rgood induced
subtrees, Ty and Ty. Assume that T} has no more leaves than Ts. Now T s rgood if and
only if one of the following conditions hold:

i) h(T1) = h(Tz), and Ty is complete;

ii) h(Th) = h(T3) — 1, and T} is complete. O

Lemma 4.1 immediately implies that the terms in the novel binary representation of n
correspond to the following procedure decomposing rgood binary trees into a sequence of
complete binary trees with the same total number of leaves. We give the decomposition
recursively. In the first step, if the rgood binary tree T' on n > 1 leaves is complete, then
the decomposition splits it into two isomorphic complete (and rgood) binary trees. In
later steps, if an emerging rgood binary tree is complete, we do not split it further. If the
emerging rgood binary tree is not complete, remove the root to obtain two induced rooted
binary trees 77 and T5. If (i) from Lemma 4.1 applies, write down 75 and consider 77 for
further splitting. If (ii) from Lemma 4.1 applies, write down 77 and consider T3 for further
splitting. It is clear that in any case the first complete binary tree in the decomposition
has at most 2/3 of the leaves of T', but has more than 1/3 of them.

There is another simple Lemma in [10] describing the structure of good binary trees:

Lemma 4.2. Let us be given two rgood binary trees, T" and T", such that h(T") < h(T").
Join with an edge the roots of T' and T" to obtain the binary tree T. Now T is good if
and only if one of the following conditions hold:

i) h(T") = h(T"), and one or both of T' and T" is complete;

ii) h(T") = h(T") — 1, and T" is complete. O

It is clear from Lemma 4.2 that the novel binary representation also descibes numerically
splitting the good binary tree into two rgood binary trees by deleting the edge on R x
0, and then splitting further the arising rgood binary trees as described above for the
decomposition of rgood binary trees.



5 Closed formula for the number of subtrees in good
binary trees

An interesting question remaining after Theorem 3.4 is to calculate F'(T') when T is a
good binary tree with n leaves. This will be done by solving a number of recurrences.
Let R,, denote the rgood binary tree on n leaves, rooted at the vertex r of degree 2. Let
fn denote the number of subtrees of R,, containing the root, i.e. f, = fr, (r). Notice
that we suppressed the root and the tree in the notation f,. Observe the initial values
fi=1, fo = 4. Next, let F,, denote the total number of subtrees in R,, i.e. F,, = F(R,).
Observe the initial values F; = 1, F; = 6. Let G,, denote the good binary tree on n
leaves. The plan to compute F(G,,) is the following: we evaluate for, Fyr, F,,, and F(G,,)
in this order.

Counting the empty subtree as well with f, 4+ 1, it is not hard to see the following
recurrence relationship for all £ > 1:

(for +1) = (forr + 1) + 1, (5)

and f; = 1. Fortunately, Aho and Sloane [2] solved the recurrence relation (5) explicitly:

for =1 -1 (6)
for k > 0, where |a| is the floor function of a, and

1 1.5 26 1 677
—exp(oIn24 ~In> 4 = In 2 4 — In ot
) exp(2n g+ 8n25+16n676+ )

fai

Numerically ¢ = 1.502837 . ... For further details, see [2].
Observe that F| = 1 and that for all £ > 1 the following recurrence relation holds:

S 1
q= exp(z 27 n(1 +

sz = 2F2k—1 + f2k = f2k + 2f2k—1 + 4f2k—2 + ...+ 2k71f21 —+ QkFl. (7)

Using (6), it is easy to solve (7) by

k—1
Fyo=Y 2" ™"+ 1. (8)
=0

Next, we try to compute f,, based on the representation of n in (3), using the following
more general version of (5):

(fn + 1) = (fzkl + 1)(fn—2k1 + 1) + 1. (9)

As we noted in Section 4, for every n > 1 we have [ > 2. Therefore, iterating (9) yields:
(fn + 1) =

2 l

Zﬂgww+ﬂwﬁnﬂziﬂww P o

i=1 j=1 i=1 j=1 J=1

Observe that using the decomposition of R, described in Section 4 to generalize (7), we
obtain a recursion for F;, as well:

Fn - F2k1 + Fn_2k1 + fn (1].)



Solving (11) by iteration over the same decomposition, we obtain

l -1 I k-1 -1
. k;—j+1
F, :Zszi —i—ZfE;:iij = Z(Z QJL(f J J +1)+Zfz§=i2k]—. (12)
i=1 i=1 i=1 j=0 i=1

Notice that (12) still contains f-terms. Using (10) we substitute them by explicit terms
fori: <[-—1:

-2 jJ l
ks+1 kj+1
Fsi_ioh = > T[T+l )
Jj=t s=i 7=t

and then express explicitly F},:

1 ki—1 -1 1-2 j !
. i—J+1 s+1 kj+1
Fo=Y O 277 +0+> O Tl 1+l ). (13)
i=1 j=0 i=1 j=i s=i j=i
Next, observe for all n > 1 the identity
F(Gn) =F,—1— fou — from (14)

holds, and gives an explicit formula to F(G,,) in view of (3), (6), (10), and (13). Indeed,
(14) is true for the following reason. Let r denote the root of R,, let its neighbors be z
and vy, such that z is the root of the subtree of 2% leaves. Categorise the subtrees of R,
by the following cases: (1) does not contain any of r,z,y; (2) contains z but not r; (3)
contains y but not r; (4) contains all of z,y,r. (5) the one-vertex tree r; (6) contains r
and z but not y—there are fyr;, of them; (7) contains r and y but not x—there are f,,_ox,
of them. Deleting r and joining x to y establishes a bijection between subtrees of G,, and
subtrees of R, in the cases (1)—(4).

From the formula (14) and (16) one can obtain F'(G,,) for small values of n as shown in
the table below. The table also includes F*(G,,), the number of subtrees of G,, containing
at least one leaf. Formula (16) will determine F*(G,,).

n 112345 6 7
fn 114]10|25]|55|130 | 286
F, 16|17 37| 78| 173 | 340
F(G,) 3111|2863 | 143 | 304
F*(G,) 3110 |25 |57 | 132|287

6 Some proofs

The main goal of this section is to prove Theorem 3.5. We do not give however, the
simplest proof that we know. Instead, we prove two lemmas that we need in [10] to prove
Theorem 3.4. In Sections 7 and 8 we twist these lemmas further to adapt them for the
solution of two other extremal problems, also optimized by good trees among binary trees
with given number of vertices and leaves.

Consider the tree T'in Fig. 5, with leaves = and y, and Pr(z,y) = 221 ... Zn2Yn ... Y1y
(xz1 ... TpYn ... y1y) if dp(z,y) is even (odd), for any n > 0

After the deletion of all the edges of Pr(z,y) from T, some connected components will
remain. Let X; denote the component that contains x;, let Y; denote the component that
contains y;, for t = 1,2,...,n, and let Z denote the component that contains z. Set

a; = fx,(z;) and b; = fy,(y;) for i =1,...,n, and ¢ = fz(2).

10
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Figure 5: Path Pr(z,y) connecting leaves z and y.
Lemma 6.1. In the situation described above, if a; > b; fori=1,2 ... n, then fr(x) >
fr(y). Furthermore, fr(z) = fr(y) if and only if n =0 or a; = b; for alli.

Proof. We cover the case when z and Z occur, a similar argument works when 2z and Z
do not occur. Denote by N = ¢[[}_,(a;b;) the number of subtrees that contain both z
and y. We have

—1+Z Haz %—cl—[aZ +cl_[az Z( H bj))+ N

k=1 i=1 k=1 j=n+1-k
k n n n
—1+Z 110 +cH +e(JIonO-C T @) +
k=1 j=1 7j=1 k=1 i=n+1-k

Then we have fT(x) — fr(y) =

n

ZHaz Hb +cl_[0LZ Hbj %—CZI_[OJz Hb H a;b)) > 0,

k=1 =1 = k=1 1=1 l=n+1-k

with strict 1nequahty if a; > b; for any i € {1,2,...,n}. O

R T Y YR T 4

TI TII

Figure 6: Switching subtrees rooted at = and y.

If we have a tree T" with leaves x and y, and two rooted trees X and Y, then we can
build two new trees, first 7", by identifying the root of X with z and the root of Y with
y, second T" by identifying the root of X with y and the root of Y with z. Under the
circumstances below we can tell which composite tree has more subtrees.

Lemma 6.2. If fr(z) > fr(y) and fx(z) < fy(y), then we have
F(T") > F(T").

11



Proof. When T" changes to 7", the number of subtrees which contain both or neither of
x and y do not change, so we only need to consider the number of subtrees which contain
precisely one of z and y. For T”, the number of subtrees which contain z but not y is

fx(@)(fr(z) — N),

the number of the subtrees which contain y but not x is

fr(W)(fr(y) — N),

where N is the number of subtrees of T' that contain both x and y. Similarly, for 7",
these two numbers are

fr(y)(fr(z) = N) and fx(x)(fr(y) — N).
We have

F(T") = F(T") = (fr(y) = fx(@))(fr(z) = fr(y)) > 0.

We use Lemmas 6.1 and 6.2 to prove Theorem 3.5.

Proof. Let C), denote the binary caterpillar with n > 2 leaves as in Fig. 7. First we are
going to calculate F(C,). We start with observing F'(Cy) = 3. For n > 3 we have the
following recurrence relationship for F(C,,):

F(Cn) = F(Cnfl) + 3fcn_1(Un71) + 2,

where F(C,_1) is the number of subtrees of C, which contain neither of v, nor w, i;
3fc, ,(vn_1) + 2 is the number of subtrees of C,, which contain u,_; but not v,, v, but
not u,_y, or both u,_; and v,. Also, we have the following recurrence relationship for

fC’n(Un):
fC’n(Un) = ZfC’n_l(Unfl) + ]-7

since for each subtree S of C, ; counted in fo _ (v, 1), T = SU{v,} and T, = S U
{vn} U{u, 1} is each a subtree of C,, that contains v,. And 1 in the formula counts v,
itself as a subtree of C,, that contains v,,.

It follows that fo (v,) =2"1+2""2—1, as fc,(v2) = 2. Thus, we can easily calculate
that F(C,) = 21 + 272 —p — 4.

U2 Us Uyg Un—2 Un—1

Figure 7: A caterpillar tree with n leaves

Let now T be a binary tree with n leaves that minimizes F(T'), and suppose (for con-
tradiction) that 7" is not a caterpillar. Note that this implies n > 3.

12



um(:p) Uy
X1
Um  Umoi Yigr1 | .. (Y)
Vip (Z1) Vig—1  01(Y1
T

Figure 8: T not being a binary caterpillar tree.

Let P = vV, 1 - .. U1y be a longest path in 7. Clearly m > 2. Then v, and y must be
leaves. Let u; be the neighbor of v; that is not on P, for : = 1,2,...,m — 1. Note that
the u;’s exist, since 1" is a binary tree. It is easy to see that u,, ; and u; must be leaves
by the choice of P. Let

iop =min{ 7 € {1,2,...,m — 1} s.t. u; is not a leaf },

1o exists since 7" is not a caterpillar tree, and we have T" as shown in Fig. 8.
To use Lemma 6.1, substitute

T = Uy T1 £ Vip; Y1 < V15 - -y

then we have X, Xy,..., Y Y],..., (and Z if necessary) respectively as in Lemma 6.1.
Notice that we obtain Y < {y}, a single vertex tree, and observe that fx(z) > fy(y),
and a; > by = 2, a; = b; = 2 for all the other i. By Lemma 6.1, we have fs(z) > fs(y),
where § = (T\X) U {z}.

Hence, we can apply Lemma 6.2 and it follows that if we interchange X and Y (which is
actually moving X to y), we will decrease F'(T'), while not changing the number of leaves
Thus, we have a contradiction, and hence 7' is a caterpillar. ]

7 Further relation between F(7T') and o(T)

The lemmas in this paper can be modified (which we will outline below) to prove The-
orems 3.2 and 3.3. First, notice that for two rgood binary trees 7" and 7" with roots r
and r’ respectively, then one is always a subtree of the other. Therefore we have

gr(r) > go() & V(D) > |V(T")|  and
gr(r) = gr(r') < [V(T)|=[V(T).

Consider now the same tree as in the Lemma 6.1, shown at Fig. 5, and set

a;, = gx,(z;), N; = |V(X;)| and b, = gv,(v;), M; = |[V(Y;)| for i = 1,2,...,n, and
d =gz(2), N =|V(Z)|. (Note that z and Z exist if and only if dr(z,y) is even).
Lemma’ 6.1 If N; > M; fori=1,2,...,n, then gr(z) < gr(y). Furthermore, gr(z) =
gr(y) if and only if n =0 or N; = M; for any 1 <i <n.
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Proof. If z and Z occur, we have

gr(z) =Y iNi+ (n+ )N +> 2n+2—)M;+ Y aj+> b+ +2n,
=1 j=1 i=1 j=1

gr(y) =Y iMi+ (n+ )N+ (2n+2—j)N; + Y _al+ Y b+ + 2n.
=1 j=1 i=1 j=1

It is not hard to see that gr(z) — gr(y) =

n

SN~ M) 02042 )M — Ny) = 32— 20— 2)(N, — M) <0,

i=1 j=1 i=1
with strict inequality if N; > M; for any i € {1,2,...,n}.
A similar argument works if z and Z do not occur. O

Consider the trees 7" and 7" in Lemma 6.2. Then we have
Lemma’ 6.2 If gr(z) < gr(y) and |V(X)| > |V(Y)|, then o(T") > o(T").

Proof. Similar to the proof of Lemma 6.2, we only need to consider the paths which
contain one and only one of x and y. For 7", the sum of the lengths of the paths which
contain x but not y is

9x (@) V(T)| + (9r(z) — dr(z,y))[V(X)],
the sum of the lengths of the paths which contain y but not x is

gy IV (D) + (9r(y) — dr(z,y))[V(Y)].

Similarly, for 7", these two numbers are

gy WIV(D)] + (gr(z) = dr(z, y)) V(Y]

and

9x (@)|V(T)| + (9r(y) — dr(z,y)) |V (X)].
Therefore o(T") — o(T") =

gr(2)V(X)[ + g2 (y)[VY)| = gr(2)[V (V)] = gr(y)[V (X))
= (9r(z) = gr(y))([V(X)| = [V(Y)]) <0.
0

Using arguments similar to those in the proofs of Theorems 3.5, Theorem 3.2 about the
maximization of the Wiener index among binary trees can be proved using the lemmas
above. To obtain an alternative proof to Theorem 3.3 of Fischermann et al. [5] about
the minimization of the Wiener index among binary trees, one has to repeat, mutatis
mutandis, the proof of Theorem 3.4, as it is written in [10]. For guidance, we state below
the most crucial lemma. Before that, we have to make some additional definitions and
conventions.

If T is a rooted binary tree with root r, and ry,r, are the children of r, then we will
simply write T} for T'(ry) and T5 for T'(ry). We assign the labels r; and r according the
following rule: |V(Ty)| > |V(T1)|. T; will be rooted at r;, i = 1,2. We define recursively
Tivig..ix1 and T;,4, 4,2 to be the two rooted binary trees induced by the children of the root
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of Tiyiy...ixs if Tiyiy..i, is DOt a single vertex, where i; € {1,2}, j =1,2,..., k. We assign
the labels r;,;,.,1 and 7;,;, 2 according the following rule:

\V(Tiis..i2)| = |V (Tiyig..ip1) - (15)

We complete the recursive definition by letting r;,;,. s, be the root for T;,;, .

Lemma 7.1. Assume T is a binary tree that minimizes o(T) among n-leaf binary trees.
Assume that T is divided into two rooted subtrees T', T" by the remowval of the edge v'v"
as shown in Fig. 4 in [10]. Then, if for all k > 1 the inequalities

VT > V(T2 . 21)l

k 2's

hold, then T" is rgood. O

8 Subtrees with at least one leaf

Knudsen [8] provided a multiple parsimony alignment with affine gap cost using a phylo-
genetic tree. In bounding the time complexity of his algorithm, a factor was the number
of so-called “acceptable residue configuration”. In our terms, it is the number of subtrees
containing at least one leaf vertex. Knudsen estimated the maximum number of accept-
able residue configurations over all binary trees. Here we show that good binary trees
have the largest number of acceptable residue configurations and provide a formula to
compute the number of them. Knudsen’s estimate easily follows from the formula.

To complement our earlier results, we show that caterpillar trees minimize the number of
acceptable residue configurations, and also study Knudsen’s problem for arbitrary trees.

We give some formal definitions. For a tree T" and a vertex v € V(T), let f7(v) denote
the number of subtrees of 7" which contain v and at least one leaf different from v; and
let F*(T) denote the number of subtrees of T which contain at least one leaf. If T" is a
single-vertex tree, then f7. and F™* vanishes on it.

Theorem 8.1. Among trees onn > 3 vertices, the path P, 1 minimizes F* with F*(P, 1) =
2n — 1; while the star Ky ,_1 mazimizes F* with F*(K1,_1) =2"' +n —2.

Proof. For T = P,_y, F*(T) = F(P,_1) — F(P,_3) =2n — L.

For any n-vertex tree T, let V(T') = {v1,va,...,v,}. Let vy,v, be two of the leaves of
T (since a tree T has at least 2 leaves for n > 3). Then, for any 1 < i < n, Pr(vy,v;) and
Pr(v,,v;) are subtrees of T' that contain at least a leaf, so F*(T) > 2n — 1 (Pr(vi,v,)
was counted twice in the above analysis). If T' is not a path, then it has at least another
leaf, say vq, then the single vertex vy is not counted, and therefore F*(T") > 2n — 1.

It is easy to see that F*(Ky, 1) = F(K1n 1) —1=2""14n—2.

For any n-vertex tree T, F*(T) = F(T) — F(H) where H is the subtree obtained by
deleting all the leaves of T. We already know that F(T) < F(K;,-1) =2" '+ n— 1.
For n > 3, T have at least one vertex that is not a leaf, and hence F(H) > 1. Thus,
F*(T) S F(Kl,nfl) —1= 2n—1 +n—2.

Equality holds in the above if and only if 7" = K ,,_;. O
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Theorem” 3.4 If T is a binary tree that mazimizes F*(T) among n-leaf binary trees,
then T' must be good. ([
Theorem” 3.5 Among n-leaf binary trees, the caterpillar tree minimizes F*(T). O
We postpone the sketch of Theorem” 3.4 to the next section, and we leave the proof of
Theorem” 3.5 to the reader.
Using the notation G,, from Section 5, we have that

Theorem 8.2. The mazimum value of F*(T) among n-leaf binary trees is

F(G,) — F(G») if n even,

F*(Gn) = {F(Gn) — 2F(Guzt) = $F(Gun) — & if n odd. (16)

1
3
Proof. The maximizing tree is good, so T' = G,,, and F(G,) counts all of its subtrees. If
n is even, then for correction, from F(G,,) we have to subtract the number of subtrees of
H, where H is the tree obtained from 7' deleting all leaves. If n is even, then H is also a
good binary tree, but on 7 vertices.

If n is odd, then there is a problem: after the deletion of leaves the remaining tree is
not binary.

Make a drawing of G, as described at the definition of goodness, and label the leaves
from left to right as vq,vs,...,v,. Let vy be the last leaf of height h(G,) — 1. Then k
must be odd. Let = be the parent of vy and u be the other child of x. Observe that the
children of u are vgy1 and vg. 2 (see Fig. 9). Again, let H be obtained from G,, by deleting
all leaves, and let G no1 be obtained from H by deleting u. Then we have

F*(G,) = F(G,) — F(H) (17)
and
F(H) = F(Gua) + 1+ f(;%_l(x). (18)

Figure 9: Left: Gy; right: H, H\ {u} = Goza and H U {(z,v)} = Gopa.

Observe the identity

3f (@) = F(Gop) — F(Guzr) — 2. (19)
We justify (19) with a case analysis referring to Fig. 9. A subtree of Grpr = HU {(z,vx)}
can be a {u}, {vy}, a subtree of Guor = H\{u}, or a subtree of Guor = H\{u} containing

z with one or two elements of {u, v} added.
Now the second case of (16) follows from equations (17), (18), and (19). O

Similar to the subtree core, we define the f*-subtree core of a tree T" as the set of vertices
maximizing f(v).
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Theorem 8.3. Assume that the tree T' has no vertices of degree 2. Then the f*-subtree
core of the tree T' contains one or two vertices, and if the f*-subtree core contains two
vertices, then they must be adjacent.

Proof. As in the proof of Theorem 2.1, it is enough to show that f7. is strictly concave
along any path of T'.

For any tree T ( Fig. 1), consider three vertices z,y, z such that zy,yz € E(T). Let
X,Y, Z denote the components containing x,y, z after the removal of the edges zy and
yz from T. “Cancelling” with subtrees containing both z,y and a leaf, (both y, 2z and a
leaf) we obtain the identities

fr(y) = fr(@) = fruz(y) — fx(2),
fr(y) = 11(2) = fxoy () — f2(2).
Since the degree of z and y is not 2, Y\ {y} is not empty and hence f; ,(y) > f5(z) and
fxoy(y) > fx (). Comparing fr.(z) + f7(2) and 2f7(y), we obtain
2f7(y) = fr(x) = 17(2) = fyuz (W) + Frov (y) = Fx(@) = f7(2) > 0.
U

Note: The result above is not true for every tree. Take for example the path T' = P,
where every non-leaf vertex is in the f*-subtree core.

9 Key Lemmas toward Theorem” 3.4

Consider again the tree in Lemma 6.1 ( Fig. 5), and use from there the notation a;, b;,
and c. Let a] = fx (z;), b = fy. (i), fori =1,2,...,n and ¢" = f7(2). (Note that z and
Z exist if and only if dp(z,y) is even.)

Lemma”6.1 If a; > b; and af > V! fori=1,2,...,n, then

fr(z) > fr(y) (20)
and

fr(@) > f7(y)- (21)
Furthermore, if a strict inequality a; > b; holds for any i, i € {1,2,...,n}, then we have

strict inequalities in (20) and (21).

Proof. We consider only the case when z and Z occur, the other case is similar. Lemma 6.1
already proved part of the conclusion (20) in Lemma 6.1. Let us consider the following
families of subtrees of T
A; = the set of subtrees of T" which contain z, z;, and at least one other
leaf, and do not contain z;,; (or z if i = n);
A = the set of subtrees of T" which contain z, z and at least one other
leaf, and do not contain any y,;
C; = the set of subtrees of 7" which contain z, y;, and at least one

other leaf, and do not contain y;_; (or z if i = 1);
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B; = the set of subtrees of 7" which contain y, y; and at least one other
leaf, and do not contain ;1 or (z for i = n);

B = the set of subtrees of T" which contain y, z and at least one
other leaf, and do not contain x,;

D; = the set of subtrees of T" which contain y, x;, and at least one

other leaf and do not contain z;_; (or z if i = 1).

The following identities follow from a simple case analysis:

fr(@) = [A[+ ) (1Al + Gl fiy) = 1B+ Y_(1Bi| + |Dil).

i=1 i=1

We are going to show by establishing injections that for i = 1,2,...,n
|Ai| > [Bil; |A| > | BJ; |Ci| > | Dy,

and hence

fr(x) > f7(y),
with strict inequality if and only if any of the conditions has strict inequality.

We give an injection from B; to A; as follows.

For t = 1,2, ...,n, observe that Y; has no more subtrees containing y; than subtrees of
X, containing x; by the assumption a; < b;; and furthermore, Y; has no more subtrees
containing 1; and at least one more leaf than subtrees of X; containing z; and at least
one more leaf by the assumption af < b. Therefore, one can construct an a map 7,
which maps subtrees of X; containing x; to subtrees of Y; containing y; in an injective
way, which has an additional property that subtrees containing at least one more leaf are
mapped to subtrees containing at least one more leaf.

Consider the map € which assigns to an F' € A; the ordered i-tuple of trees (FN Xy, F'N
Xs, ..., F N X;); and the map p which assigns to an H € B; the ordered i-tuple of trees
(HNYy, HNY,, ..., HNY;). These maps are injective and their ranges include all i-tuples
in which every component restricted to X; (Y;) also contains z; (y;). Now the injection
from B; to A; is the following:

He B e*l(ﬁ(H AYL), 72(H N Ya), .o, 7i(H N Y;)).

Also, this map puts subtrees containing other leaves than y to subtrees containing other
leaves than z.

We give an injection from D; to C; as below. The injection from B to A can be
constructed similarly and we leave it to the reader.

Consider the map € which assigns to an F' € C; the ordered i-tuple of trees (FN Xy, FN
Xo, ..., FNX;—1, FN((U7, X;)UZU(UF_,Y;))); and the map p’ which assigns to an H € D;
the ordered i-tuple of trees (HNY1, HNYa,..., HNY; — 1, H N ((Uj_, X;) U Z U (UL,Y5))).
Now the injection from D; to C; is the following:

HeD; Gl_l(Tl(Hﬂyl),Tg(HﬂYz), ...,Ti_l(Hin_l,Hm((ug:ixj)uZu(u;:in)))).
Also, this map puts subtrees containing other leaves than y to subtrees containing other

leaves than x. O
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We introduce a new notation fr.(v) = fr(v) — f(v) to denote the number of subtrees
of a tree T" which contain v € V(T') and no other leaf.
Lemma"6.2 Consider now T' and T" from Lemma 6.2. If

fr(z) > fr(y), fr(z) > fr(y)

and

fe@) < frly),  fx(@) < ),
then F*(T") > F*(T").

Proof. Let N* denote the number of subtrees of 7" which contain at least one leaf other
than z,y and contain both x and y; and let N denote the number of subtrees of 7" which
contain both z and y Let ¢(T",z,y) (c(T",z,y)) denote the number of subtrees of T”
(T"), which contain both z, y, and in addition at least one more leaf. A simple bijective
argument shows c¢(7",z,y) = c¢(T", z,y). Similarly, let d(T",z,y) (d(T",z,y)) denote the
number of subtrees of 7" (T"), which contain none of z, y, but has at least one leaf. Again,
a simple bijective argument shows d(7”,z,y) = d(T",z,y). We make a case analysis as
reEyE, xdyd; x€y¢; x¢ye, and use inclusion-exclusion in the last two cases:

F(T) = (T' y) +d(T",z,y)
+ fx(@)(fr(z) = N*) + fx(2)(fr(z) = N) = fx(2)(fr(z) — N)
+ (7)) — N+ @) (frly) = N) = fr @) (fr(y) — NY);

FHT") = (T" 2,y) +d(T",2,y)
+ W) (fr(z) = N°) + () (fr(z) = N) = fF(y)(fr(z) = N7)
+ fx(@)(fr(y) = N°) + fx(@)(fr(y) — N) = fx(@)(fr(y) — N7).

Hence we have
F*(T") — F*(T")
= (fx(@) = W) (@) = f1(0) + (fx (@) = S @) (fr(z) — fr(y)) <O
O

For the study of F* and f* on binary trees, we are going to label vertices and subtrees
as described as follows. Note that this is different from the labelling in [10] and from the
labelling in Section 7, (15). However, for rgood trees, all three labellings are the same, as
we will see in Lemma 9.1.

If T is a rooted binary tree with root r, and ry,r, are the children of r, then we will
simply write 7 for T'(ry) and T for T'(ry). We assign the labels r; and 7y according to
the following rule: h(T%) > h(Ty), and fr,(r2) > fr,(r1) in case equality holds in the first
inequality. 7} will be rooted at r;, « = 1,2. We define recursively T;,;,. ;.1 and T} ;, 4,2 to
be the two rooted binary trees induced by the children of the root of T} ;,. ;. , when T} ;, i,
is not a single vertex, where i; € {1,2}, j =1,2,..., k. We assign the labels r;,;, ;.1 and
Tivia..ir2 according to the following rule:

W(Tiiy..in2) = R(Tiyiy.in1),
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and in the case of equality,

I1e iy iro (Tivinein2) 2 sy s (Tivi.ig1)- (22)

We complete the recursive definition by letting 7;,;,.;, be the root for T; i, i, .
The following observation is trivial and we leave the proof to the reader.

Lemma 9.1. For rgood trees (T1,v1) and (T3, vs), the following are equivalent:

fr,(a) > fr,(v1),  fr(v2) > fr,(v1),  fr(va) > fr(v1),  |[V(T2)| > |V(Th)|.

Therefore, for subtrees of rgood trees, we can go back and forth with our different ways
of labelling in [10] and in this present proof.

Lemma 9.2. For any rooted binary tree T" with root r,

fr(r) > fr(r)  and — f7(r) > 5fr(r). (23)

Proof. Assume T has m leaves. Since T is a rooted binary tree, it has m — 2 non-leaf
vertices.

Then f7(r) > 2™ — 1, since different non-empty subsets of leaves, with r added, span
different subtrees. On the other hand, fr(r) < 2™ 2 since the number of leafless subtrees
containing r is at most the number of subsets of all non-leaf, non-root vertices.

The second inequality easily follows. ]

Lemma 9.3. For any rooted binary tree (T,r), and the induced subtree of the son 1,
(T, 132), we have

fr(r) = 2fz,(r2).

Proof. For every subtree of T5 which contains r, and a leaf, we construct two subtrees of
T containing r and a leaf. For the first, add to the tree the rry edge, for the second, add
to the tree the rr; and rry edges. O

Lemma 9.4. For any rooted tree T with root v, and any ' € V(T) (r' # r), consider the
induced subtree T' = T(1") rooted at r'. Then we have

fr(r) > fr(r'). (24)
If T" is obtained from T by deleting some vertices, but not r, then
fr(r) > fra(r). (25)

Proof. To prove (24) with an injection, extend with the r'r path the subtrees of 7" that
we count. To prove (25), if I” is a leaf of 7" but not a leaf of 7" with an injection, assign
to I" a leaf [ of T, such that I” separates r and [ in T', and for every [” and corresponding
(distinct!) { fix the path {I”. Extend every subtree of 7" that we have to count, for all its
new leaves, with the [[” paths. This is an injection into the set of subtrees of T' that we
have to count. 0]

Lemma 9.5. For any rooted binary tree (T,r), we have

fr(r) > 2k+1f%2 01 (72...21) (26)
.k.z., 72/’8—/
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Proof. By Lemma 9.3, we have

fr(r) = 2f3,(re) = .. 2 257, (r2. 9). (27)
==

Also, Lemma 9.3 implies for any rooted binary tree (T',r) that f7.(r) > 2f7, (r1), and thus

fry o(ra.. 2)=2fr, 5 (r2. 21) (28)
.. \/—/ .« e R/—/

b 2"5 k 2's k ols k 2's
Thus, (27), (28) and the fact that fr(r) > f7(r) yield (26). O

10 Proof to Theorem” 3.4

Based on Lemmas above, Theorem” 3.5 and Theorem” 3.4 can be proved. We outline
only the proof of Theorem” 3.4. The reader has to read [10] parallel, since we highlight
only the steps that require modification. The figures in [10] will help at reading. As in
[10], we use superscripts on some inequalities to indicate their proofs.

Lemma 10.1. Assume T is an optimal binary tree that mazimizes F*(T). Assume that
T is divided into two rooted subtrees T', T" by the removal of an edge v'v". Then, if for
all k > 1 the inequalities

fr(v') > famy 21(115 _91) and fr. (V') > f(*T”)2 N 21(”5 91) (29)
kE 2's k 2's & ol k 2's

hold as far as vertex v% o1 €xists, then T" is rgood.
k 2's
Note: We understand that (29) holds if (7")s; does not exist. Then (7"), is a single

vertex, and by (22) (7"); is also a single vertex. Therefore 7" is rgood as Lemma 10.1
requires.

Proof. The proof goes by induction on |V (7")|. The base case: if |V(T")| = 1, then by
definition, 7" is rgood. Now, suppose that Lemma 10.1 holds for any induced subtree in
place of T" with fewer vertices. We are going to show the following:

Claim 10.1. (T"); and (T")2 are rgood.

Proof. We prove the statement for (7"), and (7"); in a different order than in [10]. Proof
for (T")s. Consider T as being divided into 7" = ((T")s,v4y) and T* = (T" U (T"); U
{v""},v"). Notice that for any k > 1
29 _
Fre(0") > fro(0) > famy 5 (05 91) = famy 51 (W5 91),
k+1 2's k+1 2's k 2ls k+1 2's

and

S (0") >() f (V') > f(*T”)Q 21 (Ug ... 21) - f(*T’”)Q 21 (U§ o 21)’
e & > . &2
k+1 2s k+1 2's & 9s k+1 2's

thus (29) holds for T* and T". By hypothesis, it follows that (7")s must be rgood.

21



Proof for (7");. Since (T"), is rgood and of height at least h((7");), then (7")y con-
tains a complete subtree of height A(7"); — 1 and hence a subtree that is isomorphic to
(T")12  91. This will explain the middle inequalities in the next two displayed formulas.

k 2's
Now consider T' as being divided into 7" = ((T")1,v]) and T = (T" U (T"), U {v"},v").
We have for any k > 1,

fre") > firm,(v3) > fams 9102 21) = faomg 51 (¥12 . 21);

k 2's k 2's k 2's k 2's
and
Fie(0") > fipn, 03) > fimy o (W2 0) = firmy o (V12 21),
. L B o ARt
k 2's k 2's k ols k 2's
thus (29) holds for 7* and T". By hypothesis, it follows that (7"); is rgood. O

After this point, since ((7")1,v]) and ((T")s,v4) are both rgood, we have that
. (Viis...in2) = o,

1ig.eij2
! ( o . ) > !
in1¢2...ik2 Viyia...ix2) = in1i2...ik1

1ig..ipl (viliz...ikl),

(vilig...ikl)a

inlig...ik2 (Ui1i2---ik2) > inliz...ikl (vi1i2---ik1)

holds for (H,v) = ((T")1,vy) or (H,v) = ((T")2,v}).

Knowing that (7"); and (T")s are rgood, we return to the inductive step in the proof
of Lemma 10.1. We consider the following cases: (i) h((7");) < h((T")s) and (ii)
h((T")1) = h((T")2). (Note that the third inequality h((7");) > h((T")s) is impossi-
ble by the rgoodness of (7"); and (7"), and (22)).

Case (i): h((T")1) < h((T")2).
By Lemma 9.1, we also have [V((T")2)| > [V((T")\)|, fipn),(v2) > fipny, (vf), and
Ferma () > fiam, (01):
Claim 10.2. For any k > 0 such that (T")1 1 is not empty, we have
——

k

V(T DI Z[VI(T")22 .. 2)I- (30)

k k+1

Proof. Apply the same induction as in [10] till (13) in [10], then we are in the position to
apply Lemma” 6.1 in the same setting as in [10].
Using the notation in Lemma” 6.1, we have

a; = fang 1901 19) T1= famgy 91 (W3g  91) T1 =10 (31)
I41i 11 U+1-i s lta—g 2's 1+2—i 2's

exactly as in [10], and

aI'I — f* " (U” ) + ]_ > f* " (’U” ) + ]_ - b” (32)
i (™)1 19vd... 12 =J(T")99 91'\722...21 i
s — ce { ,
I+1—3 1's I+1—i 1's 1427 ols 1423 2's
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forv=1,2,...,1 by Lemma 9.1 and the rgoodness of proper induced rooted subtrees of
T". We also have

a1 = fr (V) + 1> firmy, (v5) +1 = by
as in [10] by (29) , and then Lemma 9.1 implies

ajyr = fr (V) + 1> fipm,, (vy) +1 =0,
From here, we obtain the conclusion of Lemma’” 6.1, which is exactly the first condition
of Lemma” 6.2 as well:

fs(z) > fs(y) and fs(z) > f3(y).
Note that we have

Ix@)=famy 101, 11) <TJameg 9992 29) = fr(y) (33)

—
41 I+1 1+2 142

exactly as in [10], then (33) implies f%(z) < fy(y) and fi(z) < fi(y) (the second
condition of Lemma” 6.2) by Lemma 9.1 and the rgoodness of proper rooted subtrees of
T".

Thus, by Lemma” 6.2, interchanging X and Y increases F*(T'), contradicting the opti-
mality of 7. Hence (30) holds for k£ =1+ 1, and we completed the induction proof. [

With Claim 10.2, the same proof as in [10] shows that 7" is rgood. ~ End of Case (i).
Case (ii): h((T")1) = h((T")2).

Claim 10.3. For any k > 0 such that (T")91 1 is not empty, we have

.
k 1's
V(T")o1. DI = IVI(T")12.. . 2)l (34)
k 1's k 2's

Proof. Apply the same induction as in [10] till (20) in [10], then we are in the position to
apply Lemma” 6.1 in the same setting as in [10]. Using the notation in Lemma” 6.1, we
have

a4 = famgy 190091, 19) T1 2 famgg 51 (W12, 01) F1=bi (35)
—_—— oL =~
I+1—i 1's I+1—i 1's I41—i 2's I+1—i 2's
and
a;i = fipm (vg )+ 1> fim A )+1=10" (36)
1 11 FI=i s 1y als  MH1=i s

fori=1,2,...,1+ 1 by Lemma 9.1 and the rgoodness of proper induced subtrees of T".
In fact, strict inequality holds in (35) for « = 1 and therefore a; > b;. From here, we
obtain the conclusion of Lemma” 6.1, which is exactly the first condition of Lemma’ 6.2
as well:

fs(x) > fs(y) and f5(x) > fs(y).
Note that we have:

fx(@) = famgy 11021 11) <famgg 9912, 22) = fr(v) (37)
I+1 1/s I+1 1's I+1 2's I+1 2's

23



exactly as in [10], then (37) implies f%(z) < fy(y) and f%(x) < fi(y) (the second
condition of Lemma” 6.2) by Lemma 9.1 and the rgoodness of proper rooted subtrees of
T".
Thus, by Lemma” 6.2, interchanging X and Y increases F*(T'), contradicting the opti-
mality of 7. Hence (34) holds for £ = [ 4+ 1. Using induction, we proved Claim 10.3.
[]

With Lemma 10.3, same proof as in [10] shows that 7" is rgood. End of Proof of
Lemma 10.1. O

Lemma 10.2. Consider an optimal tree T and its two rooted subtrees T' and T" after
an edge deletion, as in Lemma 10.1. If |h(T") — h(T")| < 1, then T' and T" both must be
rgood.

Note that if we choose a longest path P and choose (v',v") as the closest to middle edge
on P, we obtain such a 7" and T".

Proof. Assume without loss of generality that fr(v") > fr/(v'). Then, we have for £ > 1
that

frn(0") = frr (V') > f(T’)2 21(7/2 ...21)
: ,

2 N y
k 2's k 2's
* !
> firyg 91 (V2. 21)
= ks

Thus condition (29) holds, T" is rgood.

On the one hand, since 7" is rgood, T’ must contain a complete rooted binary tree
T*, with the same root, of height at least h(T') — 1 > h(T") — 2. On the other hand,
(T")9 97 is of height at most h(T") — 2 and is isomorphic to a subtree of 7" (sharing

=

k 2's
the same root). Therefore

fT’ (’Ul) Z f(TH)2 91 and ff;—v/(Ul) Z f(*T”)2 9] (38)
k 2's k 2!

for k > 1. In fact, (38) are always strict inequalities, since 7" has some other vertices
than those in the complete rooted binary tree with height h(7") — 1. So condition (29)
holds, 7" is also rgood.

0

Lemma 10.3. Consider an optimal tree T and its two rooted subtrees T' and T" after
an edge deletion, such that |h(T") — h(T")| < 1. Assume that fpn(v") > fr:(v') (and also
fru(V") > f3 (V") by Lemma 9.1). Then T" is complete or T* = (T" U (T"); U {v"},v") is
rgood.
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Proof. Consider T as being divided into 7™ and (7"),. The proof in [10] yields for any
k>0

fang  91(va 21) < s (vn). (39)
k 2's k 2's

Then Lemma 9.1 yields for any k£ > 0

f(*T’)2 21 (UIQ . 2]_) < f(*T”)z(vg)' (40)
2/s s

Similarly, notice that (7"); is rgood, and then for k& > 0,
fama(vg) > famy, (v)) > fmy,, (V1)) > famyy 21(”'1’2 ~ 91) (41)
—— =
k 2ls k 2's
and by Lemma 9.1
f(*T”)g (Ug) > fEkT”)lQ 21 (UI]I_Q . 2]_) (42)

Combining (39) and (41), we obtain that for any k& > 0,

Ferm, (vg) > max<f(T’)2 01 (W 91): famg 91 (Vi 21)>- (43)
k 2/s k 2's k 2's k 2's

Since (T%*)y = T" or (T");, we have from (43) that
fams@W8) > fiey oy () for k>0,

k+1 2's
where 7* is the root of (T%)9  97.

k+1 2's

Similarly, combining (40) and (42), we obtain that for any k > 0,

Fions o) > max(fivny 1 oy iy 02 o0)) ()
k 2's k 2's k 2's k 2's
Since (T*)y = T" or (T");, we have from (44) that
firm, (V) > f(*T*)Q N 21(r*) for k > 0, (45)
k+1 2's

where 7* is the root of (T%)9  97.

k+1 2's

So by (43) and (45) condition (29) holds, T* is rgood by Lemma 10.1. O

With the above Lemmas, the proof of Theorem” 3.4 is almost exactly the same as in
[10], one has to change only (34), (36), (37), and the formula after (37). (For each of
these formulas, if the condition holds for f in [10], then it holds for both f and f*.)
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