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Bivariate n-term rational approximation

Kyungwon Park

Abstract

We study nonlinear approximation in L,(R?),0 < p < oo, from n-term rational
functions. Our main result relates n-term rational approximation in L, to nonlinear
approximation from a broad class of piecewise polynomials over multilevel triangu-
lations allowing a lot of flexibility and, in particular, arbitrarily sharp angles. This
relationship and the existing estimates for spline approximation give a Jackson esti-
mate for n-term rational approximation in terms of a minimal smoothness norm over
a large collection of anisotropic Besov type spaces (B-spaces).

1 Introduction

While the theory of univariate rational approximation is considerably well developed area in
Approximation theory (see, e.g., [9]), the the theory of multivariate rational approximation
is just emerging. The reason for this is that it is extremely hard to deal with multivariate
rational functions. Apparently rational functions of the form R = P/Q, where P and @) are
algebraic polynomials in d variables (d > 1), are powerful tool for approximation but very
little is known about them. It seems natural to consider nonlinear n-term approximation
from the dictionary R consisting of all functions on R? of the form

R=) ", (1.1)
j=1

where r; are partial fractions. In [8], it is considered the case when the r;’s are of the
form r(z) = HZ:1 %. The main result from [8] relates this type of n-term rational
approximation with nonlinear piecewise polynomial approximation over arbitrary dyadic
partitions of R?.

In this article we obtain similar results for the more complicated case of n-term rational

approximation in R?, when the r;’s are of the form

6
a1 +buTa + ¢y i
r(z) = with a,,b,,c.,a,, B, 7. € R. 1.2
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Our main result relates the bivariate n-term rational approximation to nonlinear approx-
imation from a broad class of piecewise polynomials over multilevel nested triangulations.
To be more specific, let us consider a sequence of nested triangulations (7, )mez such that



each level 7,, is a partition of R? into triangles and a refinement of the previous level 7,,_;.
Denote T := J,,cz Tm- Natural mild conditions are imposed on the triangulations in order
to prevent them from possible deterioration. These conditions, however, allow the triangles
in 7 to change in size, shape, and orientation quickly when moving around at a given level
or through the levels. In particular, triangles with arbitrarily sharp angles are allowed in
any location and at any level. Let ¥¥(7) denote the nonlinear set of all n-term piecewise
polynomial functions S of the form ), A, Lo+ Pa, where each Pa is a polynomial of de-
gree < k and A,, consists of n triangles from 7. Further, denote by o, (f,T), the error of
L,-approximation to f from X*(7). Denote by R,(f), the error of L,-approximation of f
from n-term rational functions of the form (1.1) with r; of the form (1.2).

Our main result says that (R, (f),) has the rate of (o,,(f, T),) or a better rate for any 0 <
p < 0o, k > 1, and multilevel triangulation 7. This relationship and the existing estimates
for anisotropic piecewise polynomial approximation (see [6]) give a Jackson estimate for n-
term rational approximation in terms of the minimal smoothness norm over a wide collection
of anisotropic Besov type smoothness spaces (B-spaces).

Results of the same character are obtained also by S. Dekel and D. Leviatan in [4] under
the restrictive condition that the piecewise polynomials are over triangulations satisfying the
minimal angle condition (regular triangulations, see §2.1) when 1 < p < oo.

The main tools in proving our result are the famous result of D. Newman on the rational
uniform approximation of || and an anisotropic version of the Fefferman-Stein vector-valued
maximal inequality.

The outline of the paper is the following. In Section 2 we gather all necessary auxiliary
definition and results. Thus in §2.1 we give the definition and some basic properties of the
multilevel triangulations considered. In §2.2 we give the needed simple fact about polyno-
mials. In §2.3 we give some known facts about B-spaces and nonlinear piecewise polynomial
approximation. In §2.4 we provide everything we need about maximal functions. Finally, in
Section 3 we state and prove our main results on n-term rational approximation.

Throughout this article, for a set £ C R?, 15 denotes the characteristic function of E,
and |E| denotes the Lebesgue measure of E, while E° means the interior of E. For a finite set
E, #FE denotes the cardinality of E. For a vector (point) z € R? |z| denotes the Euclidean
norm of x. Positive constants are denoted by ¢, ¢;,c, ... and if not specified they may vary
at every occurrence. Further, A ~ B means ¢; < A/B < ¢y, and A := B or B =: A stands
for “A is by definition equal to B”. Whenever the L,-norm of a function is on R?, we write
briefly || - ||,, whereas || - ||, (g) denotes the L,-norm on a particular set E C R?. The set of
all algebraic polynomials in two variables of total degree < k is denoted by Il.

2 Preliminary results

2.1 Multilevel nested triangulations

Here we introduce several types of multilevel nested triangulations following the development
in [6]. Let T = U,,cz Tm be a set of closed triangles in R* with levels (Tm)mez. We say
that 7 is a hierarchical nested triangulation or simply triangulation of R? if the following
conditions are satisfied:



(a) Every level 7,,, m € Z, is a set of triangles with disjoint interiors which cover R?, i.e.

R? = U A.

ANETm

(b) The levels (Tp,)mez of T are nested, i.e. T,41 is a refinement of 7, obtained by refining
each A € 7T, into subtriangles with disjoint interiors.

(c) Each triangle A € T, has at least two and at most M, subtriangles in 7,1, where
My > 4 is a constant independent of m.

(d) The valence N, of each vertex v € V,,, (the number of triangles A € T, which share v
as a vertex) is less than Ny, where Ny > 3 is a constant.

(e) No hanging vertices condition: No vertex of any triangle A € T, lies in the interior of
an edge of another triangle from 7,,.

(f) For any compact K C R? and any fixed m € Z, there is a finite collection of triangles
from 7, which cover K, i.e.

K = U A where #A,, < .
ACARCTm

We denote by V,, and &,, the set of all vertices and edges of triangles from 7,,, respectively.
We set V := ez Vm and € := e Em-

Note that any two triangles in 7 either have disjoint interiors or one of them contains
the other. If A and A" are two different triangles in 7 and A" C A, then we say that A is
an ancestor of /', while A’ is a descendant of A. Also if A" € T,iq and A" C A, A € Trn,
then A" is called a child of /. Now we define two types of triangulations by imposing more
conditions in addition to conditions (a)-(f) above.

Locally regular triangulations. A triangulation 7 = |J, ., T is called a locally regular
triangulation of R? or, briefly, an LR-triangulation if T satisfies the following additional
conditions:

(i) There exists constants 0 < 7 < p < 1 (r < 1) such that for each A € T and any child
AN €T of A,
INEYNEFIN) 2.1)

(ii) There exists a constant 0 < § < 1 such that for any A", A" € T, (m € Z) with at
least one common edge,

A _
| A7
For v € V,,,, m € Z we denote by 6, the cell associated to v, i.e. the union of all triangles
from 7, which have v as a common vertex. We denote by ©,, the set of all cells generated

by T and © := J,,c7 Om.

Strong Locally regular triangulations. A triangulation 7 = J,,.;, Tm is called a strong
locally reqular triangulation of R? or, briefly, an SLR-triangulation if T satisfies the following
two additional conditions:



(i) There exists a constant 0 < 7 < p < 1 (r < 1) such that for each A € T and any child
AN €T of A,
INEINEFIN] 2.3

(ii) Affine transform angle condition: There exists a constant 5 = (7)), 0 < 8 < 7/3,
such that if Ay € T, m € Z, and A : R? — R? is an affine transform that maps 2\
one-to-one onto an equilateral reference triangle, then for every A € 7, which has at
least one common vertex with Ay and for every child A € T,,,1 of Ay, we have

min angle (A(A)) > G, (2.4)

where A(A) is the image of A by the affine transform A.

It can be proved (see [3]) that condition (ii) is equivalent to the following condition:

(ii') There exists a constant 0 < §; < 1/2 such that for any N', A" € T, (m € Z) sharing
an edge,

lconv (A U A")|/|A| <671 (2.5)
where conv(G) denotes the convezr hull of G C R?.
Note that condition (ii’) implies (2.2) with 6; = ¢. Therefore, each SLR-triangulation is
an LR-triangulation, however, the inverse statement is not true (see [6]).

Regular triangulations. By definition, a triangulation 7 = |J Tm is called a regular

triangulation if T satisfies the following condition:

meZ

(i) There exists a constant § = [(7) > 0 such that the minimal angle of each triangle
NeT is>p.

Evidently, every regular triangulation is SLR-triangulation but the converse statement is
not true.

With the next remarks we clarify several important issues concerning different types of
multilevel triangulations.

(a) For each of triangulations there are constants which are assumed fixed. We refer to
them as parameters. Thus the parameters of an LR-triangulation are My, Ny, p, 0, and r
and the parameters of an SLR-triangulation are My, Ny, p, d, r and f.

(b) The most important observation is that the collection of all SLR-triangulation with
given (fixed) parameters is invariant under affine transforms. More precisely, if 7 is an SLR-
triangulation in R? and A is an affine transform of R?, then A(7) := {A(A): A € T} isan
SLR-triangulation with the same parameters. The LR-triangulations with fixed parameters
are also invariant under affine transforms.

(c) If T is an LR-triangulation and A'; A" € 7T,, have a common edge, then it may
happen that that A’ is an equilateral triangle (or close to an equilateral triangle) but A" has
an uncontrollably sharp angle. Such a configuration on an SLR-triangulation is impossible,
however, at any level and location there can be triangles with uncontrollably sharp angles
(see Figure 2). For more details, see [6].



(d) In an SLR-triangulation 7 there can be an equilateral (or close to such) triangle A°
at any level T,, with descendants A; D Ay D ... such that minangle(A;) — 0 as j — oo,
and also a sequence (A;);’io C T with Aj = A and ANAL, #0 (5 =0,1,...) such that
min angle (A%) — 0 as j — oo.

(e) For an SLR-triangulation 7, conditions (2.3)-(2.5) suggest geometric rates of change of
|A|, min angle (A), and maxedge (A) as A € T, moves away from a fixed triangle A’ € Ty,.
However, as it will be shown later in this section, the rates of change are powers of the
number of the connecting edges. A similar observation is true for LR-triangulations.

In the following we show how |A|, |maxedge (A)|, and minangle (A) may change as
A € T moves away and in dept from a fixed triangle.

Lemma 2.1. Let T be an LR-triangulation of R?. Suppose that N', A" € T;,l € Z, and
A and A" can be connected by < 2V intermediate edges from & with (pairwise) common

vertices. Then there exist Ny, Ny € Ti_any,, with a common vertex such that A" C Ay and
AN GIVAYY

Proof. See Lemma 2.4 in [6]. W

Lemma 2.2. Let T be an SLR-triangulation of R? with parameter 8 = 3(T), 0 < < /3.
(a) If N, AN € Trym € Z, and NN A" # 0, then

n,' < |maxedge (A')|/|maxedge (A")| < n, (2.6)

where 1, depends only on 3.
(D) If A€ Ty AN € Trny1, and N C A, then

1 < |maxedge (A)|/|maxedge (A")] < g, (2.7)
where 1y depends only on the parameters of T .

Proof. (a) It suffices to prove that if A’ A" € T, have a common edge, then

ny' < |maxedge (A)|/lmaxedge (A")| < mo, 1m0 > 1. (2.8)
Then, since every vertex can have valence at most Ny, (2.6) follows with n; = ngNO/ 2] by
applying the above estimate [ Ny/2] times.

Suppose that A, A" € 7T,, have a common edge. Let /A; be an equilateral reference
triangle of side length one and let A be an affine transform which maps A’ one-to-one onto
Ny Write Ay := A(A"). Let S be the circle inscribed in A; and let S;” be the circle
circumscribed around A;. Similarly, we let S; and Sy be the circles inscribed in A, and
circumscribed around Ay, respectively. Denote by r;, r;-L (7 = 1,2) the radii of the circles
S; S;-r (7 = 1,2) respectively. Simple geometric argument shows that

1
— and 7, > 2sin g, (2.9)

V3

where (3 is from condition (2.4) on the SLR~triangulations.

+
1 =

r
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Write E; := A™'(S}), Ef == A7*(S;"), j = 1,2. Since A is an affine transform, then
A~!is also an affine transform and, therefore, ET, E;L (j = 1,2) are ellipses. Denote by
d;, dj, j = 1,2, (the lengths of) the major diameters of the above ellipses. Since A~! is an
affine transform and Ef (j = 1,2) are images of circles, then

+ +
di _
+ = 4+
ds Ty

Using this and (2.9), we obtain

di _ri
— < —————= =i 7)p.

1
E B ry 2\/§sin§
We have A’ C Ef” and E; C /A", and hence
lmax edge (A')| < af < moay < no|maxedge (A")],

which yields (2.8), using also the symmetry.
(b) The right-hand-side estimate in (2.7) follows immediately by the fact that any triangle
A € T can have at most M children. The left-hand-side estimate in (2.7) is obvious. H

Theorem 2.3. (a) Let T be an LR-triangulation of R* with parameters 0 <r < p < 1 and
Ny. Suppose that N',N" € T,,,m € Z, and A" and A" can be connected by n intermediate
triangles (edges) with common vertices from T,,. Then

1 e A ;
cg n < A <cn (2.10)
with s := 2Ny logy(p/r) and ¢, := § No(p/r)*No,
(b) Let T be an SLR-triangulation of R* with parameter 3 = 3(T), 0 < 8 < w/3. Suppose
that N', A" € T,,,m € Z, and A" and " can be connected by n intermediate triangles with
common vertices from T,,. Then

i lmax edge (A)|

< v 2.11
~ |maxedge (A")] ~ e (2.11)

with u := 2Ny logy(n2) and c3 := 77177%%-

Proof. (a) See [6], Theorem 2.5.
(b) Choose v > 1 so that 2! < n < 2. By Lemma 2.1, there exist A, Ay € Tri_ongw
with a common vertex such that A" C Ay and A" C A,. Using (2.6), we have

|max edge (A1)| < m|maxedge (As)].
On the other hand, applying (2.7) repeatedly , we infer
Imax edge (As)| < 730" |max edge (A")].
Combining these estimates, we obtain
Imax edge (A)| < |max edge (A1)] < mn3™ 0" |max edge (A")]

which implies (2.11) since 2V 1 <n. =



Theorem 2.4. (a) Let T be an SLR-triangulation of R? with parameter 3 = 3(T), 0 < 8 <
/3 and Ny := [2m/F]. There ezists a constant 0 < ¥ < 1 depending only on [ such that if
ANET, (meZ), N € Tpie, £>1, and N C A, then

, _ minangle (A')

<9 2.12

~ minangle (A) — (2.12)

(b) Let T be an LR-triangulation of R%. There exist constants 0 < ry < p; < 1 depending

only on the parameters of T (see the definition of LR-triangulations) such that if A\ € T,
(m e€Z), N € Tisnge, £ > 1, and N C A\, then

max edge (A’
rh < maxecee 0l < .
|max edge (A)|

Proof. (a) See [6] (see Lemma 2.3)

(b) For the proof of the upper bound in (2.13) the argument is quite similar to the
argument of the proof of Lemma 2.7 in [3] and will be omitted.

The argument for the proof of the lower bound in (2.13) is simpler. Suppose A € Ty,
AN € Tmy1, and A" C A, Let egay and €/ be the largest edges of A and A/, respectively.

max

Denote by h the length of the height to epnax in A and by A’ the length of the height to el ..
in AA’. Further, let R and R’ be the radii of the circles inscribed in A and A’ respectively. A
simple geometric argument shows that R < h < 3R as well as R’ < b’ < 3R'. Since A\ C A,

then R’ < R and hence b’ < 3h. We use this and (2.1) to obtain

(2.13)

(1/2)r|emax|h = r|A] < |A'| < (1/2)|emax] ' < (3/2)|€max| P
which implies |€] . | > (r/3)|émax|- This obviously implies the lower bound in (2.13). ™

Stars. In order to deal with graph distances and neighborhood relations it is convenient to
employ the notion of mth level star of a set.

Definition 2.5. For any set E C R? and m € Z, we define star} (E) by
star’ (E):=U{# € 0,,:0°NE # 0} (2.14)
and inductively
star® (E) := star} (star® Y(E)), k> 1. (2.15)

When E consists of a single point x, in slight abuse of notation, we shall write star® (z)
instead of stark ({z}).

In the following lemma we give some properties of “stars” of sets which will be needed
later on.

Lemma 2.6. Let E C R? and let m € Z. For k,n,v € Z*, we have

star®™(E) = star® (star” (E)), (2.16)
and
stars, oy, (E) C star,, (E). (2.17)



Proof. Identity (2.16) readily follow by the definition.
We shall prove (2.17) by induction in v. Note first that

star}, (E) = | star’,(z). (2.18)

Since the maximal valence of each vertex from V is < N, then each edge of a triangle A € T
will be subdivided at least once after < 2Ny steps of refinement. This readily implies that

stars, .oy, () C star),(z), =R’ (2.19)

Now, (2.18) and (2.19) yield

starz, oy, (F) = U stary, ,on, () C U star: (z) = star’ (E), (2.20)
zeE zeE

which is (2.17) for v = 1.
Assume that (2.17) holds for v = k. Then using (2.16) and (2.20), we obtain

k+1 k k
Star?n+2N0(k+1) (E) = Sta’r72n+2N0(k:+1) (Sta’r2n+2N0(k+1) (E))

C stary, oy, (star,, oy, (E)) = stary, oy, (E)
C star] (E).

Therefore, (2.17) holds for v = k + 1. The proof is complete. ®

2.2 Local polynomial approximation

We shall frequently use the equivalence of norms of polynomials over various sets in R?,
which we give in the following lemma.

Lemma 2.7. Let P llg, k> 1, and 0 < p,q < o©

(a) For any triangle A\,
1Pl ) = AP P 1y ). (2.21)

(b) If A\ and A" are two triangles such that A" C A and |A| < ¢o|A'], then
1P|z, an < cllPllz,a), (2.22)
where ¢ = c(p, k, o).
(c) If A and A" are two triangles such that A" C A and |A'| < ¢1| A, then
1P, n) < CHPHL,,(A\A') ~ C|A|1/p_1/q||P||Lq(A\A') (2.23)

where c=c(p, k,c1).



Proof. Estimates (2.21)-(2.23) are obviously invariant under affine transforms and hence
they follow from the case when A is an equilateral triangle of area A = 1. We omit the
details. ®

In the following, A° will denote an equilateral (reference) triangle of side one, centered
at the origin. We shall need an estimate on the growth of a polynomial P(z) as  moves
away from the origin.

Lemma 2.8. Let P € Il and 0 < p < oc. Then
IP(@)] < ¢ Plliyan(L+ 2" for € R, (2.24)

where ¢ = c(p, k).
Proof. Let P(z) =3, .} @az® Then for z € R?,
P(@)| < ) laallz|® < K max{laal}(1+ |2])*7" < ellPllycae) (1 + )
|a|<k

since all norms in a finite dimensional space are equivalent. H
For f € L,(E), E C R*, 0 < p < oo, and k > 1, we denote by Fi(f, E), the error of
L,-approximation to f from II, i.e.

Eu(f, )y = inf |1 = Plli,co) (2.25)

We also denote by wi(f, E), the k-th modulus of smoothness of f € L,(E), defined by

wi(f, E)p == sup |AF(f, )L,e), (2.26)
heR2
where ) »
_1)i+ . )
Ny(frx) = 2=o(=1)’ (j)f(erJh), if [x,x.+ kh| C E
0, otherwise.

Lemma 2.9. [Whitney| Let f € L,(A) for some triangle A\, 0 < p < oo, and k > 1. Then
Ek:(f7 A);D S ka:(f: A)p: (227)

where ¢ = c(p, k).

Proof. For the proof, see the appendix of [6]. ®

2.3 Nonlinear piecewise polynomial approximation and
B-spaces

In this section we provide the basic results of the theory of nonlinear n-term approximation
from piecewise polynomials generated by multilevel nested triangulations, developed in [6].
This theory provides important ingredients for our theory of n-term rational approximation.

9



B-spaces. We begin with the definition of a collection of spaces (B-spaces) needed for the
theory of nonlinear piecewise polynomial approximation in L,(R?) (0 < p < o). In [6] they
are termed ”skinny” B-spaces.

Taking into consideration our further needs, we shall be assuming in the following that
T is an LR-triangulation or an SLR-triangulation (see §2.1). Throughout this section we
assume that 0 < p < oo, @ >0, k > 1, and 7 is determined from 1/7:= o+ 1/p.

Definition 2.10. The B-spaces B*(T) is defined as the set of all functions f € L,(R?)
such that

Fllszecn = (32021 we(£,2),07) " < oo, (228)

AET
where wi(f, A) is a k-th modulus of smoothness of f on A (see (2.26)).

Whitney’s estimate (Lemma 2.9) implies

1fllser (T) = (S (A1 E(f, 2)0)7) " (2.29)

NET

Nonlinear piecewise polynomial approximation. Let ¥*(7), k > 1, denote the non-
linear set of all n-term piecewise polynomial function of the form

S= 1a-Pa,

A€y

where Pa € I, A, C T, #A, <n, and A, may vary with S. We denote by o, (f,T), the
error of L,-approximation to f € L,(R?) from $¢(T):

on(f,T)p:= inf : Ilf — S|lp- (2.30)

SeXk(T

In [6] for the characterization of the approximation spaces generated by (o,(f,7),) the
machinery of Jackson-Bernstein estimates and interpolation are used.

Proposition 2.11. [Jackson estimate] If f € B*(T), then

on(f, T)p < Cn_aHfHBg’“(T)
with ¢ depending only on p, o, k, and the parameters of T .

Proposition 2.12. [Bernstein estimate] If S € XF(T), then
1S lgar(r) < en®[IS]lp (2.31)

with ¢ depending only on p, o, k, and the parameters of T .

10



Denote by A} := A)(Ly, T) the approximation space generated by (o, (f, 7)), consisting
of all functions f € L, such that

o0

171y = 17+ (Evon(nen) " < oo (2.32)

with the /,-norm replaced by the sup-norm if ¢ = oo.
The following characterization of the approximation spaces A7 follows in a standard way
by Propositions 2.11-2.12.

Proposition 2.13. If0 < v < a and 0 < ¢ < oo, then
AY(Ly, T) = (Lp, BY*(T)) 2,4

with equivalent norms. Here (X,Y)\, denotes the real interpolation space between the spaces
X andY (see e.g. [1]).

Denote
Un(f)p = igl,f Un(f: T)pa

where the infimum is taken over all LR-triangulations 7" with fixed parameters. The following
result is immediate from Proposition 2.11.

Proposition 2.14. Suppose infr || f|| ger(7) < 00, where the infimum is taken over all LR-
triangulations with fized parameters, and let f € L,(R?). Then

on(fp < en” inf [| fllsr 7).

For more details, see [6].

2.4 Maximal functions

In this section we introduce and explore two types of maximal functions. They will be our
main vehicle in proving out results for nonlinear n-term rational approximation.

Definition 2.15. Let T be a multilevel triangulation in R? (for the definition, see §2.1). For
a Lebesgue measurable function f, defined on R?, and s > 0, we define the maximal function

M f by

(M3D)(z) = sup (ﬁ / |f(y)|sdy>1/s (2.33)

6cO: xzch

where the sup is taken all over the cells 6 € © containing x.

11



We next associate with any triangle A C R? a collection of ellipses £, which will be
used in the definition of another type of maximal function. Let A°® be a fixed equilateral
reference triangle of side length one. Denote by B~ the circle inscribed in A° and by B*
the circle circumscribed around A°.

For a given triangle A, let A be an affine transform which maps A° one-to-one onto A.
Denote E~ = A(B~) and E* = A(B™"), which are apparently ellipses. It is also readily seen
that E~ can be obtained by dilating and shifting E*. Now, we let £4 denote the set of all
ellipses in R? which can be obtained by dilating and shifting £~ or E™.

Definition 2.16. Suppose A is a fized triangle in R* and s > 0. For any Lebesgue measur-
able function f, we define the maximal function Mg f by

oz N = s ([ If(y)lsdy>1/s (234)

Ecén:z€FE
where the sup is taken all over ellipses B2 € Ex which contain x.

We first note that if A is an equilateral triangle and s = 1, then Mg f is the standard
maximal function.

If s = 1, we denote M7 f := MY f and Mg, f := Mg, f. Note that M5 f = (M| f|*)V/=.

Remark 2.17. One of the most important properties of the maximal functions M3 f and
Mg, f is that they are invariant under affine transforms. Thus if A is an arbitrary affine

transform on R?, then

(M7f)(z) = My f)(A(2), =R,

where A(T) := {A(A) : A € T}. The maximal functions Mg, f are invariant in a similar
sense.

Recall that if 7 is an SLR-triangulation (LR-triangulation), then A(7) is also an SLR-
triangulation (LR-triangulation) with the same parameters. Consequently, the set of all
maximal functions {M5}, where the 7’s are SLR-triangulations with the same fixed pa-
rameters is invariant under affine transforms.

The next theorem provides a very important relation between the above defined maximal
functions.

Theorem 2.18. Let T be an SLR-triangulation and let s > 0. Then there exists ' > 0,
depending only on s and the parameters of T such that if /A € T, then

(MZ,1A)(z) < (ML) (z), =z€R (2.35)

where ¢ depends only on s, s', and the parameters of T. Here s' can be determined e.g. from
1/s":=1/s+ 3NgIn(1/9)/[2s1n(1/p1)], where 9 and p; are from Theorem 2.4.

Proof. Clearly, (2.35) is invariant under affine transforms (see Remak 2.17).
Let A € T, (m € Z). If x € starl (A) (see (2.14)), then it is easily seen that
(Mg, 1a)(z) & 1 and (M51.)(z) ~ 1, and (2.35) follows.
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Let z € R? \ starl (A). Let I < m be the highest level such that x € R? \ star }(A) but
z € star?(A). The existence of such I < m follows by Lemma 2.1.

Denote by Ay the unique triangle in 7; such that A C A\y. Since (2.35) is invariant under
affine transforms, we may assume that A\ is an equilateral triangle of side length one. Let
emax be the maximal edge of A and write a := |epax|. Also, let A be the length of the hight
in A t0 epnax.

Since z € star7(A), then by Lemma 2.1, # € star/ ,y (A) and hence there exists
6 € ©;_an, such that z € § and A C 6. By (2.2)-(2.3) and since A\ is an equilateral triangle
of side length one, it follows that |#] ~ 1. Consequently,

A

M) = (G [1era)” > ()" = daps = cane. 23

To estimate (./\/lfg'A 1,)(z) from above, we first observe that since z € R? \ star? (A),
then d := dist(A,x) > ¢; > 0, where dist(A, x) is the Euclidean distance from z to A in R?.
Let A be an affine transform which maps the equilateral reference triangle A° one-to-one
onto A. Let E* be the images of the inscribed (—) and subscribed (+) circles of A° (see
the construction above Definition 2.16). Evidently the major diameters of E* are ~ a and
the minor diameters of E* are ~ h. Let E* be the smallest ellipse in €4 such that = € E*
and A N E* # (. Evidently, the major diameter of E* is > d > c¢; and since E* can be
obtained from E* (or E~) by a dilation and a shift, then |E*| > cd*h/a > ¢"h/a. Now, by
Definition 2.16, it readily follows that

y ANV ral A\ y
(MZ 10)(z) < (||E*||) §c( |h |) < cpa?”. (2.37)

Taking into account (2.36)-(2.37), it remains to show that if s is selected so that 1/s’ :=
1/s+ 3Ny In(1/9)/[25In(1/p1)], then a®/*" < c¢(ah)'/* or equivalently a®*~2/* < c¢(h/a)/.
Denote v := m — [. Using Theorem 2.4, it follows that

a = |maxedge (A)| < cpt/*|maxedge (Ag)| = cpt/*™. (2.38)

Let a := minangle (A). By Theorem 2.4, a > c’minangle (Ag) > c¥”. ;From this, we
obtain
h/a > (1/2)sina > cv”.

Finally, simple computation shows that if s’ > 0 is selected sufficiently small, e.g. such that
1/s":=1/s+ 3NogIn(1/9)/[2s1n(1/p1)], then

a2/ 2/ < cplll(2/5’*2/3)/3No < e < c(h/a)l/s,

which implies (2.35). ®

The maximal inequality. Here we extend the usual L, maximal inequalities (boundedness
of maximal operators) to maximal functions generated by multilevel nested triangulations.
In essence these are well-known results. We present them in the form that we need them.
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Suppose that d : R™ x R? — [0, 00) is a quasi-distance in R", i.e. d satisfies

(a) dz,y) =0z =y,

(b) d(z,y) =d(z,y), (2.39)
() d(z,z) <cld(z,y)+d(y,z)) withe>1.

We denote by B(y,a) (a > 0) the "ball” with respect to this quasi-distance of radius a

centered at y, that is, B(y,a) := {z : d(z,y) < a}.
In this setting the maximal function (operator) M? is defined by

(M f)(z) = BszligB <|Ti| /B If(y)? dy) I/S, (2.40)

where the infimum is over all balls B containing z.
The Fefferman-Stein vector valued maximal inequality (see [2] or [10]) reads as follows:

Proposition 2.19. If0 < p < 00, 0 < ¢ < 00, and 0 < s < min{p, q}, then for any sequence
of functions (f;)52, on R?

<c
P

(2.41)

| Imesiy ]| <o
i=1 i=1

where ¢ depends only on p, q, and s.

As a matter of fact, in [2] and [10] the maximal inequality (2.41) is stated and proved in
the case s = 1 but since M*f = (M?|f]*)!/* the proposition follows.

Definition 2.20. For a given LR-triangulation T, we define a quasi-distance dr : R* x R* —
[0,00) by
dr(z,y) =inf{|f|: 0 € ©® and =z,ycb}. (2.42)

Lemma 2.21. The mapping dy : R x R? — [0,00) defined in (2.42) is a quasi-distance
in R?.

Proof. Condition (a) on quasi-distances (see (2.39)) follows by the properties of the LR~
triangulations (see §2.1). Condition (b) is obvious.

To prove that condition (c) holds let z,y, z be three distinct points in R?. Assume that
d(z,z) = |0'|, where ' € ©,, is a cell containing z, z. Similarly let d(y,z) = |0"| for some
cell 8" € ©,, which contains both y and z. Without loss of generality we assume that m < n.
Obviously = and z lie in triangles in 7, with a common vertex (or in the same triangle).
Since m < n, the same is true for y and z. In other words there exist triangles Ay, Ay € T,
which can be connected with < 22 intermediate triangles from 7,, (with common vertices),
so that x € Ay, y € AAy. By Lemma 2.1 that there exists § € ©,, sy, such that Ay, Ay C 6
and hence d(z,y) < |#|. By properties (2.1)-(2.2) of the LR-triangulations there exists a
constant ¢ := ¢(d,r, Ng) such that |#] < ¢|@'|. Consequently, d(z,y) < c(d(z,z) + d(z,y)).
|

Denote by My _ the maximal function generated by the quasi-distance defined in (2.42).
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Lemma 2.22. If T is an LR-triangulation, then for any measurable function f
Tf(r) = My _f(z), z¢€ R?, (2.43)
where the constants of equivalence depend only on s and the parameters of T .
Proof. Clearly, it suffices to show that for any ball B there exist cells §',60"” € © such that
0 c BC#" and |0"| <ci|B| <ol

Fix a ball B = B(x,0). Let m be the maximal level for which there is § € ©,, such that
x € 6. Let 8° € ©,, be such that = € §°. Using Lemma 2.1, it readily follows that

6° C B(z,6) = U 6 C star? (z) C 6"

|0|<6, z€b

for some 0" € ©,,_an,. By the properties of LR-triangulations, it follows that |60”| < ¢|B].
In the other direction, for any cell 8 € O, (n € Z) with “central” vertex v, we have
6 C star?(v). Let &' = max{|f] : 6 C star?(v)}. Then

6CB(v,d)= | 6 Cstar}(v),

|6°]<5", veB®
which yields |B(v,d")| < ¢|f|. This completes the proof. ™

We now couple Proposition 2.19 with the above lemma to obtain the following modifica-
tion of the Fefferman-Stein maximal inequality:

Proposition 2.23. Let T be an LR-triangulation of R%. If0 < p < 00, 0 < ¢ < o0, and
0 < s < min{p, q}, then for any sequence of functions (f;)32, on R

15l e

where ¢ depends only on p, q, s, and the parameters of T .

, (2.44)

[ ity sy )
j=1

<c
P

3 Main results

We denote by R,, the set of all n-term rational functions on R? of the form

n
R: E Ti,
i=1

where each r; is of the form

6
. H a,x1 +b,xa + ¢y
i 2
1+ (o1 + Buza + V)
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with a,, b, cu, o, B, 74 € R
Denote by R, (f), the error of L,-approximation to f from R,, :

Rn(f)p = Rlen7£n |l f — RHp-

Clearly, each R € R, depends on < 36n parameters and R, is a nonlinear set, however,
R, =R, (c#0)and R,+R,, = Rpim- A fundamental property of R, is that it is invariant
under affine transforms, i.e. if R € R,,, then Ro A € R,, for every affine transform A.

Our primary goal in this chapter is to relate n-term rational approximation and n-term
piecewise polynomial approximation. We shall use all the notation from §2.3. Throughout
this section, we assume that 7 is an SLR-triangulation on R? (see §2.1).

The following theorem contains our main result.

Theorem 3.1. Let f € L,(R?),0<p<oo,a>0, and k > 1. Then

n

Ral(f)y < en= (32 (o, T + 11

<\ 1/p*
g) Con=12... (3.1)

where p* = min{1, p} and ¢ depends only on «, p, k, and the parameters of T .

It is an important observation that in Theorem 3.1 there is no restriction on a > 0 (but
¢ depends on «). The the next corollary follows immediately from the above theorem.

Corollary 3.2. If 0,,(f,T), = O(n™") for an arbitrary SLR-triangulation T, 0 < p < oo,
and v > 0, then R,(f), = O(n™"7).

Combining the Jackson estimate for n-term piecewise polynomial approximation from
Proposition 2.11 with Theorem 3.1, we infer the following result.

Corollary 3.3. If f € (\B**(T), where o > 0, 1/7:= a+1/p, 0 < p < 00, then
Ru(f)p < en™* int || fll ax(r) (3.2)

where the infimum is taken over all SLR-triangulation with some fixed parameters.
We shall deduce Theorem 3.1 from the following result.

Theorem 3.4. For each S € 3% (T), m > 1, and n > 1, there exists R € R,, such that
IS = Rll, < cexp(—(n/m)"*)||S]|, (3-3)
where ¢ depends only on p, k, and the parameters of T .

The main vehicles in the proof of Theorem 3.4 will be the anisotropic version of the
Fefferman-Stein vector valued maximal inequality which was given in Proposition 2.23 and
the following lemma which rests on the result of D. Newman [7] on the rational approximation
of |z|.
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Lemma 3.5. For each v >0, 0 < 6 < 1, and u a positive integer, there exists a univariate
rational function o such that

dego < cln(e+1/7)In(e+1/0) + 4u, (3.4)

0<1—o0(t)<y forlt|]<1—4, (3.5)
1o\

0<o(t) <v <?|t|> for|t| > 1, and (3.6)

0<o(t) <1 forteR, (3.7)

where ¢ is an absolute constant. Moreover, o has only simple poles. It follows by (3.6) that
if o = P/Q (P, Q polynomials) then deg @ > deg P + 4p.

Proof. See Lemma 4.5in [§]. W

For later use, we include the following lemma.

Lemma 3.6. Suppose 0 = P/Q is a univariate rational function degree < 1 such that
deg@ > deg P+ k+1 (k> 1) and o has only simple poles. Let P € I, (R?). Suppose that
A\ = [vy, v, 03] is a triangle in R* and a;xy + bize +c¢; =0 (1 = 1,2,3) is an equation of the
straight line containing the edge of /\ opposite to the vertex v;. Denote T;(x) = a;x1+b;xa+c;.
Then

[[o(T)P e Rus. (3.8)

i=1
Proof. Each z € R? has a representation of the form
z = by(z)vy; + bo(x)vy + b3(x)vs, bi(z) + ba(x) + b3(z) =1,

where b, (), by(), and b3(x) are the barycentric coordinates [5] of x with respect to A. It
is readily seen that b;(z) = A;T;(xz). Then the Bernstein-Bezier representation of P(z) is of
the form

P@)= Y Caprbi(@)ba(@)’bs(2)’ = D dagyTi(2) To(2) Ta(z)".

0<a+B+y<k 0<a+B+y<k

Therefore,

3

[[oT@)P@) = Y daps[Ti(@)*0(Ti(2))][Ta(x) o (Ta(2))][Ts(2) o (Ts(x))]-

i=1 0<a+f+y<k
Since deg @ > deg P + k + 1 and o has only simple poles then T} (z)*0 (73 (z)) has a repre-
sentation of the form

p1

Ty(2)o(Ti() = Y

v=1

u, T1(z) + v,
tl,,, + (Tl(l') + 817,,)2

with  py <1/2.
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Evidently, Ty(z)?0(Ty(x)) and T3(z)70(T3(z)) have similar representations. Consequently,

3

[[e@@pe) = % ,B,VHZ o N

=1 0<a+ﬁ+7<k
cl®
B awxl—kwag—i-cw
- 3T ; 2
M ]_ ’L 1 + alaﬂxl + /Blall'x2 + 77/7/1)

where a; ,,, b; u, Ci i, Qi s Bip, Vi € R The proof is complete. M

With the next lemma we show that every piecewise polynomial function S € Xk (T) can
be represented as a piecewise polynomial function on < cn non-overlapping “rings”.

Lemma 3.7. Suppose S := Y .p LaPn, where Pn € I, A C T, and #A < n. Then S
can be represented in the form

S:=> 1k, Px,, (3.9)

A€l

where A C T, #A < cn with ¢ depending only on the parameters of T, each “ring” Ka is
of the form Kn = A or K = A\ A, AN €T, and K3 N KR, =0 if Ny # Do

Proof. Since the levels of 7 are nested, there is a natural tree structure in 7 induced by
the inclusion relation. Namely, if Ay, Ay € T then A\ C Ay or Ay C Ay or A;NAS = 0.
The set A generates a subtree in 7. Let Ty be the set of all triangles A € T for which there
exist two triangles Ay, Ay € A such that Ay C A C Ay. Clearly, A C Tj.

We shall make the distinction between several types of triangles in 7,. We say that
A € Ty is a leafin T if A does not contain any other triangle in 74. We denote by A, the
set of all leaves in A. Evidently, A, C A.

We say that A € Ty is a branching triangle for T if A has at least two children in
Ta, i.e. if at least two children of A in 7 have descendants in A. We denote by A, the
set of all branching triangles in 7. We also denote by Aj the set of all children in 7 of
branching triangles. We extend A to A := A U A, U Aj. It is easy to see that in every tree
the number of the branching elements does not exceed the number of the leaves. Therefore,
#Ap, < #Ay < n and #A} < cn since the number of children of a triangle is bounded by M.
Thus #A < cn.

We denote by A, the set of all leaves in the tree Ty U Ay .

For each triangle A € A\ (A,UA;) we denote by A the the unique largest triangle A C A
such that A € A and A # A. Finally, we introduce rings generated by A as follows. For
A e A, we define

0 if Ael,
Kr:={ A\A if AecA\(AUA)
A if A&E.A@

It is readily seen that K3 N KR, = 0if Ay, Ay € A and A; # A,. Also, since all children
of branching triangles belong to A, we have

A= |J Ku, A€k (3.10)
NeNNCA
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and, hence,

Ua= Ka. (3.11)

Ael A'el

Evidently, S is a polynomial of degree < k on each ring K and therefore (3.9) holds. ®
The next lemma provides the main step in the proof of Theorem 3.4.

Lemma 3.8. Suppose ¢ := lg - Pgx, where K = A\ A, A C A, AN € T, and
Py € llg, k > 1. Then for A > 0 and s > 0 there exists a rational function R € R; with
| < cln**(e +1/)\) such that

lp = Rll, < cAllellp, (3.12)

and
|R(z)| < MK 7 lllp,(MF1k)(x) for =€ R\ K, (3.13)

where ¢ depends on p, k, s, and the parameters of T .

Proof. Let A° be an equilateral reference triangle with side length one, centered at the
origin. Denote by vy, vg, and v3 the vertices of A°. Let I3 be the straight line in R? through
vy and ve. Also, let I3 be the line through vz which is parallel to I3 and let S3 denote the strip
bounded by I3 and I3y. We similarly define the lines [;7, I” (j = 1,2) and the strips S1, S,.
Further, we denote by T} (j = 1,2, 3), the linear function of the form Tj(z) = @)z, +a}zs+dj,
so that T;(I;) = —1 and T(I]) = 1.

For the given s > 0, we select s’ so that 1/s" :=1/s+ 3Ny In(1/9)/[2sIn(1/p1)], where ¥
and p; are the constants from Theorem 2.4 (see Theorem 2.18).

Let o be the univariate rational function from Lemma 3.5 applied with v := X\, § := \P

and g := [(k+1/8')/4] + 1. We define kp-(z) := [[._; o(Ti(z)). By (3.4), we have

1 1 1
< _ — < 2 — = . .
dega_cln<e+)\)ln<e+)\p)+4u_cln (e—}—)\), c:=c(k,s,p) (3.14)
By (3.7), it follows that
0 < kpo(z) <1 forz e R (3.15)
Denote A§ := (1 —§)A°% ie. Aj:={xeR?>:2=(1-10)y, y € A°}. Then (3.5) implies
3
0<1—kpola) <Y (1-0(Ty(2) <3\, z €A (3.16)
i=1

Let x € R? \ A°. If |z| < 2, then by (3.6) we have kao(z) < cA. Let |z| > 2. By the
symmetry we may assume that T;(z) > 1 for i = 1,2, or 3. Then since |z| < cdist(z, S;), we

have
(z) < o(Ti(x)) < A L Yoo ()"
Rastt) = OB =\ T dist(x, 8)) = \1+2)

These estimates imply that

Kno(z) < X < >4N, z €R?\ A, (3.17)

1+ |z
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Clearly the statement of the lemma is invariant under affine transforms. So, without loss
of generality we shall assume that A is an equilateral triangle of side length one, namely,
A = A°. Suppose A" C A is any triangle. Let Ay := A§ := (1 — 0)A°. Set ka 1= Kpo.

Let A be an affine transform mapping one-to-one A’ onto Af. Then A7'(Ag) = A
Denote A := A™1(A®). Then A’ C A} and it is readily seen that |Af\ A/| < 4.

Now, we define kar := Kaeo 0 A, the composition of ka. and A. By the properties of kao
and A it follows that

0<ka(z) <1 for ze€R? 0<1—ka(z) <3\ for zeA (3.18)

and

kar(z) <eh for xR\ AL (3.19)
Let ¢ := 1k - Pk, Pk € Il with K := A\ AA’. We set

R = Iﬁ}A(l — I{AI)PK.

Note that R = kp Pk — kaka Pk =: Ri + Rs. By Lemma 3.6 and (3.14) we have R; € R,
with n := cIn®(141/A). Tt follows from the fact that the univariate rational function ¢ from
Lemma 3.5 has only simple poles and by (3.14) together with Lemma 3.6 that Ry € R,,
with m := cIn'?(1 + 1/A) and hence R € R; with [ < c¢In*?(1 +1/)).

We use Lemma 2.8, (3.16), and (3.18) to conclude that

I = Rllz,annny = 11 =641 = 65a)|le@anayllell
= (I = Kallzaqan + s lnaap) Il < Allell.  (3.20)
Write K5 := (A\ As) U[AN (AL A)]. Then we have

lo = Rlizy < clollraa (AN As| + A5\ AP
< 'l < eMllll,,

where we used Lemma 2.7. This estimate and (3.20) imply
lp = Bllz,x) < cAllgll, (3.21)
It remains to prove estimate (3.13). Let first x € AA’. Then

|p(z) = R(z)] |R(z)| < 11— Kkp(2)]| Pr ()] < 3A] P o)

< 3Pl Lec(a) < M PrllL,) = eAllellp, (3.22)

where we used again Lemma 2.7. For the estimate of (M5 1k)(z) (z € A') from below,
assume that A € T, for some m € Z. Let 6 € T, be such that A C §. Then by (2.2) it
follows that |0] < ¢|A| and hence, for z € A/,

M) = (g [ an) = (0" = (B221E) 200
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where we used (2.1). From this and (3.22), we infer
p(z) = R(z)| < eMoll,(M71k)(2), e A (3.23)

Let now z € R\ A. Then using (3.17) and Lemma 2.7, we obtain

lp(z) — R(@)| = |R(z)| < £a(z)|Px(2)] < cA||PK||Lp<A>%
1
< Allelly G (3.24)

Let Ba be the disc inscribed in A (of radius 1/4/3). Then using the definition of x above,
it is readily follows that

C C

a1 > (M 1 > > : 2
(MSA A)(‘7") = ( En BA)(‘T) = (1 n |Z’|)1/8’ = (1 n |Z’|)4'“_k (3 5)
On the other hand, by Theorem 2.18, we have
(Mg, 1n)(@) < c(MF1a)(2) < c(MF1k)(2), = eR?, (3.26)

where for the latter estimate we used that |A| ~ |K| ~ 1. Finally, combining (3.24)-(3.26),
we obtain

[o(x) — R(2)| < eAllellp(M7Lx)(z), z€R*\A.

This estimate coupled with (3.23) yields (3.13).
Finally, by the maximal inequality and (3.13), it follows that

I = Rl L, 2\r) < e[l
which along with (3.21) yields (3.12). The proof is complete. ®

Proof of Theorem 3.4. Suppose S € ¥F (T). Then by Lemma 3.7, S can be represented
in the form

S = Z :[]-KAPKA7

A€eA

where #A < ecm and KA° N KA =0 if A # A,

Let o := 1gxPg with K := Ka. We apply the Lemma 3.8 with ¢ = g, A =
exp(—(2)Y12), and s := tmin{p, 1} to infer that then there exists a rational function Ry €
Ry with | < cIn'?(e + 1/)) such that

lex — Rillp < cAllekllp

and
[Ric(2)] < KT 7 lloxllp (M 1k ) (2) for o € R\ K.
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We set R := ) ,.; Rk. Clearly, R € Ry with
N < #Al < eml < emIn*?(e + e(%)lm) < cn.

Thus R € R.y.
Now using Lemma 3.8, we have

15— Rl = |>ex - Rx
K K

< H Z(SOK — Rg) -1k + ZRK - I\
K K

p

p

+CH Ry - 1pe H
e Dt

< oY llew - RK)||5)1/’” + | il K15 STJlK)(-)Hp-

< CH Z(SOK — Rg) - 1k
K

Applying the Fefferman-Stein maximal inequality (Proposition 2.23) with ¢ := 1 and s :=
Imin{p, 1} < min{p, 1}, we obtain

1/p _1
IS =Rl < A(Xllexllp) " +ex| X lellk k()|
K K

IN

1/p
(X loxl) ™ = ¢ exp(—(n/m) )51,
K

The theorem follows. H

Proof of Theorem 3.1. Assume that p > 1. The case 0 < p < 1 is similar. Choose
S; € X¥(T) so that || f=S;ll, < 20;(f, T)p, j = 1,2,... (see (2.30)) and set @, := Sov —Sov-1,
v > 1, and ¢ := S;. Evidently, ¢, € ¥%,,,(T) and

levlly = 1192 = Sovrlly < (I = Savllp + [If = S2valp
S 20—2”(.]05 T)p + 202”_1(fa T)pa v Z 17
leolle = ISully < 200(f, T)p + [ 1lp-

Fix 4 > 0. For v = 0,1, ..., 4, we apply Theorem 3.4 with S := ¢,, m := m, = 2"},
and

12
ni=mn, = {2"*1 (a(,u —v)ln 2) -‘ + 1.
As a result, there exist rational functions R, € R,, such that for v > 1,
low = Rully < cexp (= (277 /m) V) floullp < 2@ |,
< 2 (o (f, Ty + o1 (£,T),) (3.27)

and
lpo — Rollp < c27**{[eoll, < 27*(a1(f, T)p + I fllp)- (3.28)
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Now we set R:= ) ' _ R,. Then R € Ry with

N < i:n,, < i: [2”“ (oz(u —v) 1112/0*)12 + 1]

v=0

< 2'[(n—v)2 +1] < d2#, ¢ = constant.

v=0

By (3.27) and (3.28), we obtain

o

w
If = Rlly < I1f = Saellp + D llw = Rully + [lo0 = Roll,

v=1
I
< 2000 (f, T)p+ Y 27 (£,7),
v=1
+c27 (o1 (£, T)p + 11 f1lp)
w
< (32 (£.T), + 1],
v=0

Therefore, for any p > 0, we have
w
B, (N < 2 (3 2%an (£, T)p + Iflp) with N, =2
v=1

This estimate readily implies (3.1). ®

Proof of Corollary 3.3. This Corollary follows readily from Theorem 3.1 together with
Theorem 2.11. ®
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