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Abstract: For nonnegative integers d,, d,, and L(d,, d,)-labeling of a graph G, is a function
f:V(G) = {0, 1, 2, ...} such that [f(u) — f(v)| = d, whenever the distance between u and
visiin G, fori = 1, 2. The L(d,, d,)-number of G, Ay a,(G) is the smallest k such that there
exists an L(d,, d,)-labeling with the largest label k. These labelings have an application to a
computer code assignment problem. The task is to assign integer “control codes” to a network
of computer stations with distance restrictions, which allow d, = d,. In this article, we will
study the labelings with (d,, d,) € {(0, 1), (1, 1), (1, 2)}. © 2004 Wiley Periodicals, Inc. Naval
Research Logistics 51: 000-000, 2004.
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1. INTRODUCTION

An interesting graph labeling problem comes from the radio channel assignment problem, as
well as code assignment in computer networks. One version of the radio channel assignment
problem [13] is to assign integer “channels” to a network of transmitters with distance
restrictions, such that several levels of interference between nearby transmitters are avoided and
the “span” of the labels used is minimized. An L(d,, d,)-labeling of a graph G is a function f
: V(G) = {0, 1, 2, ...} such that |f(u) — f(v)| = d; whenever the distance between u and
vis i apart, i € {1, 2}. We denote A, ,(G) the minimum span of any such labeling of G,
which means to minimize the largest label used in the labeling.

Since Griggs and Yeh [12] introduced these graph labeling, a large amount of literature (cf.
[2], [4], [5], [7]1-[12], [14]-[22]) has been contributed on efficient integer graph labeling with
distance restrictions in the cases d; > d, = 1 (mostly, in the case L(2, 1)). Now it is reasonable
to consider what if d, = d,.

* Supported in part by the National Science Council under Grant NSC89-2115-M-035-007.
Correspondence to: R.K. Yeh (rtkyeh@math.fcu.edu.tw); X.J. Jin (jin2 @math.sc.edu)

© 2004 Wiley Periodicals, Inc.



2 Naval Research Logistics, Vol. 51 (2004)

A variation of the problem is code assignment in computer networks, i.e., to assign integer
“control codes” to a network of computer stations with distance restrictions, which allow d; =
d,. Here we study the cases (d,, d,) € {(0, 1), (1, 1), (1, 2)}.

Bertossi and Bonuccelli [1] introduced a kind of code assignment to avoid hidden terminal
interference as follows. Since some modern computer networks consist of computers including
mobile computers or computers displaced in wild areas, they need to use broadcast communi-
cation media such as radio frequencies. The computer network which communicates by radio
frequencies called Packet Radio Network. It consists of computer stations (computers and
transceivers), in which the transceivers broadcast outgoing message packets and listen for
incoming message packets. Unconstrained transmission in broadcast media may lead to collision
or interference, i.e., there is the time overlap of two or more incoming message packets received
at the destination station. That results in damaged useless packets at the destination. Collided
message packets must be retransmitted. That increases the time delay of the transmission, and,
hence, lowers the system throughput. Several protocols have been devised to reduce or eliminate
the collisions. They form the medium access control sublayer. For example, under Code
Division Multiple Access protocol, the collision-free property is guaranteed by the use of proper
assignment of orthogonal control codes to stations and spread spectrum communication tech-
niques (e.g., hopping over different time slots or frequency bands).

We represent the network by a graph, such that all stations are vertices and two vertices are
adjacent if the corresponding stations can hear each other. Hence, two stations are at distance
two, if they are outside the hearing range of each other but can be received by the same
destination station. There are two types of collisions or interference: direct collision, due to the
transmission of adjacent stations, and hidden terminal collision, when stations at distance two
transmit to the same receiving station at the same time.

To avoid hidden terminal interference, we assign a “control code” to each station in the
software as follows. For one station, to avoid hidden terminal interference from its adjacent
stations (which cannot hear each other) sending packets to it, we require distinct codes for its
adjacent station, i.e., d, = 1. Here we suppose that there is little direct interference in the
system, i.e., direct interference is so weak that we can ignore it. Apparently in the model of [1]
there are some special hardware designs, which can avoid direct interference in the system.
Hence, we allow the same code for two adjacent stations (which can hear each other), meaning
d, = 0. Therefore, we have the L(0, 1) case.

It is important to note that the L(0, 1) problem is just a special case of ordinary graph
coloring: Each feasible L(0, 1)-labeling of a graph G = (V, E) yields a feasible coloring of the
graph G' = (V, E'), where E’ contains edges {u, v} whenever u and v are distance two apart
in G. Conversely, a coloring of G’ becomes a feasible labeling of G by calling the colors 0,
I, ..., x(G") — 1.

Although not discussed by Bertossi and Bonuccelli [1], it seems reasonable to consider this
variation of their problem as follows. If we require distinct codes for any two adjacent stations,
ie., d; = 1, then to avoid direct interference, as well as to avoid hidden terminal interference
as above, we will require larger code differences between any two stations at distance two
(which cannot hear each other, but can both be received by the same stations), i.e., d, = d;.
Hence, we have the L(1, 1) and L(1, 2) cases.

The L(1, 1)-labeling has been studied by Yeh [21] and Liu and Yeh [16]. Similarly to L(0,
1)-labeling, L(1, 1)-labeling corresponds to coloring the graph G=.

We will present results about )\d]’dQ(G) for (d,, d,) € {(0, 1), (1, 1), (1, 2)} for some
particular graphs, including the path P, on n vertices, the cycle C, on n vertices. We also
consider two infinite graphs that model large regular transmitter networks: the triangular lattice
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and the square lattice, which will be defined in Section 3. Finally, we provide an upper bound
on A ,(G) = 2A? — A for any graph G with the maximum degree A in Section 4.

2. BASIC RESULTS

By the definition, we obtain the following proposition.

PROPOSITION 1: Let G be any graph.

L. Ay 4(G) = A, (G), where d; = p and d, = gq.
2. Mg, aa,(G) = dAy 4 (G), for positive integers d, d,, d,.
3. )\0,1(G) = )\1,1(G) = AI,Z(G) = )\2,2(G) = 2)\1,1(0)-

Next we consider paths, cycles, and wheels. The results are easy to derive. Hence, we state
them without proofs.

THEOREM 2: Let P, be a path with n = 2 vertices. Then

0 ifn=2,
wea={ 02 m

1 ifn=2,
Aia(P,) = { 2 ifn=3 [16].

1 ifn=2,
/\I,Z(Pn) = 2 lfn = 3’
3 ifn=4.

Notice that, for H being a subgraph of G, we have A, ,(G) = A, , (H) if H is an induced
subgraph or d; = d,, which may not hold for some other cases. For example, A ,(K; ;) = 4 >
3 = A ,(K,) for K, 5 being a subgraph of K.

When we join the first and the last vertex of a path, we have a cycle.

THEOREM 3: Let C, be a cycle of order n = 3. Then

0 ifn=3,
Aa(C) =1 1 ifn=0 (mod 4), [1].
2 otherwise
2.

2 ifn=0 (mod 3),
A(C) =4 4 ifn=35, [16].
3 otherwise
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Figure 1. The hexagonal cells (left) and the triangular lattice I', (right).

2 ifn =3,

Ao(C) =43 ifn=0 (mod 4),
4 otherwise.

If we take a cycle C,, joined by a vertex, then we get a graph, W, = C,, \/ K, called a wheel
with n spokes. The next theorem considers the graph W,,, for n = 4.

THEOREM 4: (1) Ao ,(W,) = | (n = D/2 |, () A, «(W,) = n, and (3) A, ,(W,) = n.

3. TRIANGULAR LATTICE AND SQUARE LATTICE

Define vectors €, = (1, 0), €, = (0, 1), and €5 = (1/2, V/3/2) in the Euclidean plane. We
denote by I', the triangular lattice such that V(I'y) = {i€, + je; :i,j € Z} and E(I'y) =
{uv:u, ve V(I'y), dg(u, v) = 1}, where d(u, v) is the Euclidean distance between u and
v. Similarly, we denote by I' the square lattice, such that V(I') = {ie, + je, : i, j € Z}
and ET') = {uv:u, v € V(I'y), dg(u, v) = 1}. In both graphs, vertices are denoted by
(i, j) for short.

The triangular lattice is important in radio communication such as radio broadcasting and
mobile cellular networks. In a radio mobile network, large service areas are often covered by a
network of congruent polygonal cells, with each transmitter in the center of a cell that it covers.
A honeycomb of hexagonal cells (Fig. 1) provides the most economic covering, that is, the
transmitters are placed in the triangular lattice [6]. If the areas are covered by a network of
square cells, we may get all transmitters in the square lattice.

Notice that both graphs are infinite. See Figures 1 and Figure 3 for I'y and I'r, respectively.
The square lattice can also be regarded as the Cartesian product of two infinity paths.

THEOREM 5: (1) Ag,(Ty) = 3, (2) A, ,(T) = 4, and 3) A, () = 7.

PROOF: (1) We will calculate the labeling number A, ;(I'y). Since ' contains a K , as an
induced subgraph, it is easy to see that A, ; (K, 4) = 3, Ay ;(I') = 3. On the other hand, define
a labeling f on V(I'p) by f(i, j) = 2Li/2_| + j (mod 4), where f(i, j) stands for f((i, j)). The
maximum label we use is 3.
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Figure 2. The subgraph B(v,).

If vertices (i,, j;) and (i,, j,) are at distance two apart, then |i; — i,| = 1 = [j; — jJ|, li; —
i,| = 2andj, = j,, ori; = i,and|j, — j,| = 2. In each case |f(i,, j,) — f(i,, j»)| is either
1 or 3. Therefore, f is an L(0, 1)-labeling with the maximum label 3. Thus, A, ;(I'n) = 3. The
result then follows.

(2) We will consider the labeling number A, ,(I'5). In this case, we see that 4 = A, (K ,)
Ay 1(I'g). The upper bound 4 on A, ;(I') can be attained by defining a labeling f as f(i, j)
3i + j (mod 5). It is easy to verify that f is an L(1, 1)-labeling with the largest label 4.

(3) We will consider the labeling number A, ,(I'n). Define a labeling f by f(i, j) = 5i + j
(mod 8). Then we can easily show that f is an L(1, 2)-labeling with the largest label 7 on I'.
The upper bound on A, ,(I') is then attained. On the other hand, it is trivial that we can assume
some vertex, say v, is labeled by 0. Thus, by the definition of L(1, 2)-labeling, one of the
neighbor of v must have a label at least 7. So A, ,(I'g) = 7, we then obtain the equality. O

1A

THEOREM 6: (1) Ay ;(T'y) = 3, (2) A, ;(I'y) = 6, and 3) A »(Ty) = 9.

PROOQF: For any vertex v, let N,(v) be the set of its neighbors and N,(v) be the set of these
vertices at distance two from v. Then, for v = (i, j) in Iy, N ((i, j)) = {(i = 1,)), (i,j =
D,Gx1,jF1)and Ny((G, 7)) ={G£2,)), G, J*x2),Gx1,jF2),0x2,jF
2),(ix1,j*=1),(=2,j* 1)}. (Fig. 3 shows a subgraph B(v,) induced by { vy} U N,(v,)
U Ny(vp).)

Let v, be any vertex in I'y. Then v, and N,(v,) induce a subgraph, which is a W (see Fig.
2). Thus, the A-number of I, is greater than or equal to the A-number of W in each case we
discuss below.

(1) We evaluate the value of A, (I'). Let

0.0

Figure 3. The square lattice I'-.
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Label (i, j) by A(6 — j, i + 1), for 0 =i, j = 5. Fori, j = 6, label (i, j) by the label
of (i(mod 6), j(mod 6)). This will be an L(0, 1)-labeling. Thus, A, ;(I'y) = 3.

Consider any L(0, 1)-labeling on I". Let v, be a vertex labeled by 0. It is easy to check that
it is impossible to get an L(0, 1)-labeling on the subgraph B(v,) (Fig. 2) using O, 1, 2.
Therefore, A, ,(I'y) = 3.

(2) We now evaluate the value of A ;(I'y). Since I'y contains a W as an induced subgraph,
we have 6 = A, |(Ws) = A, (")), by Theorem 4. In order to obtain an upper bound, we define
a labeling f on V(I",) by f(i, j)) = i + 5j (mod 7). For a vertex (i, j), we get |[f(i, j) — f(i},
jol # 0 (mod 7), where (i, j,) € Ny((i, j) U Na((i, j)).

Therefore, we have fan L(1, 1)-labeling with the maximum label 6. Thus, A; ;(I'y) = 6. The
result then follows.

(3) We evaluate the value of A, ,(I'y). Define g on V(I',) by g(i, j) = i + 4j (mod 10). Let
(i, j) be any vertex. We get |g(i, j) — g(i, j;)| # 0 (mod 10) for (i, j;) € N,((i, j)) and
lg(i, j) — g(ir, jp)| # 0, 1,9 (mod 10) for (i, j,) € Na((i, /).

Thus, g is an L(1, 2)-labeling and, hence, AI,Z(FA) = 0.

Suppose we have an L(1, 2)-labeling f of I'y, with f(v,) = O for some vertex v,. Let v,
Uy, . . ., Ug be its six neighbors as in Figure 2. Denote f; = f(v;), fori = 1, ..., 6. Since f is
an L(1, 2)-labeling, f;’s are all distinct. Further, [f, — fj| = 2 whenever v; and v; are not
adjacent. If one of the f;’s is greater than 9, then we are done. Suppose 1 = f; = 8, fori =
1, ..., 6. We then list all possible choices of f}, f5, . . ., f¢. This would not be difficult. In each
case, we then consider possible labelings on neighbors of v, ..., s, i.e., these vertices at
distance two away from u,. We found that the label 9 is necessary in each labeling. Therefore,
A o(T'y) = 9. The result then follows. O

We would like to note that the result A, ;(I'y) = 6 is also obtained in references [3] and [18],
independently.

4. UPPER BOUNDS ON A,

In this section, we will find upper bounds on A, ,(G) in terms of the maximum degree A of
G. This is motivated by the chromatic number, which has an upper bound A + 1 for all graphs
with the maximum degree A.

A trivial upper bound on A, , is 2A? because AMo=A, =20, = 2A? by Proposition 1 and
the previous result on A, | (cf. [16]).

Recall that for any fixed positive integer i, an i-independent set of a graph G is a subset S of
V(G) such that every two distinct vertices in S are at distance greater than i. Note that the
1-independent set is the usual independent set.

THEOREM 7: Let G be a graph with the maximum degree A. Then A ,(G) = 2A% — A,

PROOF: Let us consider the following labeling scheme. Initially, every vertex is unlabeled.
Let X | = . When Y; | is determined and not all vertices in G are labeled, let



Jin and Yeh: Graph Distance-Dependent Labeling in Code Assignment in Computer Networks 7

Y;={u € V(G) : u is unlabeled and d(u, v) # 2 for all v E X,_,}.

After, Y; has been determined, i = 0, we pick a maximal 2-independent subset of Y, to be
X, i.e., X, is a 2-independent subset of Y;, but X; is not a proper subset of any 2-independent
subset of Y,. Notice that in case ¥, = J, i.e., for any unlabeled vertex u, there exists some
vertex v € X;_, such that d(u, v) = 2, X; = . In any case, label vertices in X; by i. Then
increase i by 1 and continue the process (determining Y; and X;) until all vertices are labeled.
Assume k is the largest label used, and choose a vertex x whose label is k. Let

I,={i:0=i=<k—1 and d(x,y)=1 forsomey€& X},
L={i:0=i=k—1 and d(x,y)=2 forsomey€& X},

L={i:0=i=k—1 and d(x,y)=3 forallyEX;}.

It is clear that k = |I,| + |I,| + |I;|. Also, |I,| = A and |I,|] = A*> — A. For any i € I,
x ¢ Y,, otherwise X; U {x} is a 2-independent subset of Y;, which contradicts the choice of
X;. That is, d(x, y) = 2 for some vertex y in X,_,, i.e., i — 1 € I,. So, |I;] = |I,|. Then,

MoG)=k=|I|+|L| + Ll =L+ L]+ L =A+A— A+ A= A=2A"—A.
O

It is unknown whether the upper bound above is the best possible. However, we do not have
an example showing that there is a class of graphs having L(1, 2)-numbers close to the bound.
We can easily get the upper bound A, ;(G) = A? — A, which is attained by this example. This
example also shows that the first and the third inequalities in Proposition 1(3) are tight.

Given a projective plane I1(n) of order n > 1, define a bipartite graph G = (A, B, E) such
that (1) each vertex in A corresponds to a point in II(n) and each vertex in B corresponds to a
line in II(n), and (2) a vertex in A is adjacent to a vertex in B if and only if the corresponding
point is in the corresponding line.

By the definition of II(n), we know that (1) [A| = |B] = n* + n + 1, 2) G is (n +
1)-regular, (3) for any two vertices in A (or in B), their distance is 2, and (4) for every x € A,
y € B such that they are not adjacent then the distance between x and y is 3. This graph is called
an incidence graph of the projective plane I1(n) (cf. [12]). Then we have the following theorem.

THEOREM 8: If G = (A, B, E) is an incidence graph of a projective plane of order n =
2, with maximum degree A = n + 1, then (1) Ay 1(G) = A*> — A, (2) A, (G) = A* — A
[16], and (3) Ay (G) = A? — A. Hence, Ao.1(G) = Ay 1(G) and A ,(G) = 2A ((G).

PROOF: (1) We will evaluate A, ;(G). We have A, ;(G) = A (G) = A% — A. Observe
that any pair of vertices in A (or in B) are at distance two apart; hence, they will receive distinct
integer labels by the condition. Since |A| = n*> + n + 1 = A> — A + 1, we get Ay (G) =
A? — A,

(3) We will evaluate A, 5(G). We have A, (G) = A, (G) = A? — A and 2001(G) = Xp2(G) =
A o(G) = Ays(G) = 20 1(G). Hence, A 5(G) = 20, ,1(G) = 2(A% — A). O



8 Naval Research Logistics, Vol. 51 (2004)

It is known that A, |(G) = A% — A, for G as defined in Theorem 4.2 (cf. [12]). Thus, Ay <
A;, in this case. However, we also have A, ((K,) = 2(n — 1) > A 5(K,) =n — 1 forn =
2 and A, (P,) = 4 > A ,(P,) = 3, for n = 5. Therefore, it would be interesting to
investigate the relation between A, ; and A ,.
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