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Abstract. A new triangular mesh adaptivity algorithm for elliptic PDEs that combines a pos-
teriori error estimation with centroidal Voronoi/Delaunay tessellations of domains in two dimensions
is proposed and tested. The ability of the first ingredient to detect local regions of large error and
the ability of the second ingredient to generate superior unstructured grids results in an mesh adap-
tivity algorithm that has several very desirable features, including the following. Errors are very well
equidistributed over the triangles; at all levels of refinement, the triangles remain very well shaped,
even if the grid size at any particular refinement level, when viewed globally, varies by several orders
of magnitude; and the convergence rates achieved are the best obtainable using piecewise linear finite
elements. This methodology can be easily extended to higher-order finite element approximations or
mixed finite element formulations although only the linear approximation is considered in this paper.
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nay triangulation
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1. Introduction. Adaptive grid generation techniques play an increasingly im-
portant role in the numerical solution of partial differential equations (PDEs). An
essential ingredient of adaptive meshing techniques is a posteriori error estimators
which are quantities that are computable once an approximate solution of the PDE
has been determined. The key objectives in designing reliable and efficient a posteriori
error estimators and mesh adaptivity techniques are that an existing mesh is refined
in such a way that the errors in the approximate solution of the PDE on the new mesh
are distributed as uniformly as possible, that those approximate solutions converge, as
the mesh size decreases, to the exact solution as well as can be expected, and that the
first two objectives are met with a relatively simple complexity. Both mesh adaptivity
and a posteriori error estimators have been extensively studied, beginning in the late
70s [4-7] and followed by a vast literature. Here, we refer to [2,31] for references on
a posteriori error estimation and mesh adaptivity for elliptic PDEs.

The performance of adaptive methods for PDEs depends not only on the error
estimators, but also on the techniques used for adaptively refining and generating
meshes. In [14], a convergent adaptive algorithm was proposed for the linear finite
element methods applied to the Poisson equation in two dimensions; a sequence of
refined triangulations is defined based on an a posteriori error estimator and the
convergence is proved. Another new family of adaptive algorithms was given in [25-27]
and the convergence of the algorithms was also proved.

In many if not most adaptive methods for PDEs, the meshes are refined locally
whenever some criterion based on a local error estimator is not satisfied on some
elements; the mesh elsewhere in the domain is not changed. However, in an unrefined
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region, the errors could be so small that, because one has too many grid nodes there,
computational resources are wasted. Thus, to achieve some sort of mesh optimality, it
is more reasonable to coarsen the meshes in regions where errors are relatively small
in addition to refining in regions where the errors are relatively large. For example,
in [8], by introducing a coarsening step to the algorithm proposed in [25], an adaptive
method is defined that results in certain optimal convergence rates in the energy norm.

In this paper, we propose an adaptive algorithm for linear finite element methods
that can distribute the nodes in some optimal way according to a posterior error
estimates, so that the error of the resulting approximate solution is distributed equally
over the elements. To some extent, it is close to the mesh smoothing scheme proposed
in [3]. We also would like to point out the techniques described in this paper can be
easily extended to higher-order finite element approximations or mixed finite element
formulations. The plan of the rest of the paper is as follows. In Sections 2 and 3,
we respectively discuss the specific a posteriori error estimators and mesh generation
and optimization methods that are used to define our mesh adaptivity algorithm.
The mesh generation algorithm we use requires the definition of a density function
which that algorithm uses to decide how grid points should be distributed. In Section
4, we first show how that density function can be related to the a posteriori error
estimators and then we provide the description of our mesh adaptation algorithm. In
Section 5, we use several computational experiments to demonstrate the effectiveness
and efficiency of our mesh adaptation approach.

2. Error estimators for linear finite element methods. Let  C R? be a
bounded domain with a Lipschitz boundary 9€2. Consider the model elliptic partial
differential equation with homogeneous boundary condition

{ -V - (aVu) = f in Q, (2.1)

u=20 on 0,

where f € L*(Q) and a € C*(Q) with a(x) >a > 0.

There are several types of a posteriori error estimators used in adaptive finite
element methods, e.g., explicit error estimators, implicit error estimators, multilevel
estimators, and averaging estimators. In this paper, we only use explicit a posteriori
error estimators for adaptive mesh generation and refinement because they can be
computed directly from the finite element approximate solution and the data of the
problem. In the following, we first review some results about explicit a posteriori
error estimators in the context of finite element methods for the model problem (2.1).

2.1. Finite element spaces and a priori error estimates. Assume that € is
a polygonal domain with boundary 9 and 7 is a conforming triangulation of Q [13].
Denote by hp the diameter of the triangle T € 7 and by rp the diameter of the
largest circle that can be inscribed in T'. Define the regularity ratio of the triangle T’
by kp = hp/rr. If there is a constant x such that kp < k for all T € 7, then we say
that the triangulation 7 of Q2 is regular. It is worth noting that the assumption of
regularity permits partitions of the domain §2 into meshes that may contain elements
of quite different sizes. This observation is very important for adaptive refinement.
In the following, we will assume that 7 is regular.

Let p denote a nonnegative integer and IP, the space of polynomials of degree
less than or equal to p. The finite element space of degree p associated with the
triangulation 7 is defined by V,, = {v € C(Q) | v|r € P,(T) VT € T}. In this paper,
for simplicity, we consider the case p = 1, i.e., V}, is the continuous piecewise linear
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finite element space with respect to 7. But the techniques described in the remaining
sections can be easily extended to other higher-order approximations.

In the a posteriori error analysis, it is also worthwhile to consider properties of
certain patches of elements. Let the patch T' € Q be the union of the triangle 7" and
the other triangles in 7 that share at least one common vertex with 7. We define

hz = max hr and T4 = Max rqv;
T'CT T'CT

then, the regularity of the patch T is measured by k7 = hz/r7. It is easy to see that

the regularity of the triangulation 7 is inherited by each patch T’ see, e.g., [2].
Let V be the Hilbert space H (). The weak form of problem (2.1) is to find
u € V such that

B(u,v) = L(v) YoveV,

where B is the bilinear form and L is the linear functional respectively defined by

B(u,v) = / aVu - Vv dx and Lv)= | fodx Yu,veV.
Q Q

It is clear that V;, C V. Then, the finite element approximation u, € V;, of the
problem (2.1) is determined from the problem

B(uh, ’Uh) = L(’Uh) Y op € Vp.

For any u € V, we define its energy norm || - ||g by ||ul|lg = (B(u,u))l/z. We
denote by h the piecewise linear function with respect to 7 satisfying

h(x) = max _ hr
TeT and x€T

for each vertex x of 7. We also assume that the exact solution u € H?(2). Let
ep = u — up, be the error of the approximate solution uy, we then have the following
classic results about a priori error estimates [13].

THEOREM 1. There exist constants Cy1 and Cs independent of a and h such that

lenllz < CullVah* M Viull L2y, k=1,2, (2.2)
and

lenllz2() < CallVah?|Vaull| 12 (o). (2.3)

2.2. An explicit H'-type a posteriori error estimator. Let v € V be chosen
arbitrarily, then writing the integral over the whole domain €2 as a sum of integrals
over individual triangles gives

B(eh,v):TGZT{/TfU dx—/T(aVuh)-Vv dx}.

Let & denote the set of interior edges of 7. If T and T’ share the common edge
v € &1, define the jump in the normal flux across the edge v by

[(aVup) -n,] = (aVup)|r - nr + (aVuy)|r - ngp
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where ny is the unit outward normal vector to 07. Applying integration by parts
and rearranging terms, we then can get

B(ep,v Z/rv dx + Z /Rv ds, (2.4)

TeT yEET

where r = f + V- (aVuy) and R = — [(aVuy) - n,].
For given v € V, let Iv be the interpolant of v in V. Then, by the orthogonality
property B(ep, Inv) =0 and (2.4), we have

Blep,v Z/ (v—TIpv) dx + Z/ (v—1Ipv)ds YveV. (2.5)

TeT YEET

The identity (2.5) plays an important role, indirectly or directly, throughout an
a posteriori error analysis of finite element approximations. Due to the coercivity of
the bilinear form B on V, the approximation theory, and some norm equivalences, by
choosing v = e, we can obtain the first a posteriori error estimate

{ 5 Bl + 3 thIRII%W}

:
cx {h IV, + 5hrl Rl o, |-

IN

llenll%
(2.6)

Except for the constant C, all of the quantities on the right-hand side of (2.6) can be
computed explicitly from the finite element solution w;. Then we obtain an H'-type
local error estimator 1y g1 associated with the element T € 7T defined by

1
N3 = h?r||7°||2L2(T) + §hTHR||%2(8T)' (2.7)

The inequality (2.6) shows that the true error e, can be bounded from above in terms
of the local error estimator 7 g1, i.e. when 9y g1 is small, the true error e, must also
be small. This property is referred to as the reliability of the error estimator np g1.
However, we cannot discern anything about the true error e;, on any particular triangle
T € 7T from the stability estimate (2.6). Adaptive numerical methods generally also
need the fact that the true error ey is also locally bounded from below by the local
error estimator 1y 1. This type of property is referred to as the efficiency of the error
estimator. By using properly chosen bubble functions, the efficiency of the explicit a
posteriori error estimator 7y g1 can also be proved. Details can be found in [2] and
the references cited therein. We collect the the stability and efficiency results for the
error estimator np y1 in the following theorem.

THEOREM 2. Let ny yn be defined in (2.7) and let 3, = E 77T 1o Then, there

exist constants C1 and Cy depending only on the domain €, the coefficient function
a, and the regularity of T such that

cl{neu% Y R f‘||i2m} < llenll3 < Carn, (2.8)
TeT

where f denotes the mean value of f over T. Moreover, let T, denote the union of
the triangles having v as one of their edges; then, the local bound

< Co{llenlzr, +If = Fllia,) |
also holds.
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2.3. An explicit L2-type a posteriori error estimator. Duality arguments
can be used to derive L2-type a posteriori error estimators. The starting point for the
application of this technique is the adjoint of the model problem: find ¢, € V' such
that

B(v, ¢4) = (g,v) YoeV (2.9)

with g € L*(Q) and where (-,-) denotes the L?() inner product. It is assumed that
this problem is regular in the sense that the solution ¢, € H*(Q) NV and there exists
a constant C such that

gl 2 (0) < Cllgllz2(0)- (2.10)

This assumption is known to hold, in particular, if the domain €2 is convex. The
specific choice g = e, in (2.9) then gives

Hefl”%?(ﬂ) = Blen, ¢eh>'

Then, we have

lenllZz) < D Il @e, — Tndenllzery + D 1Rl | der, — Tnden llL2y)-
TeT YEET
(2.11)
By the approximation theory again, combining the inequalities (2.10) with g = ej,
and (2.11), we obtain

lenlfaey < € X {Rblrla + I Rl |
€

which is similar to (2.6), the only difference being a higher-order scaling in the mesh
size; this reflects the expectation of a high-order rate of convergence with respect to
the L? norm. Let 77 72 denote the L?-type local error estimator defined by

n?r,Lz = h4T||7’||%2(T) + h%”R”%z(aT)- (2-12)

We summarize the results about this local error estimator in the following theorem [2].

THEOREM 3. Suppose that the domain Q is convez. Let nr 12 be defined in (2.12)

and let 17%2 = > 77% 12- Then, there exists a constant C depending on the domain
TET

Q, the coefficient function a, and the regularity of T such that

Hehniz(g) < 077%2- (2.13)

3. Mesh generation and mesh optimization. There have been many good
algorithms developed for mesh generation and mesh optimization; e.g., see [12,16,
19,21,28,29]. In this paper, we focus on centroidal Voronoi tessellation based mesh
generation as proposed in [15,16,19].

3.1. Conforming centroidal Voronoi-Delaunay triangulation. Given an
open convex domain 2 € R? and a set of distinct points {x;}7; C €, define for each
point x;, ¢ = 1,...,n, the corresponding Voronoi region V;, ¢ = 1,...,n, by

Vi={xeQ | |x—x| <|x—x;|| for j=1,....,n and j#i}.
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Clearly, we have x; € V;, V; N V; = ) for i # j, and U, V; = Q so that {V;}7", is a
tessellation of 2. We refer to {V;}7_, as the Voronoi tessellation (VT) of 2 associated
with the point set {x;}! ;. A point x; is called a generator and a subdomain V; C
is referred to as the Voronoi region corresponding to the generator x;.

It is well known that the dual tessellation (in a graph-theoretical sense) to a
Voronoi tessellation of Q is a Delaunay triangulation (DT). It is easy to show that
the vertices of the Voronoi regions V;’s are the circumcenters of the corresponding
Delaunay triangles.

Given a density function p(x) defined on Q, for any region V' C Q, we define the
mass centroid x* of V' by

*_/Vyp(y) dy
o /VP(Y) dy'

DEFINITION 1. We refer to a Voronoi tessellation {(x;,V;)}, of Q as a cen-
troidal Voronoi tessellation (CVT) [15] if and only if the points {x;}}_, which serve
as the generators of the associated Voronoi tessellation {V;}?_, are also the mass

centroids of those regions, i.e., if and only if we have that
x; =x; fori=1,...,n.

The corresponding Delaunay triangulation is referred to as a centroidal Voronoi-
Delaunay triangulations (CVDT).

It is worth noting that a CVT/CVDT may not be unique; see [15]. The extension
of CVTs and CVDTs to general surfaces is discussed in [17].

Given any set of points {X;}"_; on Q and any tessellation {V;}™_, of Q, we define
the corresponding energy by

KU TN = 3 [ wlly =%l dy.

It has be shown that /C is minimized only if {(X;,V;)}?; forms a centroidal Voronoi
tessellation [15]. Although K may not be directly identified with an energy of some
physical system, it is often naturally associated with quantities such as error distor-
tion, variance, and cost in many practical applications.

An important and very useful property of CVTs is that the energy is equally
distributed over the Voronoi regions V;’s in an asymptotic way. For example, it was
shown in [15] that, in the one-dimensional case,

Ky, =~ K/n fori=1,...,n,

where Ky, = [, p(x)[[x — x;[|* dx and K = >7i_, Kv;. For higher-dimensional cases,
this property is only a conjecture but its validity has been verified through exten-
sive numerical studies and is widely assumed in practical applications such as vector
quantization. As a consequence of this equipartition property, CVTs have important
geometric features, including the following.

e For a constant density function, the generators {x;}? ; are uniformly dis-
tributed; the Voronoi regions {V;}}; are all almost of the same size and,
in the two-dimensional case, most of them are (nearly) congruent convex
hexagons [15].
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e For a non-constant density function, the generators {x;}? ; are still locally
uniformly distributed, and it is conjectured [15] that, asymptotically, for some
constant C,

hy, (x;)\ 7=
7 N pd42 Vi . (P\Xj
Ky, = Cp(x;)hy, and Py, ~ (p(Xl)) ; (3.1)

where hy, denotes the diameter of V; and d is the dimension of .
Thus, in principle, one could control the distribution of generators to obtain an equal
distribution of the error by connecting the density function p(x) to an a posteriori
error estimator.

An often used algorithm for constructing CVT/CVDT is the Lloyd’s method [15].

AvcoriTHM 1. (Lloyd’s Method for CVT) Given a domain Q, a density
function p(x) defined on Q, and a positive integer n,

0. select an initial set of n points {x;}1_, in Q;

1. construct the Voronoi regions {V;}7_, of Q associated with {x;}7;

2. determine the mass centroids of the Voronoi regions {V;}?_,; these centroids form
the new set of points {x;}1,;

3. if the new points meet some convergence criterion, return {(x;,V;)}", and ter-
minate; otherwise, go to step 1.

An important property of Lloyd’s algorithm is that the energy X of the Voronoi
tessellation {(x;, V;)}7; decreases after each iteration [15]. A probabilistic version of
Lloyd’s method and its parallel implementation were suggested in [24].

If a CVDT mesh is to be used within a discretization method for a PDE, e.g.,
in a finite element method, some modifications are needed. An obvious one is that
the CVDT mesh must conform with the boundary of the domain 2, i.e., some of
the CVDT nodes should be constrained to lie on the boundary so that the boundary
conditions of the PDE problem can be enforced.’

One can, of course, pre-define a set of boundary mesh points and then determine
an interior mesh that in some sense “conforms” with the boundary mesh. We choose
to instead amend the CVT definition and construction algorithm so that the boundary
mesh points are automatically selected in conjunction with the interior mesh points.
This results in a better “fit” of the boundary and interior meshes.

First, we generalize the CVT definition. Assume that €2 is compact and the
domain boundary 92 is piecewise smooth; the set of singular points, e.g., corners, is
denoted by Ps = {z;}¥_,. Denote by Proj(x) the process that projects x €  to the
closest point to x on the boundary 9f). Let

so that Py, the set of interior Voronoi generators, denotes the set of generators that
have Voronoi regions that do not intersect the boundary and Pg, the set of boundary
Voronoi generators denotes the set of generators that have Voronoi regions that do
intersect the boundary.

DEFINITION 2. A Voronoi Tessellation {(x;,V;)}?, of Q is called a conforming
centroidal Voronoi tessellation (CfCVT) if and only if the following properties are
satisfied:

* PsC {Xi}?:l;

If 0Q = 0, e.g., if Q is the surface of a sphere, Voronoi-based discretizations of PDEs have been
discussed in [18].
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o X, = X;c for x; € Pr;

e x; = Proj(x}) for x; € Pp — Ps.
The corresponding dual triangulation is then called a conforming centroidal Voronoi
Delaunay triangulation (CfCVDT). It is noted that the meaning of singular (corner)
points is trivial in two-dimensional space but may need to be more rigorously defined
in spaces higher than two dimensions.

An algorithm for constructing a CfCVT/CfCVDT was given in [16,19] and can
be described as follows.? We follow Algorithm 1 except that in step 2 the new set of
generators are given by

—the centers of mass of the interior Voronoi regions;

—the projections onto the boundary of the centers of mass of the boundary Voronoi
regions except if the boundary Voronoi region contains a point in Pg, in which
case the new generator is that point.

For this approach, both the number of mesh points on the boundary and their location
are not pre-determined. However, it is not difficult to show that the number of
generators lying on the boundary will never decrease after the first iteration of Lloyd’s
method. The reason for this is that the nodes on the boundary cannot return to the
interior of the domain since their Voronoi regions are obviously always boundary
Voronoi regions. Thus, for this approach, the initial position of generators must be
chosen well according to the density function p; for example, one could determine
an ordinary CVT (with no points lying on the boundary) to use as an initial set of
generators for the CfCVT construction algorithm.

In practical applications, the domain €2 is often non-convex and is possibly very
complicated [19], so that a main difficulty associated with Lloyd’s method for con-
structing CfCVDTs is the construction of the Voronoi regions. For this reason, we
next propose an algorithm for constructing approximate CfCVDTs in two dimensions
that does not require the construction of exact Voronoi tessellations.

3.2. Approximate CfCVDT construction. In this section, we propose an al-
gorithm to construct approximate CfCVDTs; we will later use this algorithm within
our adaptive methods for mesh generation and optimization. We describe our ap-
proach for the two-dimensional case in detail; the generalization to higher dimensions
follows similar lines.

Currently, for mesh generation with conforming boundary requirements, con-
strained Delaunay triangulations (CDTs) have been widely used; see, e.g., [29, 30].
The main difference between CDT and standard DT is that some geometric con-
straints such as predetermined node position and node connectivities are added and
strictly enforced during the CDT process. For example, the boundary of the domain
can be triangulated first, and the resulting boundary triangulation is then used as
a constraint on the conforming triangulation of the whole domain using CDT. It is
worth noting that the dual tessellations of CDT generally is not an exact Voronoi
tessellation, especially near the boundary.

Our algorithm for constructing approximate CfCVDTs is based on the CDT pro-
cess. Assume that Q € R? is a domain with a polygonal boundary.®> Denote by
Ps = {z}F | its corner vertex set as before. An initial conforming triangulation
To = {T;}", of Q is generated using the “TRIANGLE” software package [29] that
uses the CDT process with a boundary mesh as a constraint and interior Delaunay

20ther modified techniques for constructing CfCVTs are given in [16].
3For domains with curved boundaries, the projection process Proj can be easily effected by a
damped Newton’s method, see [28].
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refinement techniques, or by some other means. Denote by P = {x;}?_; the set of ver-
tices of 7y, by Pp the set of boundary vertices, and by P the set of interior vertices.
The CDT process guarantees that Ps C Pp.

For each triangle T; = (x;,,Xi,, Xi,) € 7o, we define

i

| circumcenter of T; if T; is an acute triangle;
*Ti = the middle point of the longest edge of T; otherwise.

Clearly, x7, € T;. For each vertex x;, we denote by {7}, bty C 7o the set of triangles
for which x; is a vertex, counting in the counterclockwise direction.

Interior vertices. First, consider the case x; € Pr, i.e., X; is an interior vertex.
Define U; by

Ui = the polygon formed by {xr, };“;

see Fig. 3.1. The polygon U; can be regarded as an approximation to the Voronoi
region V; associated with x;. Let X; denote the center of mass of the U; with re-
spect to the density function p. Denote by {a;, };"; the associated angles around x;
corresponding to {75, }}*',. Define

o — max{a;, | Ty, NOQ # D} if T;, N O # () for some i;
10 otherwise

and e; denote the corresponding boundary edge opposite to the angle «;, such that
= «; see Fig. 3.1 for illustrations of some cases.
Now, select a parameter 0,00 (T > Opmas > 7/2). Then, define

o X; if @ < Omaas;
Yi= Pro Jeo, Xi otherwise

(679

(3.2)

where Proj,, x; denotes the projection of x; onto the boundary edge e;. It is clear
that y; is still an interior vertex if o < 6,,4,; otherwise, it is a boundary vertex
although x; is an interior node.

Boundary vertices. Next, consider the case x; € Pg, i.e., X; is a boundary vertex.
Let e; and ey denote the two boundary edges having x; as the common end point,
and let z; and zo denote the midpoints of e; and es, respectively; see Fig. 3.2. The
approximate Voronoi region U; of x; is defined by

U; = the polygon formed by z1, {x7,, };,, and za;

see Fig. 3.2. Let X; denote the center of mass of the U, associated with the density
function p.

If x;, € Pg — Ps, denote by 3 and 2 the angles facing the boundary edges e;
and eg, respectively, in {7}, }}';; see Fig. 3.2 (right). Let

B = max(B, f2)

and select a parameter 0, (7/3 > 0, > 0). Then, define

X; if x; € Ps;
yi =14 Proj, X if x; € Pgp — Pg and 8 > 0,in; (3.3)
X, if x;, € Pg — Ps and 8 < 0p,in

where Proj,.,x; denotes the projection of x; onto the segment z1z3. It is clear that
y; is also a boundary vertex if x; is a corner vertex, or x; is a non-corner vertex but
B > Opmin; otherwise, y; becomes an interior vertex although x; is on the boundary
(We also call it a lifting process).
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Fig. 3.1: The approximate Voronoi region U; for the interior vertex x;.

Xj € 73 €72 x €173

Fig. 3.2: The approximate Voronoi region U; for the boundary vertex x;; left: corner
vertex; right: non-corner vertex.

The approzimate CfCVDT construction algorithm. We can now describe an al-
gorithm for constructing an approximate CfCVDT of the domain €.

ALGORITHM 2. (Modified Lloyd’s method for approximate CfCVDT)
Given a domain Q, a density function p(x) defined on Q, and an initial triangulation
To of Q with vertices {x;}7—, generated using CDT,

. determine {y;}1, from {x;}_, according to (3.2) and (3.3);
set {x;}1, = {y:}*, and reconstruct the boundary segments Eg from the new

{xi ?:1;

3. re-triangulate the domain Q using CDT with {x;}!_, as the vertices and Ep as
the boundary edges; the resulting triangulation is the new T ;

4. if the triangulation T meets some convergence criterion, return T and terminate;
otherwise, go to step 1.

In the remainder of this paper, we will use the notation 7=CfCVDT(7(,Q,p) to
represent the output of Algorithm 2.

Do =

REMARK 1. To prevent some vertices from frequently jumping back and forth
between the boundary and the interior of the domain, more sophisticated controls are
needed; for the sake of simplicity, we omit some details in Algorithm 2.

REMARK 2. Two user-defined parameters 0,4, and O, corresponding respec-
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tively to the projection process and the lifting process are used to avoid bad-shaped
triangles in the region close to the boundary. In our computational experiments, we
set Omaz = 57/9 and O, = 7/6. These are only empirical values, but many experi-
ments lead us to believe they are good choices.

4. CfCVDT-based adaptive finite element methods. Adaptive meshing
methods for solving PDEs often takes the following standard form:
0. generate a coarse mesh 7(® of the domain Q and set ¢ = 0;
1. solve the system produced by discretizing the PDE based on 7 and calculate
the local error estimators;
2. if some convergence criteria is satisfied, terminate; otherwise, go to step 3;
3. refine the mesh 7 based on the local error estimators to get the next level of
mesh 7+ and set £ = ¢ + 1, then go to step 1.
In our adaptive method, we use CfFCVDTs to refine and optimize the mesh at each
level, but first we need to determine, from the error estimators, the density function
used in the CfCVDT algorithm.

4.1. Determination of the density function. Let 7 denote the triangu-

(f)} ) Q)

lation of Q with vertices {x ', at the refinement level /. Let Ny and Nr.1e

represent the corresponding local H'-type and L2-type error estimators on T € T®
at level ¢ defined by (2.7) and (2.12), respectively. A comparison of (2.2) and (2.8)

and of (2.3) and (2.13) reveals that it is reasonable to divide both ng )Hl and ng,f )L2

by 1/a in order to reflect the local variations of true error more accurately. Thus, we
define

© 2 ) N2
‘ (M p1) (N r2)
(€02 =~ and (€))7 = —RE (4.1)
’ ar ar
where ap is the mean value of a(x) on the triangle T', i.e., ap = [ a(x) dx/Area(T).
In order to minimize
¢ ¢ ¢ ¢
€)= > Eu)®  or (€GP = 3 ()
TeT© TeT®
we need to distribute (ﬁT Hl) or (§T Lg) equally over all triangles of 7).
Set
) 2 (€) \a/3
14 (gT,Hl) I (gT,L2>
Z’{T,)Hl T T and E’{T,)LQ = nA : (42)
T T

We then uniquely determine two piecewise linear functions (with respect to 7))

pgfl) and p(H ) on Q such that for any vertex x'* of 7,
5 A 5 A
((+1), (0)y _ TES: ﬁ{T)Hl ((+1),_(0)y _ TES: ﬁ{T)p
+1 € +1 €
P (%) card(S;) o pre (%) card(S;) ’ (43)
where

S;i={TeT® | xY T}
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Note that, in some sense, if the solution u € H?(Q), we have
0 2 2p4 d (0) 2 27,6 44
(ST,Hl) ~ aT|V2u| T an (gT,LQ) ~ aT|V2u| T- ( . )

Combining (4.4) with the CVT/CVDT property (3.1) for d = 2, i.e.,

hyv, _ (p(xj))1/4

p(xi)
for a CVT {(x;, V;)}"; of Q with respect to the density function p, it is then not
difficult to verify that the CfCVDT mesh 7“*1 generated by the density function

pgfl) or pgfl) will approximately have the property that

hv,

£41 £41 241 £41
(EnTn P = (e ) or (€ A (e,
respectively, for any triangles T}, T; € 7+1),

We will refer to the density functions pgfl) and p(Lej D as the H'-based and L2-
based density functions, respectively. From their defining formulas, it is easy to see

that pgfl) varies more rapidly than does p(Lej V. We expect that CCDVT meshes

generated using pgfl) will produce a finite element approximation with smaller H*

norm or energy error while those generated using p(Léj Y will tend to have smaller L2

norm error.

The most time consuming step in the calculations of pgfl)(x) and p(Llj 1)(x) for
any x €  is the nearest neighbor search operation since they are defined by inter-
polation with respect to an unstructured mesh. However, this task can be effected
efficiently using the software package “ANN” [1] that is based on the K-D tree algo-
rithm.

REMARK 3. In many practical applications, the coefficient in the model equation

(2.1) is often a tensor product, i.e., a symmetric, positive definite matrix
A(X) _ all(x) a12(X)
a1 (X) a2 (X)

rather than a scalar-valued function a(x). Under this situation, if the difference be-
tween a11(x) and aszz(x) is not large locally, then it is still reasonable to scale these
estimators by

0) 2 ) 2
) (nT,H1> ) (77T,L2)
(€)=~ and (€))7 = 12—, (4.5)
AT AT

where Ap = [, \/det(A(x)) dx/Area(T); If A(x) is strongly anisotropic, then it could
not be handled correctly in this framework; the anisotropic CVT meshes proposed
in [20], perhaps with some variations, may be able to deal with this case.

REMARK 4. If a higher-order finite element approzimation is used, for example,

Vi ={v e C(Q) |vlr € Pp(T) YT € T} where k > 2, then the discrete solution uy,

(0)
T,H?

)LQ be the accordingly derived local H' and L? type error estimators for this

is of k-th order convergence in H' norm and (k + 1)-th order in L? norm. Let n
(¢
T,
approzimation; then by similar analysis, it is better to replace (4.2) by

and n

0 A 0 |4
~(0) (f(T)Hl )R ~(0) (f(T)Lz) e

P = and 0 = (4.6)
T,H1 h4T T,L2 h4T
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REMARK 5. If the mized finite element method is used, the density fucntion can
be determined similar to the standard finite element approximation since all we need
are just explicit a posterior local error estimators and their orders with respect to the
local mesh size hr.

4.2. Adaptive algorithms based on CfCVDT. Let {Ez}fjl) denote the set
of edges of the £-th level triangulation 7). Set pg, = p(z;) for any density function
p, where z; denotes the midpoint of the edge E;. We can now define our adaptive
finite element method as follows.

ALGORITHM 3. (CfCVDT-based adaptive finite element method) Given
a domain Q, an integer Npqr > 0 (the mazimum allowable number of mesh vertices),
an integer Lpa. (the mazimum allowable levels of refinements), and a parameter
0<f<1.

0. Preprocessing: generate an initial coarse triangulation T of Q using CDT or some
other means, solve the PDE using a finite element method (FEM) on T, and
then determine the local error estimators nr g (or nr2) for all T € T.
Construct the density function pgr (or prz) using (4.3) and optimize T to
obtain T = CfCVDT(T,Q, pgr) (or T = CfCVDT(T,Q,pr2)) that
becomes the new initial coarse mesh; let n'®) denote the number of vertices of
TO) and set £ =0

1. Solve the PDE using the FEM on 7O, If £ > Lyygq or n > Nyas, terminate;
otherwise, go to step 2.

2. Determine the local error estimator r];fi)Hl (or nT L2) for all T € T

3. Construct pHH) (or p(H )) using (4.3) and set the density functwn p= pglﬂ)

(e+1
(or p=Af1")
4. Determme {pE,}% 1 and sort them in decreasmg order.
5. Add {z;}* | into the triangulation TO, where

A

ZpEl <9ZPE1

and then form, using CDT, the new intermediate triangulation T with
n(“‘l)N: n® + kg vertices. N
6. Optimize T to obtain TUHY = CfCVDT (T, Q,p), set £ «— £+ 1, then
go to step 1.
The parameter 6 in Algorithm 3 is used here to control the refinement process [26].
The sorting procedure in step 4 can be implemented efficiently using a quick sorting
algorithm.

kg = max {k*

5. Computational experiments. In this section, using computational experi-
ments, we illustrate the effectiveness of CfCVDT-based adaptive finite element meth-
ods. Consider the problem

{ —V - (aVu) +bu = f in Q, (5.1)

u=g on 012,

where b € L*>°(Q2) with b > 0. Correspondingly, »r = f in (2.7) and (2.12) is changed
to r = f — buy. Initial coarse meshes are either chosen to be a uniform Cartesian grid
or are produced using the “TRIANGLE” package and are subsequently repeatedly
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refined by our adaptive methods, i.e., Algorithm 3. For the sake of having something
to compare to, we also find finite element approximations of the problem (5.1) using
uniform refinements of the initial meshes. We set L.,qz = 15, Nyae =20,000, and
0 = 0.4 for Algorithm 3. For our adaptive methods, the convergence rate CR with
respect to the norm || - || at the refinement level £ is roughly computed by

_ 2log([len.ell/llen,e-]) (5.2)

CR ,
log(ng,l/ng)

where n, denotes the number of nodes and ep, denotes the error u — uy at the
refinement level /.

We apply the commonly used ¢ measure [22] to evaluate the quality of triangular
meshes, where, for any triangle T', ¢ is defined to be twice the ratio of the radius Ry
of the largest inscribed circle and the radius r¢ of the smallest circumscribed circle,
ie.,

b+c— —b b—
q(T):Q&:( +c—a)icta—-b)+a-+ c),
rT abe

where a, b, and ¢ are side lengths of T'. For a given triangulation 7, we define

. 1
Gmin = ITnelg Q(T) and Gavg = m I;q(T), (53)

Gmin measures the quality of the worst triangle and g,,,, measures the average quality
of the mesh 7.

5.1. Smooth solution with large gradients. The first illustrative problem is
given as follows.
EXAMPLE 1. Set Q = [—1,1]x[-1,1], a(z,y) = 10.0cos(y), and b(x,y) = x> +y>.
The exact solution u is chosen to be
1.0 1.0
r—0.5)2+(y—05)24+0.01 (z+0.5)2+ (y+0.5)2+0.01

u(z,y) = ( (5-4)

and f and g are determined from u so that (5.1) is satisfied.

It is easy to see that the exact solution u given in (5.4) is a smooth function, i.e.,
certainly, u € C?(f2). Note that u achieves its maximum value 99% at the point
(0.5,0.5) and its minimum value —991% at the point (—0.5,—0.5), but decays very

quickly away from its extrema and thzl(ié has large gradients near these two points.
Note also that a(z,y) and f(z,y) also have relatively rapid variations over €.

The initial coarse mesh (the input for step 0 of Algorithm 3) used for the solu-
tion of Example 1 is a uniform Cartesian grid consisting of 81 nodes; see Fig. 5.1.
The corresponding CfCVDT meshes (the output of step 0) with the same number of
nodes produced using the density functions py1 and pr2 are also given in Fig. 5.1.
Fig. 5.2 presents repeatedly refined meshes at some levels generated using Algorithm
3. The distributions of nodes in the CfCVDT-based adaptive meshes clearly show the
accumulation of nodes in the vicinity of the two points near which large gradients in
the solution occur. The Cf{CVDT-based adaptive meshes are “optimal” in the sense
that all triangles remain well-shaped at all refinement levels, an observation which
is supported by the values of gy and gqug given in Table 5.1. It is also clear that
the CfCVDT meshes generated using the density function pp1 tend to distribute the
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Fig. 5.1: Initial meshes for Example 1; left: a uniform Cartesian grid with 81 nodes;
middle and right: the corresponding CfCVDT meshes with the same number of nodes
generated using the density functions py: and pyrz, respectively.
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Fig. 5.2: Repeatedly refined adaptive meshes at some levels generated by the
CfCVDT-based adaptive method for Example 1; top: 394, 1287, 4644 nodes using
the density function pg1; bottom: 370, 1280, 4629 nodes using the density function

Pr2-

nodes in a slightly less uniform manner than those generated using the density func-
tion prz; this observation which is also verified by the values of hyq/hmin in Table
5.1, can be explained by the fact that py: has larger variations than does py2.

Table 5.1 contains information about mesh quality, solution errors, and conver-
gence rates at all refinement levels for different refinement strategies for Example 1;
the corresponding plots of the error norms (||ex||z2(q) and |en|m1(q)) vs. the number
of nodes are given in Fig. 5.3 where |es|g1 (o) denotes the semi-H' norm defined by
[Venr|lL2(q). One observes that the two CfCVDT-based adaptive methods and the
uniform refinement strategy achieve almost perfect convergence rates, i.e., 2 and 1
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for |lenl|z2(q) and |en|m1 (), respectively.? These, of course, are the expected rates
since the exact solution u of Example 1 belongs to H2(f2). The values of g, and
Javg given in Table 5.1 demonstrate that the shape quality of the meshes resulting
from the CfCVDT-based adaptive strategy is always very good at all levels for both
density functions pr2 and ppyi1, although the mesh sizes vary a lot over the 2, e.g.,
hmaz /hmin reaches 176.3 at the last level when pgi is used. Note that hpmaz/Rmin
tends to converge for our adaptive methods since w is smooth. Also, as expected, the
adaptive method using p;2 as the density function generated approximate solutions
up, having smaller ||ep, || r2(q) relative to those obtained using pg1; on the other hand,
the latter generated approximate solutions with (slightly) smaller |ex| g1 (q)-

LE] ne | amin [ 9ovg [ Pmoc/hmin || llenllzz@) [ CR || lenlmi) [ CR |
Uniform refinement
0 81 | 0.828 | 0.828 1.0 || 2.3260e+01 1.8187e+02
1 289 | 0.828 | 0.828 1.0 || 2.2931e+4-00 | 3.34 1.0422e+02 | 0.80
2 1089 | 0.828 | 0.828 1.0 9.6260e-01 | 1.25 (| 6.5176e+01 | 0.68
3 4225 | 0.828 | 0.828 1.0 2.7745e-01 | 1.80 || 3.5677e+01 | 0.87
4 | 16441 | 0.828 | 0.828 1.0 7.1278e-02 | 1.96 1.8242e+01 | 0.97
5 | 66409 | 0.828 | 0.828 1.0 1.8071e-02 | 1.98 || 9.2255e+00 | 0.98
Adaptive refinement using pg1
0 81 | 0.280 | 0.805 6.6 || 7.6651e+00 1.5021e+02
1 114 | 0.541 | 0.916 8.8 || 2.9722e4+00 | 5.54 || 9.0709e+01 | 2.95
2 143 | 0.459 | 0.876 20.8 || 2.2858e+4-00 | 2.31 6.1156e+-01 | 3.47
3 229 | 0.579 | 0.919 22.5 1.1666e+00 | 2.86 || 4.5971e+01 | 1.21
4 394 | 0.618 | 0.926 40.7 7.5734e-01 | 1.59 || 3.3524e+401 | 1.16
5 703 | 0.574 | 0.936 45.9 4.6479-01 | 1.69 || 2.4081e+01 | 1.14
6 1287 | 0.611 | 0.941 59.5 2.9602¢-01 | 1.49 1.7575e+01 | 1.04
7 2426 | 0.622 | 0.942 80.9 1.8046e-01 | 1.56 1.2760e+01 | 1.01
8 4644 | 0.651 | 0.944 114.5 9.7005e-02 | 1.91 || 9.2654e+00 | 0.99
9 8921 | 0.621 | 0.945 130.9 5.6155e-02 | 1.68 || 6.7420e+400 | 0.97
10 | 17095 | 0.598 | 0.944 164.5 3.1818e-02 | 1.75 || 4.8327e+00 | 1.02
11 | 33192 | 0.610 | 0.944 176.3 1.6909e-02 | 1.91 3.4671e400 | 1.00
Adaptive refinement using py 2
0 81 | 0.563 | 0.898 5.7 || 5.7395e+00 1.3966e+02
1 127 | 0.679 | 0.931 7.1 || 2.1686e+00 | 4.33 || 9.0681e+01 | 1.92
2 211 | 0.579 | 0.924 13.4 || 1.0831e+00 | 2.74 || 5.9141e+01 | 1.68
3 370 | 0.638 | 0.938 11.9 5.8917e-01 | 2.17 || 4.0737e+01 | 1.33
4 681 | 0.675 | 0.941 17.7 3.2326e-01 | 1.97 || 2.9245e+01 | 1.09
5 1280 | 0.679 | 0.940 20.6 1.7163e-01 | 2.01 || 2.1150e+01 | 1.03
6 2412 | 0.601 | 0.944 23.5 9.4164e-02 | 1.90 1.4562e+01 | 1.18
7 4629 | 0.680 | 0.944 27.7 4.8922¢-02 | 2.01 1.0621e+01 | 0.97
8 8883 | 0.649 | 0.944 34.9 2.6327e-02 | 1.90 || 7.4636e+00 | 1.08
9 | 17099 | 0.602 | 0.944 37.4 1.3566e-02 | 2.03 || 5.4503e+00 | 0.96
10 | 32875 | 0.609 | 0.944 41.5 7.2308¢-03 | 1.93 || 3.8497e+00 | 1.06

Table 5.1: Mesh quality, solution errors, and convergence rates for different refinement
strategies for Example 1.

From Table 5.1 and Fig. 5.3, one also observes that the CfCVDT-based adaptive
methods are much more efficient relative to the uniform refinement strategy. For
example, for the uniform refinement method, we have that |lep||z2(q) =1.8071e-02
and [en|p1(q) =9.2255e+00 on the refined mesh with 66,049 nodes. However, for
the adaptive methods, the values of these norms are 5.6155e-02 and 6.7420e+00,

4The convergence rate for llenllz2(q) for the adaptive method using pp1 being a little erratic
and slightly lower than 2.
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