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Abstract. A new triangular mesh adaptivity algorithm for elliptic PDEs that combines a pos-
teriori error estimation with centroidal Voronoi/Delaunay tessellations of domains in two dimensions
is proposed and tested. The ability of the first ingredient to detect local regions of large error and
the ability of the second ingredient to generate superior unstructured grids results in an mesh adap-
tivity algorithm that has several very desirable features, including the following. Errors are very well
equidistributed over the triangles; at all levels of refinement, the triangles remain very well shaped,
even if the grid size at any particular refinement level, when viewed globally, varies by several orders
of magnitude; and the convergence rates achieved are the best obtainable using piecewise linear finite
elements. This methodology can be easily extended to higher-order finite element approximations or
mixed finite element formulations although only the linear approximation is considered in this paper.
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1. Introduction. Adaptive grid generation techniques play an increasingly im-
portant role in the numerical solution of partial differential equations (PDEs). An
essential ingredient of adaptive meshing techniques is a posteriori error estimators
which are quantities that are computable once an approximate solution of the PDE
has been determined. The key objectives in designing reliable and efficient a posteriori
error estimators and mesh adaptivity techniques are that an existing mesh is refined
in such a way that the errors in the approximate solution of the PDE on the new mesh
are distributed as uniformly as possible, that those approximate solutions converge, as
the mesh size decreases, to the exact solution as well as can be expected, and that the
first two objectives are met with a relatively simple complexity. Both mesh adaptivity
and a posteriori error estimators have been extensively studied, beginning in the late
70s [4–7] and followed by a vast literature. Here, we refer to [2, 31] for references on
a posteriori error estimation and mesh adaptivity for elliptic PDEs.

The performance of adaptive methods for PDEs depends not only on the error
estimators, but also on the techniques used for adaptively refining and generating
meshes. In [14], a convergent adaptive algorithm was proposed for the linear finite
element methods applied to the Poisson equation in two dimensions; a sequence of
refined triangulations is defined based on an a posteriori error estimator and the
convergence is proved. Another new family of adaptive algorithms was given in [25–27]
and the convergence of the algorithms was also proved.

In many if not most adaptive methods for PDEs, the meshes are refined locally
whenever some criterion based on a local error estimator is not satisfied on some
elements; the mesh elsewhere in the domain is not changed. However, in an unrefined
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region, the errors could be so small that, because one has too many grid nodes there,
computational resources are wasted. Thus, to achieve some sort of mesh optimality, it
is more reasonable to coarsen the meshes in regions where errors are relatively small
in addition to refining in regions where the errors are relatively large. For example,
in [8], by introducing a coarsening step to the algorithm proposed in [25], an adaptive
method is defined that results in certain optimal convergence rates in the energy norm.

In this paper, we propose an adaptive algorithm for linear finite element methods
that can distribute the nodes in some optimal way according to a posterior error
estimates, so that the error of the resulting approximate solution is distributed equally
over the elements. To some extent, it is close to the mesh smoothing scheme proposed
in [3]. We also would like to point out the techniques described in this paper can be
easily extended to higher-order finite element approximations or mixed finite element
formulations. The plan of the rest of the paper is as follows. In Sections 2 and 3,
we respectively discuss the specific a posteriori error estimators and mesh generation
and optimization methods that are used to define our mesh adaptivity algorithm.
The mesh generation algorithm we use requires the definition of a density function
which that algorithm uses to decide how grid points should be distributed. In Section
4, we first show how that density function can be related to the a posteriori error
estimators and then we provide the description of our mesh adaptation algorithm. In
Section 5, we use several computational experiments to demonstrate the effectiveness
and efficiency of our mesh adaptation approach.

2. Error estimators for linear finite element methods. Let Ω ⊂ R
2 be a

bounded domain with a Lipschitz boundary ∂Ω. Consider the model elliptic partial
differential equation with homogeneous boundary condition

{
−∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where f ∈ L2(Ω) and a ∈ C1(Ω) with a(x) ≥ ã > 0.
There are several types of a posteriori error estimators used in adaptive finite

element methods, e.g., explicit error estimators, implicit error estimators, multilevel
estimators, and averaging estimators. In this paper, we only use explicit a posteriori
error estimators for adaptive mesh generation and refinement because they can be
computed directly from the finite element approximate solution and the data of the
problem. In the following, we first review some results about explicit a posteriori
error estimators in the context of finite element methods for the model problem (2.1).

2.1. Finite element spaces and a priori error estimates. Assume that Ω is
a polygonal domain with boundary ∂Ω and T is a conforming triangulation of Ω [13].
Denote by hT the diameter of the triangle T ∈ T and by rT the diameter of the
largest circle that can be inscribed in T . Define the regularity ratio of the triangle T
by κT = hT /rT . If there is a constant κ such that κT ≤ κ for all T ∈ T , then we say
that the triangulation T of Ω is regular. It is worth noting that the assumption of
regularity permits partitions of the domain Ω into meshes that may contain elements
of quite different sizes. This observation is very important for adaptive refinement.
In the following, we will assume that T is regular.

Let p denote a nonnegative integer and Pp the space of polynomials of degree
less than or equal to p. The finite element space of degree p associated with the
triangulation T is defined by Vh = {v ∈ C(Ω) | v|T ∈ Pp(T ) ∀ T ∈ T }. In this paper,
for simplicity, we consider the case p = 1, i.e., Vh is the continuous piecewise linear
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finite element space with respect to T . But the techniques described in the remaining
sections can be easily extended to other higher-order approximations.

In the a posteriori error analysis, it is also worthwhile to consider properties of
certain patches of elements. Let the patch T̃ ∈ Ω be the union of the triangle T and
the other triangles in T that share at least one common vertex with T . We define

hT̃ = max
T ′⊂T̃

hT ′ and rT̃ = max
T ′⊂T̃

rT ′ ;

then, the regularity of the patch T̃ is measured by κT̃ = hT̃ /rT̃ . It is easy to see that

the regularity of the triangulation T is inherited by each patch T̃ ; see, e.g., [2].
Let V be the Hilbert space H1

0 (Ω). The weak form of problem (2.1) is to find
u ∈ V such that

B(u, v) = L(v) ∀ v ∈ V,

where B is the bilinear form and L is the linear functional respectively defined by

B(u, v) =

∫

Ω

a∇u · ∇v dx and L(v) =

∫

Ω

fv dx ∀ u, v ∈ V.

It is clear that Vh ⊂ V . Then, the finite element approximation uh ∈ Vh of the
problem (2.1) is determined from the problem

B(uh, vh) = L(vh) ∀ vh ∈ Vh.

For any u ∈ V , we define its energy norm ‖ · ‖E by ‖u‖E =
(
B(u, u)

)1/2
. We

denote by h the piecewise linear function with respect to T satisfying

h(x) = max
T∈T and x∈T

hT

for each vertex x of T . We also assume that the exact solution u ∈ H2(Ω). Let
eh = u− uh be the error of the approximate solution uh, we then have the following
classic results about a priori error estimates [13].

Theorem 1. There exist constants C1 and C2 independent of a and h such that

‖eh‖E ≤ C1‖
√

ahk−1|∇ku|‖L2(Ω), k = 1, 2, (2.2)

and

‖eh‖L2(Ω) ≤ C2‖
√

ah2|∇2u|‖L2(Ω). (2.3)

2.2. An explicit H1-type a posteriori error estimator. Let v ∈ V be chosen
arbitrarily, then writing the integral over the whole domain Ω as a sum of integrals
over individual triangles gives

B(eh, v) =
∑

T∈T

{∫

T

fv dx−
∫

T

(a∇uh) · ∇v dx

}
.

Let EI denote the set of interior edges of T . If T and T ′ share the common edge
γ ∈ EI , define the jump in the normal flux across the edge γ by

[(a∇uh) · nγ ] = (a∇uh)|T · nT + (a∇uh)|T ′ · nT ′
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where nT is the unit outward normal vector to ∂T . Applying integration by parts
and rearranging terms, we then can get

B(eh, v) =
∑

T∈T

∫

T

rv dx +
∑

γ∈EI

∫

γ

Rv ds, (2.4)

where r = f +∇ · (a∇uh) and R = − [(a∇uh) · nγ ].
For given v ∈ V , let Ihv be the interpolant of v in Vh. Then, by the orthogonality

property B(eh, Ihv) = 0 and (2.4), we have

B(eh, v) =
∑

T∈T

∫

T

r(v − Ihv) dx +
∑

γ∈EI

∫

γ

R(v − Ihv) ds ∀ v ∈ V. (2.5)

The identity (2.5) plays an important role, indirectly or directly, throughout an
a posteriori error analysis of finite element approximations. Due to the coercivity of
the bilinear form B on V , the approximation theory, and some norm equivalences, by
choosing v = eh, we can obtain the first a posteriori error estimate

‖eh‖2E ≤ C

{ ∑
T∈T

h2
T ‖r‖2L2(T ) +

∑
γ∈EI

hT ‖R‖2L2(γ)

}

= C
∑

T∈T

{
h2

T ‖r‖2L2(T ) +
1

2
hT ‖R‖2L2(∂T )

}
.

(2.6)

Except for the constant C, all of the quantities on the right-hand side of (2.6) can be
computed explicitly from the finite element solution uh. Then we obtain an H1-type
local error estimator ηT,H1 associated with the element T ∈ T defined by

η2
T,H1 = h2

T ‖r‖2L2(T ) +
1

2
hT ‖R‖2L2(∂T ). (2.7)

The inequality (2.6) shows that the true error eh can be bounded from above in terms
of the local error estimator ηT,H1 , i.e. when ηT,H1 is small, the true error eh must also
be small. This property is referred to as the reliability of the error estimator ηT,H1 .
However, we cannot discern anything about the true error eh on any particular triangle
T ∈ T from the stability estimate (2.6). Adaptive numerical methods generally also
need the fact that the true error eh is also locally bounded from below by the local
error estimator ηT,H1 . This type of property is referred to as the efficiency of the error
estimator. By using properly chosen bubble functions, the efficiency of the explicit a
posteriori error estimator ηT,H1 can also be proved. Details can be found in [2] and
the references cited therein. We collect the the stability and efficiency results for the
error estimator ηT,H1 in the following theorem.

Theorem 2. Let ηT,H1 be defined in (2.7) and let η2
H1 =

∑
T∈T

η2
T,H1 . Then, there

exist constants C1 and C2 depending only on the domain Ω, the coefficient function
a, and the regularity of T such that

C1

{
‖eh‖2E +

∑

T∈T

h2
T ‖f − f̄‖2L2(T )

}
≤ ‖eh‖2E ≤ C2η

2
H1 , (2.8)

where f̄ denotes the mean value of f over T . Moreover, let Tγ denote the union of
the triangles having γ as one of their edges; then, the local bound

η2
T,H1 ≤ C2

{
‖eh‖E,Tγ

+ h2
T ‖f − f‖L2(Tγ )

}

also holds.
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2.3. An explicit L2-type a posteriori error estimator. Duality arguments
can be used to derive L2-type a posteriori error estimators. The starting point for the
application of this technique is the adjoint of the model problem: find φg ∈ V such
that

B(v, φg) = (g, v) ∀v ∈ V (2.9)

with g ∈ L2(Ω) and where (·, ·) denotes the L2(Ω) inner product. It is assumed that
this problem is regular in the sense that the solution φg ∈ H2(Ω)∩V and there exists
a constant C such that

‖φg‖H2(Ω) ≤ C‖g‖L2(Ω). (2.10)

This assumption is known to hold, in particular, if the domain Ω is convex. The
specific choice g = eh in (2.9) then gives

‖eh‖2L2(Ω) = B(eh, φeh
).

Then, we have

‖eh‖2L2(Ω) ≤
∑

T∈T

‖r‖L2(T )‖φeh
− Ihφeh

‖L2(T ) +
∑

γ∈EI

‖R‖L2(γ)‖φeh
− Ihφeh

‖L2(γ).

(2.11)
By the approximation theory again, combining the inequalities (2.10) with g = eh

and (2.11), we obtain

‖eh‖2L2(Ω) ≤ C
∑

T∈T

{
h4

T ‖r‖2L2(T ) + h3
T ‖R‖2L2(∂T )

}

which is similar to (2.6), the only difference being a higher-order scaling in the mesh
size; this reflects the expectation of a high-order rate of convergence with respect to
the L2 norm. Let ηT,L2 denote the L2-type local error estimator defined by

η2
T,L2 = h4

T ‖r‖2L2(T ) + h3
T ‖R‖2L2(∂T ). (2.12)

We summarize the results about this local error estimator in the following theorem [2].
Theorem 3. Suppose that the domain Ω is convex. Let ηT,L2 be defined in (2.12)

and let η2
L2 =

∑
T∈T

η2
T,L2 . Then, there exists a constant C depending on the domain

Ω, the coefficient function a, and the regularity of T such that

‖eh‖2L2(Ω) ≤ Cη2
L2 . (2.13)

3. Mesh generation and mesh optimization. There have been many good
algorithms developed for mesh generation and mesh optimization; e.g., see [12, 16,
19, 21, 28, 29]. In this paper, we focus on centroidal Voronoi tessellation based mesh
generation as proposed in [15, 16, 19].

3.1. Conforming centroidal Voronoi-Delaunay triangulation. Given an
open convex domain Ω ∈ R

d and a set of distinct points {xi}ni=1 ⊂ Ω, define for each
point xi, i = 1, . . . , n, the corresponding Voronoi region Vi, i = 1, . . . , n, by

Vi =
{
x ∈ Ω | ‖x− xi‖ < ‖x− xj‖ for j = 1, . . . , n and j 6= i

}
.
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Clearly, we have xi ∈ Vi, Vi ∩ Vj = ∅ for i 6= j, and ∪n
i=1V i = Ω so that {Vi}ni=1 is a

tessellation of Ω. We refer to {Vi}ni=1 as the Voronoi tessellation (VT) of Ω associated
with the point set {xi}ni=1. A point xi is called a generator and a subdomain Vi ⊂ Ω
is referred to as the Voronoi region corresponding to the generator xi.

It is well known that the dual tessellation (in a graph-theoretical sense) to a
Voronoi tessellation of Ω is a Delaunay triangulation (DT). It is easy to show that
the vertices of the Voronoi regions Vi’s are the circumcenters of the corresponding
Delaunay triangles.

Given a density function ρ(x) defined on Ω, for any region V ⊂ Ω, we define the
mass centroid x∗ of V by

x∗ =

∫

V

yρ(y) dy
∫

V

ρ(y) dy

.

Definition 1. We refer to a Voronoi tessellation {(xi, Vi)}ni=1 of Ω as a cen-
troidal Voronoi tessellation (CVT) [15] if and only if the points {xi}ni=1 which serve
as the generators of the associated Voronoi tessellation {Vi}ni=1 are also the mass
centroids of those regions, i.e., if and only if we have that

xi = x∗
i for i = 1, . . . , n.

The corresponding Delaunay triangulation is referred to as a centroidal Voronoi-
Delaunay triangulations (CVDT).

It is worth noting that a CVT/CVDT may not be unique; see [15]. The extension
of CVTs and CVDTs to general surfaces is discussed in [17].

Given any set of points {x̃i}ni=1 on Ω and any tessellation {Ṽi}ni=1 of Ω, we define
the corresponding energy by

K
(
{(x̃i, Ṽi)}ni=1

)
=

n∑

i=1

∫

Ṽi

ρ(y)‖y − x̃i‖2 dy .

It has be shown that K is minimized only if {(x̃i, Ṽi)}ni=1 forms a centroidal Voronoi
tessellation [15]. Although K may not be directly identified with an energy of some
physical system, it is often naturally associated with quantities such as error distor-
tion, variance, and cost in many practical applications.

An important and very useful property of CVTs is that the energy is equally
distributed over the Voronoi regions Vi’s in an asymptotic way. For example, it was
shown in [15] that, in the one-dimensional case,

KVi
≈ K/n for i = 1, . . . , n,

where KVi
=

∫
Vi

ρ(x)‖x− xi‖2 dx and K =
∑n

i=1 KVi
. For higher-dimensional cases,

this property is only a conjecture but its validity has been verified through exten-
sive numerical studies and is widely assumed in practical applications such as vector
quantization. As a consequence of this equipartition property, CVTs have important
geometric features, including the following.

• For a constant density function, the generators {xi}ni=1 are uniformly dis-
tributed; the Voronoi regions {Vi}ni=1 are all almost of the same size and,
in the two-dimensional case, most of them are (nearly) congruent convex
hexagons [15].
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• For a non-constant density function, the generators {xi}ni=1 are still locally
uniformly distributed, and it is conjectured [15] that, asymptotically, for some
constant C,

KVi
= Cρ(xi)h

d+2
Vi

and
hVi

hVj

≈
(ρ(xj)

ρ(xi)

) 1
d+2

, (3.1)

where hVi
denotes the diameter of Vi and d is the dimension of Ω.

Thus, in principle, one could control the distribution of generators to obtain an equal
distribution of the error by connecting the density function ρ(x) to an a posteriori
error estimator.

An often used algorithm for constructing CVT/CVDT is the Lloyd’s method [15].
Algorithm 1. (Lloyd’s Method for CVT) Given a domain Ω, a density

function ρ(x) defined on Ω, and a positive integer n,
0. select an initial set of n points {xi}ni=1 in Ω;
1. construct the Voronoi regions {Vi}ni=1 of Ω associated with {xi}ni=1;
2. determine the mass centroids of the Voronoi regions {Vi}ni=1; these centroids form

the new set of points {xi}ni=1;
3. if the new points meet some convergence criterion, return {(xi, Vi)}ni=1 and ter-

minate; otherwise, go to step 1.
An important property of Lloyd’s algorithm is that the energy K of the Voronoi

tessellation {(xi, Vi)}ni=1 decreases after each iteration [15]. A probabilistic version of
Lloyd’s method and its parallel implementation were suggested in [24].

If a CVDT mesh is to be used within a discretization method for a PDE, e.g.,
in a finite element method, some modifications are needed. An obvious one is that
the CVDT mesh must conform with the boundary of the domain Ω, i.e., some of
the CVDT nodes should be constrained to lie on the boundary so that the boundary
conditions of the PDE problem can be enforced.1

One can, of course, pre-define a set of boundary mesh points and then determine
an interior mesh that in some sense “conforms” with the boundary mesh. We choose
to instead amend the CVT definition and construction algorithm so that the boundary
mesh points are automatically selected in conjunction with the interior mesh points.
This results in a better “fit” of the boundary and interior meshes.

First, we generalize the CVT definition. Assume that Ω is compact and the
domain boundary ∂Ω is piecewise smooth; the set of singular points, e.g., corners, is
denoted by PS = {zi}ki=1. Denote by Proj(x) the process that projects x ∈ Ω to the
closest point to x on the boundary ∂Ω. Let

PI = {xi | V i ∩ ∂Ω = ∅} and PB = {xi | V i ∩ ∂Ω 6= ∅}

so that PI , the set of interior Voronoi generators, denotes the set of generators that
have Voronoi regions that do not intersect the boundary and PB , the set of boundary
Voronoi generators denotes the set of generators that have Voronoi regions that do
intersect the boundary.

Definition 2. A Voronoi Tessellation {(xi, Vi)}ni=1 of Ω is called a conforming
centroidal Voronoi tessellation (CfCVT) if and only if the following properties are
satisfied:

• PS ⊂ {xi}ni=1;

1If ∂Ω = ∅, e.g., if Ω is the surface of a sphere, Voronoi-based discretizations of PDEs have been
discussed in [18].
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• xi = x∗
i for xi ∈ PI ;

• xi = Proj(x∗
i ) for xi ∈ PB − PS.

The corresponding dual triangulation is then called a conforming centroidal Voronoi
Delaunay triangulation (CfCVDT). It is noted that the meaning of singular (corner)
points is trivial in two-dimensional space but may need to be more rigorously defined
in spaces higher than two dimensions.

An algorithm for constructing a CfCVT/CfCVDT was given in [16, 19] and can
be described as follows.2 We follow Algorithm 1 except that in step 2 the new set of
generators are given by
–the centers of mass of the interior Voronoi regions;
–the projections onto the boundary of the centers of mass of the boundary Voronoi

regions except if the boundary Voronoi region contains a point in PS , in which
case the new generator is that point.

For this approach, both the number of mesh points on the boundary and their location
are not pre-determined. However, it is not difficult to show that the number of
generators lying on the boundary will never decrease after the first iteration of Lloyd’s
method. The reason for this is that the nodes on the boundary cannot return to the
interior of the domain since their Voronoi regions are obviously always boundary
Voronoi regions. Thus, for this approach, the initial position of generators must be
chosen well according to the density function ρ; for example, one could determine
an ordinary CVT (with no points lying on the boundary) to use as an initial set of
generators for the CfCVT construction algorithm.

In practical applications, the domain Ω is often non-convex and is possibly very
complicated [19], so that a main difficulty associated with Lloyd’s method for con-
structing CfCVDTs is the construction of the Voronoi regions. For this reason, we
next propose an algorithm for constructing approximate CfCVDTs in two dimensions
that does not require the construction of exact Voronoi tessellations.

3.2. Approximate CfCVDT construction. In this section, we propose an al-
gorithm to construct approximate CfCVDTs; we will later use this algorithm within
our adaptive methods for mesh generation and optimization. We describe our ap-
proach for the two-dimensional case in detail; the generalization to higher dimensions
follows similar lines.

Currently, for mesh generation with conforming boundary requirements, con-
strained Delaunay triangulations (CDTs) have been widely used; see, e.g., [29, 30].
The main difference between CDT and standard DT is that some geometric con-
straints such as predetermined node position and node connectivities are added and
strictly enforced during the CDT process. For example, the boundary of the domain
can be triangulated first, and the resulting boundary triangulation is then used as
a constraint on the conforming triangulation of the whole domain using CDT. It is
worth noting that the dual tessellations of CDT generally is not an exact Voronoi
tessellation, especially near the boundary.

Our algorithm for constructing approximate CfCVDTs is based on the CDT pro-
cess. Assume that Ω ∈ R

2 is a domain with a polygonal boundary.3 Denote by
PS = {z}ki=1 its corner vertex set as before. An initial conforming triangulation
T0 = {Ti}mi=1 of Ω is generated using the “TRIANGLE” software package [29] that
uses the CDT process with a boundary mesh as a constraint and interior Delaunay

2Other modified techniques for constructing CfCVTs are given in [16].
3For domains with curved boundaries, the projection process Proj can be easily effected by a

damped Newton’s method, see [28].
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refinement techniques, or by some other means. Denote by P = {xi}ni=1 the set of ver-
tices of T0, by PB the set of boundary vertices, and by PI the set of interior vertices.
The CDT process guarantees that PS ⊂ PB .

For each triangle Ti = (xi1 ,xi2 ,xi3 ) ∈ T0, we define

xTi
=

{
circumcenter of Ti if Ti is an acute triangle;
the middle point of the longest edge of Ti otherwise.

Clearly, xTi
∈ T i. For each vertex xi, we denote by {Tik

}mi

k=1 ⊂ T0 the set of triangles
for which xi is a vertex, counting in the counterclockwise direction.

Interior vertices. First, consider the case xi ∈ PI , i.e., xi is an interior vertex.
Define Ui by

Ui = the polygon formed by {xTik
}mi

k=1;

see Fig. 3.1. The polygon Ui can be regarded as an approximation to the Voronoi
region Vi associated with xi. Let xi denote the center of mass of the Ui with re-
spect to the density function ρ. Denote by {αik

}mi

k=1 the associated angles around xi

corresponding to {Tik
}mi

k=1. Define

α =

{
max{αik

| T ik
∩ ∂Ω 6= ∅} if T ik

∩ ∂Ω 6= ∅ for some ik;
0 otherwise

and ei denote the corresponding boundary edge opposite to the angle αik
such that

αik
= α; see Fig. 3.1 for illustrations of some cases.
Now, select a parameter θmax (π > θmax > π/2). Then, define

yi =

{
xi if α < θmax;
Proj

ei
xi otherwise

(3.2)

where Proj
ei

xi denotes the projection of xi onto the boundary edge ei. It is clear
that yi is still an interior vertex if α < θmax; otherwise, it is a boundary vertex
although xi is an interior node.

Boundary vertices. Next, consider the case xi ∈ PB , i.e., xi is a boundary vertex.
Let e1 and e2 denote the two boundary edges having xi as the common end point,
and let z1 and z2 denote the midpoints of e1 and e2, respectively; see Fig. 3.2. The
approximate Voronoi region Ui of xi is defined by

Ui = the polygon formed by z1, {xTik
}mi

k=1, and z2;

see Fig. 3.2. Let xi denote the center of mass of the Ui associated with the density
function ρ.

If xi ∈ PB − PS , denote by β1 and β2 the angles facing the boundary edges e1

and e2, respectively, in {Tik
}mi

k=1; see Fig. 3.2 (right). Let

β = max(β1, β2)

and select a parameter θmin (π/3 > θmin > 0). Then, define

yi =





xi if xi ∈ PS ;
Proj

z1z2
xi if xi ∈ PB − PS and β > θmin;

xi if xi ∈ PB − PS and β ≤ θmin

(3.3)

where Proj
z1z2

xi denotes the projection of xi onto the segment z1z2. It is clear that
yi is also a boundary vertex if xi is a corner vertex, or xi is a non-corner vertex but
β > θmin; otherwise, yi becomes an interior vertex although xi is on the boundary
(We also call it a lifting process).



10 Lili Ju, Max Gunzburger and Weidong Zhao

xi
x i

i

e e

e e

i i

ii

U

ix x
i

Fig. 3.1: The approximate Voronoi region Ui for the interior vertex xi.
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Fig. 3.2: The approximate Voronoi region Ui for the boundary vertex xi; left: corner
vertex; right: non-corner vertex.

The approximate CfCVDT construction algorithm. We can now describe an al-
gorithm for constructing an approximate CfCVDT of the domain Ω.

Algorithm 2. (Modified Lloyd’s method for approximate CfCVDT)
Given a domain Ω, a density function ρ(x) defined on Ω, and an initial triangulation
T0 of Ω with vertices {xi}ni=1 generated using CDT,

1. determine {yi}ni=1 from {xi}ni=1 according to (3.2) and (3.3);
2. set {xi}ni=1 = {yi}ni=1 and reconstruct the boundary segments EB from the new

{xi}ni=1;
3. re-triangulate the domain Ω using CDT with {xi}ni=1 as the vertices and EB as

the boundary edges; the resulting triangulation is the new T ;
4. if the triangulation T meets some convergence criterion, return T and terminate;

otherwise, go to step 1.

In the remainder of this paper, we will use the notation T =CfCVDT(T0,Ω,ρ) to
represent the output of Algorithm 2.

Remark 1. To prevent some vertices from frequently jumping back and forth
between the boundary and the interior of the domain, more sophisticated controls are
needed; for the sake of simplicity, we omit some details in Algorithm 2.

Remark 2. Two user-defined parameters θmax and θmin corresponding respec-
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tively to the projection process and the lifting process are used to avoid bad-shaped
triangles in the region close to the boundary. In our computational experiments, we
set θmax = 5π/9 and θmin = π/6. These are only empirical values, but many experi-
ments lead us to believe they are good choices.

4. CfCVDT-based adaptive finite element methods. Adaptive meshing
methods for solving PDEs often takes the following standard form:

0. generate a coarse mesh T (0) of the domain Ω and set ` = 0;
1. solve the system produced by discretizing the PDE based on T (`) and calculate

the local error estimators;
2. if some convergence criteria is satisfied, terminate; otherwise, go to step 3;
3. refine the mesh T (`) based on the local error estimators to get the next level of

mesh T (`+1) and set ` = ` + 1, then go to step 1.

In our adaptive method, we use CfCVDTs to refine and optimize the mesh at each
level, but first we need to determine, from the error estimators, the density function
used in the CfCVDT algorithm.

4.1. Determination of the density function. Let T (`) denote the triangu-

lation of Ω with vertices {x(`)
i }n

(`)

i=1 at the refinement level `. Let η
(`)
T,H1 and η

(`)
T,L2

represent the corresponding local H1-type and L2-type error estimators on T ∈ T (`)

at level ` defined by (2.7) and (2.12), respectively. A comparison of (2.2) and (2.8)

and of (2.3) and (2.13) reveals that it is reasonable to divide both η
(`)
T,H1 and η

(`)
T,L2

by
√

a in order to reflect the local variations of true error more accurately. Thus, we
define

(ξ
(`)
T,H1 )

2 =
(η

(`)
T,H1 )

2

aT
and (ξ

(`)
T,L2)

2 =
(η

(`)
T,L2)

2

aT
, (4.1)

where aT is the mean value of a(x) on the triangle T , i.e., aT =
∫

T
a(x) dx/Area(T ).

In order to minimize

(ξ
(`)
H1 )

2 =
∑

T∈T (`)

(ξ
(`)
T,H1 )

2 or (ξ
(`)
L2 )2 =

∑

T∈T (`)

(ξ
(`)
T,H1 )

2,

we need to distribute (ξ
(`)
T,H1 )

2 or (ξ
(`)
T,L2)

2 equally over all triangles of T (`).

Set

ρ̃
(`)
T,H1 =

(ξ
(`)
T,H1 )

2

h4
T

and ρ̃
(`)
T,L2 =

(ξ
(`)
T,L2)

4/3

h4
T

. (4.2)

We then uniquely determine two piecewise linear functions (with respect to T (`))

ρ
(`+1)
H1 and ρ

(`+1)
L2 on Ω such that for any vertex x

(`)
i of T (`),

ρ
(`+1)
H1 (x

(`)
i ) =

∑
T∈Si

ρ̃
(`)
T,H1

card(Si)
and ρ

(`+1)
L2 (x

(`)
i ) =

∑
T∈Si

ρ̃
(`)
T,L2

card(Si)
, (4.3)

where

Si = {T ∈ T (`) | x
(`)
i ∈ T}.
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Note that, in some sense, if the solution u ∈ H2(Ω), we have

(ξ
(`)
T,H1 )

2 ≈ aT |∇2u|2h4
T and (ξ

(`)
T,L2)

2 ≈ aT |∇2u|2h6
T . (4.4)

Combining (4.4) with the CVT/CVDT property (3.1) for d = 2, i.e.,

hVi

hVj

≈
(ρ(xj)

ρ(xi)

)1/4

for a CVT {(xi, Vi)}ni=1 of Ω with respect to the density function ρ, it is then not
difficult to verify that the CfCVDT mesh T (`+1) generated by the density function

ρ
(`+1)
H1 or ρ

(`+1)
H1 will approximately have the property that

(ξ
(`+1)
Ti,H1)

2 ≈ (ξ
(`+1)
Tj ,H1)

2 or (ξ
(`+1)
Ti,L2)

2 ≈ (ξ
(`+1)
Tj ,L2)

2,

respectively, for any triangles Ti, Tj ∈ T (`+1).

We will refer to the density functions ρ
(`+1)
H1 and ρ

(`+1)
L2 as the H1-based and L2-

based density functions, respectively. From their defining formulas, it is easy to see

that ρ
(`+1)
H1 varies more rapidly than does ρ

(`+1)
L2 . We expect that CCDVT meshes

generated using ρ
(`+1)
H1 will produce a finite element approximation with smaller H1

norm or energy error while those generated using ρ
(`+1)
L2 will tend to have smaller L2

norm error.
The most time consuming step in the calculations of ρ

(`+1)
H1 (x) and ρ

(`+1)
L2 (x) for

any x ∈ Ω is the nearest neighbor search operation since they are defined by inter-
polation with respect to an unstructured mesh. However, this task can be effected
efficiently using the software package “ANN” [1] that is based on the K-D tree algo-
rithm.

Remark 3. In many practical applications, the coefficient in the model equation
(2.1) is often a tensor product, i.e., a symmetric, positive definite matrix

A(x) =

(
a11(x) a12(x)
a21(x) a22(x)

)

rather than a scalar-valued function a(x). Under this situation, if the difference be-
tween a11(x) and a22(x) is not large locally, then it is still reasonable to scale these
estimators by

(ξ
(`)
T,H1 )

2 =
(η

(`)
T,H1 )

2

AT
and (ξ

(`)
T,L2)

2 =
(η

(`)
T,L2)

2

AT
, (4.5)

where AT =
∫

T

√
det(A(x)) dx/Area(T ); If A(x) is strongly anisotropic, then it could

not be handled correctly in this framework; the anisotropic CVT meshes proposed
in [20], perhaps with some variations, may be able to deal with this case.

Remark 4. If a higher-order finite element approximation is used, for example,
Vh = {v ∈ C(Ω) | v|T ∈ Pk(T ) ∀ T ∈ T } where k > 2, then the discrete solution uh

is of k-th order convergence in H1 norm and (k + 1)-th order in L2 norm. Let η
(`)
T,H1

and η
(`)
T,L2 be the accordingly derived local H1 and L2 type error estimators for this

approximation; then by similar analysis, it is better to replace (4.2) by

ρ̃
(`)
T,H1 =

(ξ
(`)
T,H1 )

4
k+1

h4
T

and ρ̃
(`)
T,L2 =

(ξ
(`)
T,L2)

4
k+2

h4
T

. (4.6)
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Remark 5. If the mixed finite element method is used, the density fucntion can
be determined similar to the standard finite element approximation since all we need
are just explicit a posterior local error estimators and their orders with respect to the
local mesh size hT .

4.2. Adaptive algorithms based on CfCVDT. Let {Ei}k
(`)

i=1 denote the set
of edges of the `-th level triangulation T (`). Set ρEi

= ρ(zi) for any density function
ρ, where zi denotes the midpoint of the edge Ei. We can now define our adaptive
finite element method as follows.

Algorithm 3. (CfCVDT-based adaptive finite element method) Given
a domain Ω, an integer Nmax > 0 (the maximum allowable number of mesh vertices),
an integer Lmax (the maximum allowable levels of refinements), and a parameter
0 < θ ≤ 1.
0. Preprocessing: generate an initial coarse triangulation T of Ω using CDT or some

other means, solve the PDE using a finite element method (FEM) on T , and
then determine the local error estimators ηT,H1 (or ηT,L2) for all T ∈ T .
Construct the density function ρH1 (or ρL2) using (4.3) and optimize T to
obtain T (0) = CfCV DT (T , Ω, ρH1) (or T (0) = CfCV DT (T , Ω, ρL2)) that
becomes the new initial coarse mesh; let n(0) denote the number of vertices of
T (0) and set ` = 0.

1. Solve the PDE using the FEM on T (`). If ` > Lmax or n(`) > Nmax, terminate;
otherwise, go to step 2.

2. Determine the local error estimator η
(`)
T,H1 (or η

(`)
T,L2) for all T ∈ T (`).

3. Construct ρ
(`+1)
H1 (or ρ

(`+1)
L2 ) using (4.3) and set the density function ρ = ρ

(`+1)
H1

(or ρ = ρ
(`+1)
L2 ).

4. Determine {ρEi
}k(`)

i=1 and sort them in decreasing order.
5. Add {zi}kθ

i=1 into the triangulation T (`), where

kθ = max
{
k∗

∣∣∣
k∗∑

i=1

ρEi
< θ

k(l)∑

i=1

ρEi

}
,

and then form, using CDT, the new intermediate triangulation T̃ (`+1) with
n(`+1) = n(`) + kθ vertices.

6. Optimize T̃ (`+1) to obtain T (`+1) = CfCV DT (T̃ (`+1), Ω, ρ), set ` ← ` + 1, then
go to step 1.

The parameter θ in Algorithm 3 is used here to control the refinement process [26].
The sorting procedure in step 4 can be implemented efficiently using a quick sorting
algorithm.

5. Computational experiments. In this section, using computational experi-
ments, we illustrate the effectiveness of CfCVDT-based adaptive finite element meth-
ods. Consider the problem

{
−∇ · (a∇u) + bu = f in Ω,

u = g on ∂Ω,
(5.1)

where b ∈ L∞(Ω) with b ≥ 0. Correspondingly, r = f in (2.7) and (2.12) is changed
to r = f − buh. Initial coarse meshes are either chosen to be a uniform Cartesian grid
or are produced using the “TRIANGLE” package and are subsequently repeatedly
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refined by our adaptive methods, i.e., Algorithm 3. For the sake of having something
to compare to, we also find finite element approximations of the problem (5.1) using
uniform refinements of the initial meshes. We set Lmax = 15, Nmax =20,000, and
θ = 0.4 for Algorithm 3. For our adaptive methods, the convergence rate CR with
respect to the norm ‖ · ‖ at the refinement level ` is roughly computed by

CR =
2 log(‖eh,`‖/‖eh,`−1‖)

log(n`−1/n`)
, (5.2)

where n` denotes the number of nodes and eh,` denotes the error u − uh at the
refinement level `.

We apply the commonly used q measure [22] to evaluate the quality of triangular
meshes, where, for any triangle T , q is defined to be twice the ratio of the radius RT

of the largest inscribed circle and the radius rT of the smallest circumscribed circle,
i.e.,

q(T ) = 2
RT

rT
=

(b + c− a)(c + a− b) + a + b− c)

abc
,

where a, b, and c are side lengths of T . For a given triangulation T , we define

qmin = min
T∈T

q(T ) and qavg =
1

card(T )

∑

T∈T

q(T ); (5.3)

qmin measures the quality of the worst triangle and qavg measures the average quality
of the mesh T .

5.1. Smooth solution with large gradients. The first illustrative problem is
given as follows.

Example 1. Set Ω = [−1, 1]×[−1, 1], a(x, y) = 10.0 cos(y), and b(x, y) = x2+y2.
The exact solution u is chosen to be

u(x, y) =
1.0

(x − 0.5)2 + (y − 0.5)2 + 0.01
− 1.0

(x + 0.5)2 + (y + 0.5)2 + 0.01
(5.4)

and f and g are determined from u so that (5.1) is satisfied.
It is easy to see that the exact solution u given in (5.4) is a smooth function, i.e.,

certainly, u ∈ C2(Ω). Note that u achieves its maximum value 99 101
201 at the point

(0.5, 0.5) and its minimum value −99 101
201 at the point (−0.5,−0.5), but decays very

quickly away from its extrema and thus has large gradients near these two points.
Note also that a(x, y) and f(x, y) also have relatively rapid variations over Ω.

The initial coarse mesh (the input for step 0 of Algorithm 3) used for the solu-
tion of Example 1 is a uniform Cartesian grid consisting of 81 nodes; see Fig. 5.1.
The corresponding CfCVDT meshes (the output of step 0) with the same number of
nodes produced using the density functions ρH1 and ρL2 are also given in Fig. 5.1.
Fig. 5.2 presents repeatedly refined meshes at some levels generated using Algorithm
3. The distributions of nodes in the CfCVDT-based adaptive meshes clearly show the
accumulation of nodes in the vicinity of the two points near which large gradients in
the solution occur. The CfCVDT-based adaptive meshes are “optimal” in the sense
that all triangles remain well-shaped at all refinement levels, an observation which
is supported by the values of qmin and qavg given in Table 5.1. It is also clear that
the CfCVDT meshes generated using the density function ρH1 tend to distribute the
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Fig. 5.1: Initial meshes for Example 1; left: a uniform Cartesian grid with 81 nodes;
middle and right: the corresponding CfCVDT meshes with the same number of nodes
generated using the density functions ρH1 and ρL2 , respectively.

Fig. 5.2: Repeatedly refined adaptive meshes at some levels generated by the
CfCVDT-based adaptive method for Example 1; top: 394, 1287, 4644 nodes using
the density function ρH1 ; bottom: 370, 1280, 4629 nodes using the density function
ρL2 .

nodes in a slightly less uniform manner than those generated using the density func-
tion ρL2 ; this observation which is also verified by the values of hmax/hmin in Table
5.1, can be explained by the fact that ρH1 has larger variations than does ρL2 .

Table 5.1 contains information about mesh quality, solution errors, and conver-
gence rates at all refinement levels for different refinement strategies for Example 1;
the corresponding plots of the error norms (‖eh‖L2(Ω) and |eh|H1(Ω)) vs. the number
of nodes are given in Fig. 5.3 where |eh|H1(Ω) denotes the semi-H1 norm defined by
‖∇eh‖L2(Ω). One observes that the two CfCVDT-based adaptive methods and the
uniform refinement strategy achieve almost perfect convergence rates, i.e., 2 and 1
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for ‖eh‖L2(Ω) and |eh|H1(Ω), respectively.4 These, of course, are the expected rates
since the exact solution u of Example 1 belongs to H2(Ω). The values of qmin and
qavg given in Table 5.1 demonstrate that the shape quality of the meshes resulting
from the CfCVDT-based adaptive strategy is always very good at all levels for both
density functions ρL2 and ρH1 , although the mesh sizes vary a lot over the Ω, e.g.,
hmax/hmin reaches 176.3 at the last level when ρH1 is used. Note that hmax/hmin

tends to converge for our adaptive methods since u is smooth. Also, as expected, the
adaptive method using ρL2 as the density function generated approximate solutions
uh having smaller ‖eh‖L2(Ω) relative to those obtained using ρH1 ; on the other hand,
the latter generated approximate solutions with (slightly) smaller |eh|H1(Ω).

` n` qmin qavg hmax/hmin ‖eh‖L2(Ω) CR |eh|H1(Ω) CR

Uniform refinement
0 81 0.828 0.828 1.0 2.3260e+01 1.8187e+02
1 289 0.828 0.828 1.0 2.2931e+00 3.34 1.0422e+02 0.80
2 1089 0.828 0.828 1.0 9.6260e-01 1.25 6.5176e+01 0.68
3 4225 0.828 0.828 1.0 2.7745e-01 1.80 3.5677e+01 0.87
4 16441 0.828 0.828 1.0 7.1278e-02 1.96 1.8242e+01 0.97
5 66409 0.828 0.828 1.0 1.8071e-02 1.98 9.2255e+00 0.98

Adaptive refinement using ρH1

0 81 0.280 0.805 6.6 7.6651e+00 1.5021e+02
1 114 0.541 0.916 8.8 2.9722e+00 5.54 9.0709e+01 2.95
2 143 0.459 0.876 20.8 2.2858e+00 2.31 6.1156e+01 3.47
3 229 0.579 0.919 22.5 1.1666e+00 2.86 4.5971e+01 1.21
4 394 0.618 0.926 40.7 7.5734e-01 1.59 3.3524e+01 1.16
5 703 0.574 0.936 45.9 4.6479e-01 1.69 2.4081e+01 1.14
6 1287 0.611 0.941 59.5 2.9602e-01 1.49 1.7575e+01 1.04
7 2426 0.622 0.942 80.9 1.8046e-01 1.56 1.2760e+01 1.01
8 4644 0.651 0.944 114.5 9.7005e-02 1.91 9.2654e+00 0.99
9 8921 0.621 0.945 130.9 5.6155e-02 1.68 6.7420e+00 0.97

10 17095 0.598 0.944 164.5 3.1818e-02 1.75 4.8327e+00 1.02
11 33192 0.610 0.944 176.3 1.6909e-02 1.91 3.4671e+00 1.00

Adaptive refinement using ρL2

0 81 0.563 0.898 5.7 5.7395e+00 1.3966e+02
1 127 0.679 0.931 7.1 2.1686e+00 4.33 9.0681e+01 1.92
2 211 0.579 0.924 13.4 1.0831e+00 2.74 5.9141e+01 1.68
3 370 0.638 0.938 11.9 5.8917e-01 2.17 4.0737e+01 1.33
4 681 0.675 0.941 17.7 3.2326e-01 1.97 2.9245e+01 1.09
5 1280 0.679 0.940 20.6 1.7163e-01 2.01 2.1150e+01 1.03
6 2412 0.601 0.944 23.5 9.4164e-02 1.90 1.4562e+01 1.18
7 4629 0.680 0.944 27.7 4.8922e-02 2.01 1.0621e+01 0.97
8 8883 0.649 0.944 34.9 2.6327e-02 1.90 7.4636e+00 1.08
9 17099 0.602 0.944 37.4 1.3566e-02 2.03 5.4503e+00 0.96

10 32875 0.609 0.944 41.5 7.2308e-03 1.93 3.8497e+00 1.06

Table 5.1: Mesh quality, solution errors, and convergence rates for different refinement
strategies for Example 1.

From Table 5.1 and Fig. 5.3, one also observes that the CfCVDT-based adaptive
methods are much more efficient relative to the uniform refinement strategy. For
example, for the uniform refinement method, we have that ‖eh‖L2(Ω) =1.8071e-02
and |eh|H1(Ω) =9.2255e+00 on the refined mesh with 66, 049 nodes. However, for
the adaptive methods, the values of these norms are 5.6155e-02 and 6.7420e+00,

4The convergence rate for ‖eh‖L2(Ω) for the adaptive method using ρH1 being a little erratic
and slightly lower than 2.
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Fig. 5.3: Error norms vs. number of nodes for different refinement strategies for
Example 1; left: ‖eh‖L2(Ω); right: |eh|H1(Ω).

respectively, on the mesh with only 8, 921 nodes when ρH1 is used as the density
function, and 2.6327e-02 and 7.4636e+00, respectively, on the mesh with only 8, 883
nodes when ρL2 is used as the density function. This means that, in the case of
the |eh|H1(Ω) norm, the CfCVDT-based adaptive methods are more than 8 times
more efficient than the uniform refinement method if only considering the size of the
resulting system.

An important optimal property of CfCVDT-based adaptive methods is the equi-
distribution of the errors over Ω. In order to verify this, we plot, in Fig. 5.4, a repre-
sentative approximate solution uh and the errors eh for different refinement methods.
It is obvious that the adaptive methods do indeed distribute the errors much more
equally than does the uniform refinement method; note that the same scale is used
for eh in Fig. 5.4 for all the refinement methods.

5.2. Geometric singularity. The second illustrative problem is given as fol-
lows.

Example 2. Let Ω = ΩR1 ∪ ΩR2 where ΩR1 = [−1, 0] × [0, 1] and ΩR2 =
[0, 1] × [−1, 1] so that Ω is a non-convex, Γ-shaped region which induces a geomet-
rically based singularity in the solution of the PDE at the origin (0, 0). In (5.1), we
set a(x, y) = 1 and b(x, y) = 0. We use the polar coordinates (r, θ) instead of the
Cartesian coordinates (x, y) = (r cos θ, r sin θ) to describe the exact solution u which
is chosen to be

u(r, θ) = s

(
r − δ1

δ2 − δ1

)
r2/3 sin

(2

3
θ
)

+ w(r cos θ, r sin θ) (5.5)

with δ1 = 0.02 and δ2 = 0.25, where s is the cut-off function

s(t) =






1, t < 0,

− 6t5 + 15t4 − 10t3 + 1, 0 ≤ t ≤ 1,

0, t > 1,

and w(x, y) = (x − x3)(y2 − y4). Note that w is a smooth function with w|∂Ω = 0.
Then, f and g are again determined from u so that (5.1) is satisfied.

The exponent and angle factor 2/3 in the exact solution (5.5) emulates the typical
singular behavior of solutions of (5.1) in the Γ-shaped domain that has an interior
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Fig. 5.4: Plots of an approximate solution and error distributions for different re-
finement methods for Example 1; top-left: a representative approximate solution uh;
top-right: the error eh on the mesh with 4225 nodes obtained using the uniform re-
finement method; bottom-left: eh on the mesh with 4644 nodes obtained using the
CfCVDT-based adaptive method using ρH1 ; bottom-right: eh on the mesh with 4629
nodes obtained using the CfCVDT-based adaptive method using ρL2 .

angle equal to 3π/2; see [23]. It is then easy to show that the exact solution u given

in (5.5) only belongs to H
5
3−ε(Ω) for any ε > 0 and has a strong singularity at the

origin. Again, this is the typical regularity one can expect for solutions of (5.1) in an
Γ-shaped domain. Note that, in particular, u 6∈ H2(Ω).

The initial coarse mesh (the input for step 0 of Algorithm 3) used for the solu-
tion of Example 2 is a uniform Cartesian grid consisting of 65 nodes; see Fig. 5.5.
The corresponding CfCVDT meshes (the output of step 0) with the same number of
nodes produced using the density functions ρH1 and ρL2 are also given in Fig. 5.5.
Fig. 5.6 presents repeatedly refined meshes at some levels generated using Algorithm
3. The distributions of nodes in the CfCVDT-based adaptive meshes clearly show the
accumulation of nodes near the origin where the singularity in the solution occurs.
In order to better visualize the extent of the accumulation, 16-fold magnifications of
the meshes near the origin are also included in Fig. 5.6. It is easy to see that again
CfCVDT meshes generated using the density function ρH1 have a little higher con-
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centration of nodes near the singular point than the ones generated using ρL2 . Also,
once again, all triangles remain well-shaped at all refinement levels, an observation
that is supported by the values of qmin and qavg listed in Table 5.2.

Fig. 5.5: Initial meshes for Example 2; left: a uniform Cartesian grid with 65 nodes;
middle and right: the corresponding CfCVDT meshes with the same number of nodes
generated using the density functions ρH1 and ρL2 , respectively.

Table 5.2 contains information about mesh quality, solution errors, and conver-
gence rates at all refinement levels for different refinement strategies for Example 2;
the corresponding plots of the error norms (‖eh‖L2(Ω) and |eh|H1(Ω)) vs. the num-
ber of nodes are given in Fig. 5.7. The convergence rates for the uniform refinement
method are about 1.48 and 0.85 for ‖eh‖L2(Ω) and |eh|H1(Ω), respectively. These rates
are a little better than the values 4/3 and 2/3, respectively, that finite element theory

predicts for an exact solution u ∈ H
5
3−ε(Ω); this behavior can possibly be explained

by the superconvergence property of piecewise linear finite element approximations on
uniform grids and by the fact that the mesh resolution may still not be fine enough to
achieve asymptotic convergence rates; see [9]. However, one sees that the CfCVDT-
based adaptive methods still achieve almost perfect convergence rates, i.e., 2 and 1 for
‖eh‖L2(Ω) and |eh|H1(Ω), respectively. The values of qmin and qavg given in Table 5.2
demonstrate that the quality of the meshes produced by the CfCVDT-based adaptive
methods is always very good for both density functions ρH1 and ρL2 , even though
the mesh sizes vary greatly over the Ω, e.g., hmax/hmin reaches 194.7 at the last level
when the density function ρH1 is used. It is interesting to observe that, since u does
not belong to H2(Ω), hmax/hmin tends to monotonically increase for the adaptive
methods. The CfCVDT adaptive method using the density function ρL2 generated
approximate solutions with almost the same values of ‖eh‖L2(Ω) as that obtained us-
ing the density function ρH1 ; on the other hand, the latter generated approximate
solutions with (slightly) smaller values of |eh|H1(Ω).

From Table 5.2 and Fig. 5.7, one also observes that the CfCVDT-based adaptive
methods are much more efficient relative to the uniform refinement strategy. For ex-
ample, for the uniform refinement method, we have that ‖eh‖L2(Ω) =1.9910e-04 and
|eh|H1(Ω) =2.8144e-02 on the refined mesh with 49, 665 nodes. However, for the adap-
tive methods, the values of these norms are 1.9454e-04 and 2.8889e-02, respectively,
on the mesh with only 4, 455 nodes when ρH1 is used as the density function, and
1.2593e-04 and 2.6637e-02, respectively, on the mesh with only 6, 847 nodes when ρL2

is used as the density function. This means that, in the case of the ‖eh‖H1(Ω) norm,
the CfCVDT-based adaptive methods are more than 10 times more efficient than the
uniform refinement method if only considering the size of the resulting system.
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Fig. 5.6: Refined adaptive meshes at some levels generated by the CfCVDT-based
adaptive method for Example 2; top, left to right: for the density function ρH1 , 400
and 2379 node meshes and the 2379 node case near the singular point magnified 16
times; bottom, left to right: for the density function ρL2 , 565 and 3617 nodes and the
3617 node case near the singular point magnified 16 times.
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Fig. 5.7: Error norms vs. number of nodes for different refinement strategies for
Example 2; left: ‖eh‖L2(Ω); right: |eh|H1(Ω).

We display a representative approximate solution uh and the errors eh for different
refinement methods in Fig. 5.8. It is again obvious that the CfCVDT-based adaptive
methods distribute the errors much more equally over the triangles than does the
uniform refinement method.

5.3. Interface singularity. The third illustrative problem is given as follows.
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` n` qmin qavg hmax/hmin ‖eh‖L2(Ω) CR |eh|H1(Ω) CR

Uniform refinement

0 65 0.828 0.828 1.0 7.3322e-02 4.5081e-01
1 225 0.828 0.828 1.0 1.4759e-02 2.31 3.2282e-01 0.48
2 833 0.828 0.828 1.0 4.4383e-03 1.73 1.7465e-01 0.88
3 3201 0.828 0.828 1.0 1.4867e-03 1.58 9.3882e-02 0.89
4 12545 0.828 0.828 1.0 5.5462e-04 1.42 5.0745e-02 0.89
5 49665 0.828 0.828 1.0 1.9910e-04 1.48 2.8144e-02 0.85

Adaptive refinement using ρH1

0 65 0.745 0.929 2.1 3.8000e-02 3.9914e-01
1 91 0.653 0.915 3.9 1.5791e-02 5.22 3.0636e-01 1.57
2 141 0.602 0.911 6.2 8.8165e-03 2.66 2.0079e-01 1.93
3 232 0.536 0.915 9.2 5.4002e-03 1.97 1.4655e-01 1.27
4 400 0.505 0.923 10.3 2.6396e-03 2.63 1.0745e-01 1.14
5 711 0.579 0.934 15.2 1.3676e-03 2.29 7.7155e-02 1.15
6 1293 0.477 0.934 19.0 6.9433e-04 2.27 5.5410e-02 1.11
7 2379 0.442 0.937 32.2 3.5445e-04 2.21 3.9999e-02 1.07
8 4455 0.490 0.940 67.4 1.9454e-04 1.91 2.8889e-02 1.04
9 8419 0.480 0.941 86.7 9.3771e-05 2.29 2.0725e-02 1.04

10 16005 0.595 0.944 196.6 5.1481e-05 1.87 1.4871e-02 1.03
11 30576 0.517 0.943 294.7 2.5224e-05 2.20 1.0716e-02 1.01

Adaptive refinement using ρL2

0 65 0.645 0.918 2.2 4.2120e-02 4.0369e-01
1 109 0.731 0.928 2.5 1.6311e-02 3.67 3.2760e-01 0.81
2 180 0.602 0.931 3.6 6.4383e-03 3.71 1.9912e-01 1.99
3 314 0.661 0.933 4.4 3.1812e-03 2.53 1.3687e-01 1.35
4 565 0.648 0.932 5.5 1.6431e-03 2.25 9.7091e-02 1.17
5 1035 0.703 0.938 6.1 9.4153e-04 1.84 7.3907e-02 0.90
6 1925 0.642 0.941 7.9 4.7074e-04 2.23 5.1002e-02 1.20
7 3617 0.649 0.941 9.6 2.5132e-04 1.99 3.8175e-02 0.92
8 6847 0.579 0.944 15.5 1.2593e-04 2.17 2.6637e-02 1.13
9 13048 0.576 0.945 19.0 6.7958e-05 1.91 1.9695e-02 0.94

10 24933 0.579 0.945 28.4 3.5607e-05 2.00 1.3835e-02 1.09

Table 5.2: Mesh quality, solution errors, and convergence rates for different refinement
strategies for Example 2.

Example 3. Let Ω = [−1, 1]× [−1, 1], b(x, y) = 0, and

a(x, y) =

{
1 (x, y) ∈ Ω1 ∪ Ω3

5 (x, y) ∈ Ω2 ∪ Ω4,

where Ω1 = (0, 1) × (0, 1), Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0) × (−1, 0) and Ω4 =
(0, 1) × (−1, 0); see the top-left image in Fig. 5.9. Note that the coefficient a is
discontinuous across the two lines x = 0 and y = 0. This problem is thus an interface
problem [10]. The exact solution u is chosen to be

u(r, θ) = rα
(
pi cos(αθ) + qi sin(αθ)

)
in Ωi, (5.6)

with 0 < α < 1 and for i = 1, 2, 3, 4. With a normalization condition such as

4∑

i=1

(pi + qi) = 1,
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Fig. 5.8: Plots of an approximate solution and error distributions for different re-
finement methods for Example 2; top-left: a representative approximate solution uh;
top-right: the error eh on the mesh with 3201 nodes obtained using the uniform re-
finement method; bottom-left: eh on the mesh with 2379 nodes obtained using the
CfCVDT-based adaptive method using ρH1 ; bottom-right: eh on the mesh with 3617
nodes obtained using the CfCVDT-based adaptive method using ρL2 .

we can easily solve a Sturm-Liouville problem to find that if α ≈ 0.53544094560 and

{(pi, qi)}4i=1 ≈
{
(14.535673,−0.839562), (0.429608, 1.621108),

(−13.043759, 6.469236), (−0.478922,−0.693383)
}
,

then u given by (5.6) satisfies

∇ · (a∇u) = 0 in Ωi,

and the interface conditions

lim
θ→(iπ/2)+

u(r, θ) = lim
θ→(iπ/2)−

u(r, θ)

and

lim
θ→(iπ/2)+

a
∂u(r, θ)

∂θ
= lim

θ→(iπ/2)−
a
∂u(r, θ)

∂θ
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for i = 1, 2, 3, 4. Note that u ∈ H1+α−ε(Ω) for any ε > 0 and has a strong singularity
at the origin.

The initial coarse mesh, i.e., the input for step 0 of Algorithm 2, used for the
solution of Example 3 is the same as that used for Example 1, i.e., a uniform Cartesian
grid consisting of 81 nodes; see Fig. 5.9. For this interface problem, we need to
impose a restriction on the computational meshes: no triangle at any refinement
level can straddle the interface lines x = 0 and y = 0, i.e., the triangulations have to
conform to the interfaces, so that the discontinuities of a only occur across mesh edges.
Uniformly refined grids automatically meet this constraint. Some modifications can be
made to Algorithm 2 so that CfCVDT adapted meshes also satisfy this requirement.
The initial CfCVDT meshes, i.e., the output of step 0 of Algorithm 2, determined
using the density functions ρH1 and ρL2 are also given in Fig. 5.9. Fig. 5.10 displays
refined meshes at some levels generated by the CfCVDT-based adaptive method. The
distributions of nodes in the CfCVDT-adapted meshes clearly show the accumulation
of nodes near the origin. In order to better visualize the extent of the accumulation,
a portion of the meshes near the origin, magnified 1024 times, are also included in
Fig. 5.10. It is easy to see that the CfCVDT-adapted meshes generated using the
density function ρH1 have a much higher concentration of nodes near the singular
point, i.e., the origin, than those generated using ρL2 . This observation is supported
by the values of hmax/hmin listed in Table 5.3. Again, all triangles are well shaped at
all refinement levels, an observation that is supported by the values of qmin and qavg

listed in Table 5.3.

Ω

Ω Ω

Ω

3 4

12

Fig. 5.9: The domain Ω and the initial meshes for Example 3; top-left: the domain
Ω and its partitions; top-right: a uniform Cartesian grid with 81 nodes; bottom: the
corresponding CfCVDT meshes generated using the density functions ρH1 (left) and
ρL2 (right).

Table 5.3 contains information about mesh quality, solution errors, and conver-
gence rates at all refinement levels for different refinement strategies for Example 3;
the corresponding plots of the error norms (‖eh‖L2(Ω) and |eh|H1(Ω)) vs. the number of
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Fig. 5.10: Refined adaptive meshes at some levels generated by the CfCVDT-based
adaptive method for Example 3; top, left to right: for the density function ρH1 , 476
and 2910 node meshes and the 2910 node case near the singular point magnified 1024
times; bottom, left to right: for the density function ρL2 , 436 and 2868 nodes and the
2868 node case near the singular point magnified 1024 times.

nodes are given in Fig. 5.11. The convergence rates for the uniform refinement method
are about 1.08 and 0.53 for ‖eh‖L2(Ω) and |eh|H1(Ω), respectively. These match very
well with those predicted by finite element theory, i.e., 2α and α, respectively, for
u ∈ Hα−ε(Ω)). However, one sees that the CfCVDT-based adaptive methods still
achieve almost perfect convergence rates, i.e., 1.0 and 1.8 for |eh|H1(Ω) and |eh|L2(Ω),
respectively. The values of qmin and qavg given in Table 5.3 demonstrate that the
quality of the meshes produced by the CfCVDT-based adaptive methods is always
very good at all refinement levels and for both density functions ρH1 and ρL2 , al-
though the mesh sizes vary greatly over the Ω, e.g., hmax/hmin reaches 53393.1 at the
last level when the density function ρH1 is used. Again, since u is not in H2(Ω), we
see that hmax/hmin tends to monotonically increase for the adaptive methods. Note
that in this case, the CfCVDT-based adaptive method using the density function ρH1

generated approximate solutions having both smaller ‖eh‖L2(Ω) and ‖eh‖H1(Ω) than
using ρL2 . We believe this phenomenon is due to the strong singularity of the exact
solution u while the density functions are constructed based on the assumption that
u ∈ H2(Ω).

From Table 5.3 and Fig. 5.11, one also observes that the CfCVDT-based adap-
tive methods are much more efficient relative to the uniform refinement strategy. For
example, for the uniform refinement method, we have that ‖eh‖L2(Ω) =1.4193e-03
and |eh|H1(Ω) =1.0975e-01 on the refined mesh with 66, 409 nodes. However, for the
adaptive methods, the values of these norms are 1.3335e-03 and 1.1379e-01, respec-
tively, on the mesh with only 853 nodes when ρH1 is used as the density function, and
1.2532e-03 and 1.1830e-01, respectively, on the mesh with only 1, 512 nodes when ρL2

is used as the density function. This means that, in the case of the |eh|H1(Ω) norm,



Adaptive FEMs for Elliptic PDEs based on CfCVDTs 25

` n` qmin qavg hmax/hmin ‖eh‖L2(Ω) CR |eh|H1(Ω) CR

Uniform refinement
0 81 0.828 0.828 1.0 6.1349e-02 6.5596e-01
1 289 0.828 0.828 1.0 2.9422e-02 1.06 4.7058e-01 0.48
2 1089 0.828 0.828 1.0 1.3654e-02 1.11 3.2931e-01 0.52
3 4225 0.828 0.828 1.0 6.3877e-03 1.09 2.2900e-01 0.52
4 16441 0.828 0.828 1.0 3.0046e-03 1.09 1.5869e-01 0.53
5 66409 0.828 0.828 1.0 1.4193e-03 1.08 1.0975e-01 0.53

Adaptive refinement using ρH1

0 81 0.489 0.896 5.4 2.8158e-02 5.1027e-01
1 115 0.557 0.901 12.1 1.4766e-02 3.68 3.8016e-01 1.68
2 176 0.483 0.883 33.7 9.7944e-03 1.93 2.8124e-01 1.42
3 282 0.489 0.899 87.3 5.3705e-03 2.63 2.1415e-01 1.19
4 476 0.522 0.919 206.1 3.2539e-03 1.86 1.5543e-01 1.19
5 853 0.526 0.925 469.2 1.3335e-03 3.04 1.1379e-01 1.07
6 1561 0.455 0.933 1141.8 7.2023e-04 2.04 8.2305e-02 1.07
7 2910 0.447 0.939 3210.3 3.4939e-04 2.32 6.0055e-02 1.01
8 5517 0.484 0.941 6897.3 1.9200e-04 1.87 4.3156e-02 1.03
9 10518 0.487 0.942 13927.4 1.0982e-04 1.73 3.2185e-02 0.91

10 19935 0.521 0.943 30373.2 6.3599e-05 1.71 2.2651e-02 1.10
11 38024 0.596 0.944 53393.1 3.5049e-05 1.85 1.6798e-02 0.93

Adaptive refinement using ρL2

0 81 0.668 0.920 2.7 3.4814e-02 5.4208e-01
1 139 0.523 0.918 3.7 1.8234e-02 2.40 4.1472e-01 0.99
2 241 0.689 0.929 7.1 8.3887e-03 2.82 2.9469e-01 1.24
3 436 0.529 0.932 11.5 4.3692e-03 2.20 2.1264e-01 1.10
4 808 0.518 0.936 15.8 3.4153e-03 0.80 1.7719e-01 0.60
5 1512 0.659 0.939 23.7 1.2532e-03 3.20 1.1830e-01 1.29
6 2868 0.640 0.944 33.2 7.1078e-04 1.77 8.7174e-02 0.95
7 5475 0.551 0.942 56.8 3.9287e-04 1.83 6.1441e-02 1.08
8 10491 0.619 0.944 90.7 2.1873e-04 1.80 4.6519e-02 0.86
9 20121 0.545 0.944 112.2 1.1865e-04 1.88 3.3943e-02 0.97

Table 5.3: Mesh quality, solution errors, and convergence rates for different refinement
strategies for Example 3.
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Fig. 5.11: Error norms vs. number of nodes for different refinement strategies for
Example 3; left: ‖eh‖L2(Ω); right: |eh|H1(Ω).

the CfCVDT-based adaptive methods are more than 60 times more efficient than the
uniform refinement method if only considering the size of the resulting system.

We display a representative approximate solution uh and the errors eh for different



26 Lili Ju, Max Gunzburger and Weidong Zhao

refinement methods in Fig. 5.12. It is again obvious that the CfCVDT-based adaptive
methods distribute the errors much more equally over the triangles than does the
uniform refinement method.
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Fig. 5.12: Plots of an approximate solution and error distributions for different re-
finement methods for Example 3; top-left: a representative approximate solution uh;
top-right: the error eh on the mesh with 4225 nodes obtained using the uniform re-
finement method; bottom-left: eh on the mesh with 2910 nodes obtained using the
CfCVDT-based adaptive method using ρH1 ; bottom-right: eh on the mesh with 2910
nodes obtained using the CfCVDT-based adaptive method using ρL2 .

5.4. More complicated geometries. Our last two examples involve more com-
plicated geometries and serve to illustrate the robustness and effectiveness of our
adaptive CfCVDT-based mesh generation algorithm.

Example 4. Let Ω = ΩS − ΩH1 ∪ ΩH2 , where ΩS = [0, 1]× [0, 1] and ΩH1 and
ΩH2 are two open hexagons formed by the set of vertices {0.25+0.1 cos(j−1)θ, 0.75+
0.1 sin(j−1)θ)}6j=1 and {0.6+0.1 cos(j−1)θ, 0.4+0.1 sin(j−1)θ)}6j=1 with θ = π/3,
respectively. Clearly, Ω is a square domain having two hexagonal holes; see Fig. 5.13.
In general, solutions of (5.1) possess large geometric singularities at the vertices of
the two interior hexagons. Set

a(x, y) = 1 + 10x2 + y2, b(x, y) = 1 + x2, f(x, y) = 1, and g(x, y) = 0. (5.7)
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Although an analytic form of the exact solution u of (5.1) with the data (5.7) is not

known, it is known that u only belongs to H
7
4−ε(Ω) for any ε > 0 and not to H2(Ω).

Example 5. Let Ω = ΩS1−ΩS2 , where ΩS1 = [0, 1]×[0, 1] and ΩS2 = [−0.5, 0.5]×
[−0.5, 0.5]. Set

b(x, y) = 0, f(x, y) = 1, g(x, y) = 0 (5.8)

and

a(x, y) =





1 (x, y) ∈ Ω1

20 (x, y) ∈ Ω2

20 (x, y) ∈ Ω3

400 (x, y) ∈ Ω4,

(5.9)

where Ωi for i = 1, 2, 3, 4 are defined in Fig. 5.13. Note that a is discontinuous in
Ω. We again do not know an analytic form of the exact solution u of (5.1) with the
data (5.8) and (5.9), but we do know that globally u only belongs to H1(Ω) (and not
H2(Ω)), but u|Ωi

∈ H2(Ωi) for i = 1, 2, 3, 4.
The initial coarse meshes used for the solution of Examples 4 and 5 are displayed in

Fig. 5.13. Fig. 5.14 and Fig. 5.15 present repeatedly refined meshes at different levels
generated by the CfCVDT-based adaptive methods for Examples 4 and 5, respectively
for both density functions ρH1 and ρL2 . Information about mesh quality is given in
Tables 5.4 and 5.5, respectively. Fig. 5.16 displays approximate solutions uh computed
by our adaptive methods for the two examples.

Ω2
Ω1

Ω4Ω3

Fig. 5.13: Top: the domain Ω for Examples 4 (left) and 5 (right); bottom: initial
meshes for Examples 4 (left) and 5 (right).

6. Conclusions. In this paper, we presented an efficient adaptive mesh refining
algorithm for elliptic PDEs that combines a posteriori error estimation with centroidal
Voronoi/Delaunay tessellations of domains in two dimensions. The two ingredients
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Fig. 5.14: Repeatedly refined meshes at different levels generated by the CfCVDT-
based adaptive methods for Example 4; top: 94, 507, and 3096 nodes using the density
function ρH1 ; bottom: 94, 524, and 3373 nodes using the density function ρL2 .

Fig. 5.15: Repeatedly refined meshes at different levels generated by the CfCVDT-
based adaptive methods for Example 5. top: 70, 408, and 2474 nodes using the density
function ρH1 ; bottom: 70, 492, and 3020 nodes using the density function ρL2 .

are well linked together by the fact that the density function required by the second
one is defined and computed from the first one with standard interpolations. Various
numerical experiments were carried out and showed that our techniques always ob-
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Uniform refinement
` 0 1 2 3 4 5
nl 94 336 1261 4875 19159 75951
qmin 0.467 0.467 0.467 0.467 0.467 0.467
qavg 0.862 0.862 0.862 0.862 0.862 0.862
hmax/hmin 2.4 2.4 2.4 2.4 2.4 2.4

Adaptive refinement using ρH1

` 0 1 2 3 4 5
nl 94 146 280 507 921 1680
qmin 0.721 0.727 0.614 0.715 0.636 0.649
qavg 0.919 0.936 0.941 0.942 0.936 0.941
hmax/hmin 1.7 2.5 2.7 3.2 3.9 5.8
` 6 7 8 9
nl 3096 5770 10838 20506
qmin 0.538 0.556 0.567 0.529
qavg 0.940 0.941 0.941 0.945
hmax/hmin 9.4 10.9 18.8 30.7

Adaptive refinement using ρL2

` 0 1 2 3 4 5
nl 94 160 287 524 968 1797
qmin 0.721 0.661 0.628 0.655 0.663 0.620
qavg 0.918 0.935 0.939 0.942 0.938 0.941
hmax/hmin 1.6 2.1 2.2 2.7 3.0 3.8
` 6 7 8 9
nl 3373 6384 12168 23237
qmin 0.625 0.465 0.608 0.571
qavg 0.942 0.944 0.943 0.944
hmax/hmin 4.0 5.9 6.5 8.6

Table 5.4: Mesh quality by different refinement methods for Example 4.
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Fig. 5.16: Plots of the approximate solutions uh obtained using the CfCVDT-based
adaptive methods. Left: uh for Example 4 on the mesh with 3096 nodes generated
using ρH1 ; right: uh for Example 5 on the mesh with 2474 nodes generated using ρH1 .

tained optimal convergence rates for the piecewise linear finite elements with respect
to both H1 and L2 norms and worked pretty robust. This mesh adaptation strategy
can be easily generalized and applied to higher-order finite element approximations or
mixed finite element formulations. We also would like to remark that we are currently
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Uniform Refinement
` 0 1 2 3 4 5
nl 70 232 832 3136 12160 47872
qmin 0.828 0.828 0.828 0.828 0.828 0.828
qavg 0.845 0.845 0.845 0.845 0.845 0.845
hmax/hmin 1.3 1.3 1.3 1.3 1.3 1.3

Adaptive refinement using ρH1

` 0 1 2 3 4 5
nl 70 90 137 233 409 734
qmin 0.548 0.653 0.681 0.583 0.518 0.541
qavg 0.903 0.917 0.931 0.930 0.929 0.38
hmax/hmin 1.5 2.4 3.9 5.8 9.6 15.1
` 6 7 8 9 10 11
nl 1344 2474 4608 8685 16519 31555
qmin 0.524 0.540 0.493 0.531 0.472 0.419
qavg 0.935 0.939 0.942 0.943 0.944 0.942
hmax/hmin 19.9 33.6 86.4 170.0 288.1 381.9

Adaptive refinement using ρL2

` 0 1 2 3 4 5
nl 94 141 276 492 888 1625
qmin 0.747 0.720 0.697 0.690 0.534 0.612
qavg 0.921 0.931 0.936 0.935 0.935 0.943
hmax/hmin 1.38 2.2 4.8 4.5 6.8 6.6
` 6 7 8 9 10
nl 3020 5612 10477 19611 38354
qmin 0.635 0.502 0.567 0.595 0.582
qavg 0.941 0.944 0.945 0.945 0.944
hmax/hmin 9.1 11.9 13.9 15.5 25.2

Table 5.5: Mesh quality by different refinement methods for Example 5.

studying the extension of this methodology to problems in three dimensions and to
time dependent problems.

Acknowledgments. The authors would like to thank the referees for their valu-
able suggestions which improved the paper a lot.
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