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Abstract. We study the efficiency of greedy algorithms with regard to redundant dictionaries

in Hilbert spaces. We obtain upper estimates for the errors of the Pure Greedy Algorithm

and the Orthogonal Greedy Algorithm in terms of the best m-term approximations. We call
such estimates the Lebesgue type inequalities. We prove the Lebesgue type inequalities for

dictionaries with special structure. We assume that the dictionary has a property of mutual

incoherence (the coherence parameter of the dictionary is small). We develop a new technique

that, in particular, allowed us to get rid of an extra factor m
1/2 in the Lebesgue type inequality

for the Orthogonal Greedy Algorithm.

1. Introduction

A. Lebesgue proved the following inequality: for any 2π-periodic continuous function f
one has

(1.1) ‖f − Sn(f)‖∞ ≤ (4 +
4

π2
lnn)En(f)∞,

where Sn(f) is the nth partial sum of the Fourier series of f and En(f)∞ is the error of the
best approximation of f by the trigonometric polynomials of order n in the uniform norm
‖ · ‖∞. The inequality (1.1) relates the error of a particular method (Sn) of approximation
by the trigonometric polynomials of order n to the best possible error En(f)∞ of approx-
imation by the trigonometric polynomials of order n. By the Lebesgue type inequality we
mean an inequality that provides an upper estimate for the error of a particular method
of approximation of f by elements of a special form, say, form A, by the best possible
approximation of f by elements of the form A. In the case of approximation with regard
to bases (or minimal systems) the Lebesgue type inequalities are known both in linear and
in nonlinear settings (see surveys [KT], [T3]). It would be very interesting to prove the
Lebesgue type inequalities for redundant systems (dictionaries). However, there are sub-
stantial difficulties on this way. We begin our discussion with the Pure Greedy Algorithm,
(PGA). We say a set of functions D from a Hilbert space H is a dictionary if each g ∈ H
has norm one (‖g‖ := ‖g‖H = 1) and the closure of spanD coincides with H. We describe
the PGA for a general dictionary D. If f ∈ H, we let g(f) ∈ D be an element from D
which maximizes |〈f, g〉|. We will assume for simplicity that such a maximizer exists; if not
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suitable modifications are necessary (see Weak Greedy Algorithm in [T2]) in the algorithm
that follows. We define

G(f,D) := 〈f, g(f)〉g(f)

and
R(f,D) := f −G(f,D).

Pure Greedy Algorithm (PGA). We define f0 := R0(f,D) := f and G0(f,D) := 0.
Then, for each m ≥ 1, we inductively define

Gm(f,D) := Gm−1(f,D) +G(Rm−1(f,D),D)

fm := Rm(f,D) := f −Gm(f,D) = R(Rm−1(f,D),D).

It is natural to compare performance of the PGA with the best m-term approximation
with regard to a dictionary D. We let Σm(D) denote the collection of all functions (elements)
in H which can be expressed as a linear combination of at most m elements of D. Thus
each function s ∈ Σm(D) can be written in the form

s =
∑

g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,

where the cg are real or complex numbers. In some cases, it may be possible to write an
element from Σm(D) in this form in more than one way. The space Σm(D) is not linear:
the sum of two functions from Σm(D) is generally not in Σm(D).

For a function f ∈ H we define its best m-term approximation error

σm(f) := σm(f,D) := inf
s∈Σm(D)

‖f − s‖.

It seems like there is no hope to prove a nontrivial Lebesgue type inequality for the PGA
in the case of an arbitrary dictionary D. This pessimism is based on the following result
from [DT].

Let B := {hk}
∞
k=1 be an orthonormal basis in a Hilbert space H. Consider the following

element
g := Ah1 + Ah2 + aA

∑

k≥3

(k(k + 1))−1/2hk

with
A := (33/89)1/2 and a := (23/11)1/2.

Then, ‖g‖ = 1. We define the dictionary D = B ∪ {g}. It has been proved in [DT] that for
the function

f = h1 + h2

we have
‖f −Gm(f,D)‖ ≥ m−1/2, m ≥ 4.
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It is clear that σ2(f,D) = 0.
Therefore, we look for conditions on a dictionary D that allow us to prove the Lebesgue

type inequalities. The condition D = B is an orthonormal basis for H guarantees that

‖Rm(f,B)‖ = σm(f,B).

This is an ideal situation. The results that we will discuss here concern the case when we
replace an orthonormal basis B by a dictionary that is, in a certain sense, not far from an
orthonormal basis.

Let us begin with results that are close to known results from [T1]. We give a definition
of a λ-quasiorthogonal dictionary with depth D. In the case D = ∞ this definition coincides
with the definition of a λ-quasiorthogonal dictionary from [T1].

Definition 1. We say D is a λ-quasiorthogonal dictionary with depth D if for any n ∈ [1, D]
and any gi ∈ D, i = 1, . . . , n, there exists a collection ϕj ∈ D, j = 1, . . . , J, J ≤ N :=
λn, with the properties:

gi ∈ XJ := span(ϕ1, . . . , ϕJ ), i = 1, . . . , n,

and for any f ∈ XJ we have

max
1≤j≤J

|〈f, ϕj〉| ≥ N−1/2‖f‖.

Remark 1. It is clear that an orthonormal dictionary is a 1-quasiorthogonal dictionary.

The following theorem in the caseD = ∞ has been established in [T1]. The corresponding
proof from [T1] also works in the case D <∞ and gives the following result.

Theorem 1. Let a given dictionary D be λ-quasiorthogonal with depth D and let 0 < r <
(2λ)−1 be a real number. Then for any f such that

σm(f,D) ≤ m−r, m = 1, 2, . . . , D,

we have
‖fm‖ = ‖f −Gm(f,D)‖ ≤ C(r, λ)m−r, m ∈ [1, D/2].

In this paper we consider dictionaries that have become popular in signal processing.
Denote

M(D) := sup
g 6=h;g,h∈D

|〈g, h〉|

the coherence parameter of a dictionary D. For an orthonormal basis B we have M(B) = 0.
It is clear that the smaller the M(D) the more the D resembles an orthonormal basis.
However, we should note that in the case M(D) > 0 the D can be a redundant dictionary.
We show in Section 2 (see Proposition 2.1) that a dictionary with coherence M := M(D)
is a (1 + 4δ)-quasiorthogonal dictionary with depth δ/M , for any δ ∈ (0, 1/7]. Therefore,
Theorem 1 applies to M -coherent dictionaries. We will prove here a general Lebesgue type
inequality for the PGA with regard to a M -coherent dictionary.
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Theorem 2. Let a dictionary D have the mutual coherence M = M(D). Then for any
S ≤ 1/(2M) we have the following inequality

(1.2) ‖fS‖
2 ≤ 2‖f‖(σS(f,D) + 5MS‖f‖).

As a direct corollary of this theorem we obtain the following inequality for functions f
that allow a S-sparse representation in D (σS(f) = 0):

‖fS‖ ≤ (10MS)1/2‖f‖.

The inequality (1.2) is the first Lebesgue type inequality for the PGA in the case of inco-
herent dictionary D.

We now proceed to a discussion of the Orthogonal Greedy Algorithm (OGA). If H0 is
a finite dimensional subspace of H, we let PH0

be the orthogonal projector from H onto
H0. That is PH0

(f) is the best approximation to f from H0. As above we let g(f) ∈ D
be an element from D which maximizes |〈f, g〉|. We shall assume for simplicity that such a
maximizer exists; if not suitable modifications are necessary (see Weak Orthogonal Greedy
Algorithm in [T2]) in the algorithm that follows.

Orthogonal Greedy Algorithm (OGA). We define fo
0 := Ro

0(f) := Ro
0(f,D) := f and

Go
0(f) := Go

0(f,D) := 0. Then for each m ≥ 1, we inductively define

Hm :=Hm(f) := span{g(Ro
0(f)), . . . , g(Ro

m−1(f))}

Go
m(f) :=Go

m(f,D) := PHm
(f)

fo
m := Ro

m(f) :=Ro
m(f,D) := f −Go

m(f).

It is clear from the definition of the OGA that at each step we have

‖fo
m‖2 ≤ ‖fo

m−1‖
2 − |〈fo

m−1, g(f
o
m−1)〉|

2.

We note the use of this inequality instead of the equality

‖fm‖2 = ‖fm−1‖
2 − |〈fm−1, g(fm−1)〉|

2

that holds for the PGA allows us to prove an analogue of Theorem 1 for the OGA. The
proof repeats the corresponding proof from [T1]. We formulate this as a remark.

Remark 2. Theorem 1 holds for the OGA instead of the PGA (for ‖fo
m‖ instead of ‖fm‖).

The first general Lebesgue type inequality for the OGA for the M -coherent dictionary
has been obtained in [GMS]. They proved that

‖fo
m‖ ≤ 8m1/2σm(f) for m < 1/(32M).

The constants in this inequality were improved in [Tr] (see also [DET]):

(1.3) ‖fo
m‖ ≤ (1 + 6m)1/2σm(f) for m < 1/(3M).

We prove here an analogue of (1.2) for the OGA.
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Theorem 3. Let a dictionary D have the mutual coherence M = M(D). Then for any
S ≤ 1/(2M) we have the following inequalities

(1.4) ‖fo
S‖

2 ≤ 2‖fo
k‖(σS−k(fo

k ) + 3MS‖fo
k‖), 0 ≤ k ≤ S.

The inequality (1.4) can be used for improving (1.3) for small m. We prove here the
following inequality.

Theorem 4. Let a dictionary D have the mutual coherence M = M(D). Assume
m ≤ 0.05M−2/3. Then for l ≥ 1 satisfying 2l ≤ logm we have

‖fo
m(2l−1)‖ ≤ 6m2−l

σm(f).

Corollary 1. Let a dictionary D have the mutual coherence M = M(D). Assume
m ≤ 0.05M−2/3. Then we have

‖fo
[m log m]‖ ≤ 24σm(f).

2. Proofs

We will use the following simple known lemma (see, for instance, [DET]).

Lemma 2.1. Assume a dictionary D has mutual coherence M . Then we have for any
distinct gj ∈ D, j = 1, . . . , N and for any aj, j = 1, . . . , N the inequalities

(
N

∑

j=1

|aj|
2)(1 −M(N − 1)) ≤ ‖

N
∑

j=1

ajgj‖
2
2 ≤ (

N
∑

j=1

|aj|
2)(1 +M(N − 1)).

Proof. We have

‖

N
∑

j=1

ajgj‖
2
2 =

N
∑

j=1

|aj|
2 +

∑

i6=j

aiāj〈gi, gj〉.

Next,

|
∑

i6=j

aiāj〈gi, gj〉| ≤M
∑

i6=j

|aiaj| = M(
∑

i,j

|aiaj | −

N
∑

i=1

|ai|
2)

= M((

N
∑

i=1

|ai|)
2 −

N
∑

i=1

|ai|
2) ≤ (

N
∑

i=1

|ai|
2)M(N − 1). �

We now proceed to one more technical lemma (see [DET]).
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Lemma 2.2. Suppose that g1, . . . , gN are such that ‖gi‖ = 1, i = 1, . . . , N ; |〈gi, gj〉| ≤ M ,
1 ≤ i 6= j ≤ N . Let HN := span(g1, . . . , gN ). Then for any f we have

(

N
∑

i=1

|〈f, gi〉|
2
)1/2

≥
(

N
∑

i=1

|ci|
2
)1/2

(1 −M(N − 1)),

where {ci} are from

PHN
(f) =

N
∑

i=1

cigi.

Proof. We have 〈f − PHN
(f), gi〉 = 0, i = 1, . . . , N and therefore

|〈f, gi〉| = |〈PHN
(f), gi〉| = |

N
∑

j=1

cj〈gj, gi〉| ≥ |ci|(1 +M) −M
N

∑

j=1

|cj|.

Next, denoting σ := (
∑N

j=1 |cj |
2)1/2 and using the inequality

∑N
j=1 |cj | ≤ N1/2σ we get

(

N
∑

i=1

|〈f, gi〉|
2
)1/2

≥ σ(1 −M(N − 1)).

�

The following proposition is a direct corollary of Lemmas 2.1 and 2.2.

Proposition 2.1. Let δ ∈ (0, 1/7]. Then any dictionary with mutual coherence M is a
(1 + 4δ)-quasiorthogonal dictionary with depth δ/M .

Proof. Let n ≤ δ/M . Consider any distinct gi ∈ D, i = 1, . . . , n. Following the Definition 1
we specify J = n, ϕj = gj, j = 1, . . . , n. For any f =

∑n
j=1 ajgj we have by Lemma 2.2

max
1≤j≤n

|〈f, gj〉| ≥ n−1/2(
n

∑

j=1

|〈f, gj〉|
2)1/2 ≥ n−1/2(

n
∑

j=1

|aj |
2)1/2(1 −Mn).

Using the assumption n ≤ δ/M we get from here by Lemma 2.1

max
1≤j≤n

|〈f, gj〉| ≥ n−1/2 1 − δ

(1 + δ)1/2
‖f‖ ≥ (n(1 + 4δ))−1/2‖f‖.

This completes the proof of Proposition 2.1. �

The proofs of Theorems 2 and 3 are similar. We combine these theorems in one Theorem
2.1 and carry out the detailed proof only for the OGA.
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Theorem 2.1. Let a dictionary D have the mutual coherence M = M(D). Then for any
S ≤ 1/(2M) we have the following inequalities

(2.1) ‖fo
S‖

2 ≤ 2‖fo
k‖(σS−k(fo

k ) + 3MS‖fo
k‖), 0 ≤ k ≤ S,

‖fS‖
2 ≤ 2‖f‖(σS(f) + 5MS‖f‖).

Proof. Denote

(2.2) d(f) := sup
g∈D

|〈f, g〉|.

For simplicity we assume that the maximizer in (2.2) exists. Then

‖fm‖2 = ‖fm−1‖
2 − d(fm−1)

2 and ‖fo
m‖2 ≤ ‖fo

m−1‖
2 − d(fo

m−1)
2.

We carry out the proof for the OGA and later point out the necessary changes for the PGA.
Let k ∈ [0, S) be fixed. Assume fo

k 6= 0. Denote by g1, . . . , gS−k ⊂ D the elements (distinct)
that have the biggest inner products with fo

k :

|〈fo
k , g1〉| ≥ |〈fo

k , g2〉| ≥ · · · ≥ |〈fo
k , gS−k〉| ≥ sup

g∈D,g 6=gi,i=1,...,S−k
|〈fo

k , g〉|.

We define a natural number s in the following way. If 〈fo
k , gS−k〉 6= 0 then we set s := S−k,

otherwise s is chosen such that 〈fo
k , gs〉 6= 0 and 〈fo

k , gs+1〉 = 0. Let m ∈ [k, k + s) and

fo
m = f − PHm

(f) = fo
k − PHm

(fo
k ), Hm = span(ϕ1, . . . , ϕm), ϕj ∈ D.

We note that 〈fo
k , ϕl〉 = 0, l ∈ [1, k]. Therefore, each gi, i ∈ [1, s], is different from all ϕl,

l = 1, . . . , k. There exists an index i ∈ [1, m+ 1 − k] such that gi 6= ϕj , j = 1, . . . , m. For
this i we estimate

(2.3) 〈fo
m, gi〉 = 〈fo

k , gi〉 − 〈PHm
(fo

k ), gi〉.

Let

PHm
(fo

k ) =

m
∑

j=1

cjϕj .

Clearly, ‖PHm
(fo

k )‖ ≤ ‖fo
k‖. Then by Lemma 2.1

(

m
∑

j=1

|cj |
2)1/2 ≤ ‖fo

k‖(1 −M(m− 1))−1/2.

We continue

(2.4) |〈PHm
(fo

k ), gi〉| ≤M

m
∑

j=1

|cj| ≤Mm1/2(

m
∑

j=1

|cj |
2)1/2 ≤MS1/2‖fo

k‖(1 −MS)−1/2.
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Thus, we get from (2.3) and (2.4) that

d(fo
m) ≥ |〈fo

m, gi〉| ≥ |〈fo
k , gi〉| −MS1/2‖fo

k‖(1 −MS)−1/2, i ∈ [1, m+ 1 − k].

Therefore,

(2.5) (

k+s−1
∑

v=k

d(fo
v )2)1/2 ≥ (

s
∑

i=1

(|〈fo
k , gi〉| −MS1/2‖fo

k‖(1 −MS)−1/2)2)1/2

≥ (

s
∑

i=1

|〈fo
k , gi〉|

2)1/2 −MS‖fo
k‖(1 −MS)−1/2.

Next, let

σS−k(fo
k ) = ‖fo

k − PH(n)(f
o
k )‖, PH(n)(f

o
k ) =

n
∑

j=1

bjψj , n ≤ S − k,

where ψj ∈ D, j = 1, . . . , n, are distinct. Then

‖PH(n)(f
o
k )‖ ≥ ‖fo

k‖ − σS−k(fo
k )

and by Lemma 2.1

(2.6)
n

∑

j=1

|bj|
2 ≥ (‖fo

k‖ − σS−k(fo
k ))2(1 +MS)−1.

By Lemma 2.2

(2.7)
n

∑

j=1

|〈fo
k , ψj〉|

2 ≥ (
n

∑

j=1

|bj|
2)(1 −MS)2.

We get from (2.6) and (2.7)

s
∑

i=1

|〈fo
k , gi〉|

2 ≥

n
∑

j=1

|〈fo
k , ψj〉|

2 ≥ (‖fo
k‖ − σS−k(fo

k ))2(1 +MS)−1(1 −MS)2.

Finally, by (2.5) we get from here

(2.8) (
k+s−1
∑

v=k

d(fo
v )2)1/2 ≥ (‖fo

k‖ − σS−k(fo
k ))

1 −MS

(1 +MS)1/2
−MS‖fo

k‖(1 −MS)−1/2
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and

‖fo
S‖

2 ≤ ‖fo
k‖

2 −
k+s−1
∑

v=k

d(fo
v )2 ≤ 2‖fo

k‖(‖f
o
k‖ − (

k+s−1
∑

v=k

d(fo
v )2)1/2).

We now use (2.8) to estimate

(2.9) ‖fo
k‖ − (

k+s−1
∑

v=k

d(fo
v )2)1/2

≤ σS−k(fo
k ) + ‖fo

k‖
(

1 −
1 −MS

(1 +MS)1/2
+

MS

(1 −MS)1/2

)

.

Let MS ≤ 1/2. Denote x := MS. Using the inequalities

1 − x

(1 + x)1/2
≥ 1 −

3

2
x, x ≤ 1/2,

and

(1 − x)−1/2 ≤ 21/2 ≤
3

2
, x ≤ 1/2,

we continue (2.9)

≤ σS−k(fo
k ) + 3MS‖fo

k‖.

This completes the proof of Theorem 2.1 for the OGA. A few changes adapt the above
proof for k = 0 to the PGA setting. As above we write

fm = f −Gm(f); Gm(f) =
m

∑

j=1

bjψj , ψj ∈ D,

and estimate |〈fm, gi〉| with i ∈ [1, m+ 1] such that gi 6= ψj , j = 1, . . . , m. Using instead of
‖PHm

(f)‖ ≤ ‖f‖ the inequality

‖Gm(f)‖ ≤ ‖f‖ + ‖fm‖ ≤ 2‖f‖

we obtain the following analogue of (2.4)

(2.10) |〈Gm(f), gi〉| ≤ 2MS1/2‖f‖(1−MS)−1/2.

The rest of the proof is the same with (2.4) replaced by (2.10). �

We now show how one may combine the inequalities from Theorem 3 with the inequality
(1.3). We formulate Theorem 4 here for convenience.
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Theorem 2.2. Let a dictionary D have the mutual coherence M = M(D). Assume
m ≤ 0.05M−2/3. Then for l ≥ 1 satisfying 2l ≤ logm we have

(2.11) ‖fo
m(2l−1)‖ ≤ 6m2−l

σm(f).

Proof. We will prove (2.11) by induction on l. In the case l = 1 by (1.3) the inequality
(2.11) holds because 0.05M−2/3 ≤M−1/3. We now assume that (2.11) holds for l − 1 ≥ 1.
Using Theorem 3 with S = m(2l − 1), k = m(2l−1 − 1) we get

(2.12) ‖fo
m(2l−1)‖

2 ≤ 2‖fo
m(2l−1−1)‖(σm2l−1(fo

m(2l−1−1)) + 3Mm(2l − 1)‖fo
m(2l−1−1)‖).

The application of Theorem 3 is justified by the inequality

MS ≤M2lm ≤ 0.05M1/3(log(1/M))
2

3
≤ 1/2,

where we have used the estimate

(2.13) xa ln(1/x) ≤ (ae)−1, x ∈ [0, 1],

for a > 0. By the induction assumption we obtain from (2.12)

(2.14) ‖fo
m(2l−1)‖

2 ≤ 12m21−l

σm(f)(σm(f) + 3Mm2l6m21−l

σm(f)).

We will prove that under our assumptions

(2.15) 18Mm1+21−l

2l ≤ 2.

It is clear that (2.14) and (2.15) imply (2.11). So, it remains to establish (2.15). In the case
l = 2 we have

18Mm3/24 ≤ 72(0.05)3/2 ≤ 2.

Let l > 2 be such that 2l ≤ logm. Then we have

18Mm1+21−l

2l ≤ 0.9M (1−22−l)/3 logm ≤ 0.6M1/6 log(1/M).

We obtain from (2.13) that

x
1

6 ln(1/x) ≤ 6/e, x ∈ [0, 1].

Therefore,
M1/6 log(1/M) ≤ 6(log e)/e ≤ 9/e.

It remains to note that
0.6(9/e) ≤ 2.

This completes the proof of (2.15) and the proof of Theorem 4. �
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Corollary 2.1. Let a dictionary D have the mutual coherence M = M(D). Assume
m ≤ 0.05M−2/3. Then we have

‖fo
[m log m]‖ ≤ 24σm(f).

Proof. Let l be such that 2l ≤ logm < 2l+1. Then

m2−l

= 22−l log m ≤ 4,

and
6m2−l

≤ 24.

It remains to apply Theorem 2.2. �
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