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Anisotropic function spaces with applications

Shai Dekel and Pencho Petrushev

Abstract In this survey we review the recently developed theory of anisotropic
spaces and representations of functions based on anisotropic multilevel ellipsoid
covers (dilations) ofRn. We also exhibit the relations of the ellipsoid cover ap-
proach to earlier concepts of anisotropic structures as well as to the framework of
general spaces of homogeneous type. A number of open problems are presented and
discussed.

1 Introduction

Anisotropic phenomena appear in various contexts in mathematical analysis and its
applications. For instance, functions are frequently verysmooth on subdomains of
Rn separated by smooth curves or manofolds, where they have jump discontinuities.
This sort of singularities reduce significantly the classical smoothness of the func-
tions and create problems when attempting to find sparse representations of them.

One perhaps useful approach to resolving the singularitiesof functions along
smooth curves and manifolds (and more general singular behaviors) is the utiliza-
tion of the framework of anisotropic multiscale ellipsoid covers (dilations) ofRn

which may change rapidly from point to point at any level and in depth. The second
important element of this concept is to use anisotropic ellipsoid covers adaptively
by allowing them to adjust to the singularities of the function under question. Other
critical issues are related, in particular, to the anisotropic representation of functions
and definition and characterization of the respective anisotropic smoothness spaces.
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The purpose of this survey paper is to review the main concepts and problems
of this relatively new undertaking, documented so far in [11, 12, 14]. Although we
will have some answers to reveal to some of the important questions, there will be
plenty of open problems presented as well.

This theory has three main components with the first being thestructure of the
underlyingellipsoid coversof Rn. The main role here is played by discrete multi-
level ellipsoid covers ofRn of the form:Θ = ∪m∈ZΘm, where eachΘm consists of
ellipsoids of volume∼ 2−a0 j which coverRn and any ellipsoidsθ1,θ2 ∈ Θm with
θ1 ∩ θ2 6= /0 have similar shapes and orientations. In depth the behavior of the el-
lipsoids is similar, namely, ifθ1 ∈ Θm, θ2 ∈ Θm+1 andθ1∩θ2 6= /0, thenθ1 andθ2

are similar in shape and orientation. An important feature of the set of all ellipsoid
covers ofRn is that it is invariant under affine transforms. Another important issue
is that any ellipsoid cover ofRn generates a quasi-distance, which coupled with the
Lebesgue measure transformsRn into a homogeneous type space. The properties of
anisotropic covers are explored in [12]. A short description of them is given in§2,
where we also compare ellipsoid covers ofR2 with the so called multilavel strong
local regular (SLR) triangulations ofR2, introduced in [20].

The anisotropic elements (building blocks) introduced in [12] and the re-
lated representations of functions is the second componentof our theory. A se-
quence of bases{Φm}m∈Z is naturally associated to each discrete ellipsoid cover
Θ = ∪m∈ZΘm. Here eachΦm consists ofC∞ functions which are supported on the
ellipsoids inΘm, reproduce polynomials of degree< k and are locally linear inde-
pendent. The key property of these bases is that eachΦm is a stable basis inLp for
0 < p ≤ ∞. This allows to define local projectors into the spacesSm = span(Φm)
which preserve polynomials of degree< k. In turn, these maps induce a sequence of
two-level-split bases which provide representation of functions and are aligned with
the underlying anisotropic structure inR

n. As is shown in [12] these representations
also allow to characterize the anisotropic Besov spaces of positive smoothness. The
next step is to define smooth (global) duals to{Φm} and thereby to construct ker-
nels{Sm} which reproduce polynomials of a certain degree in both variables. This
enabled us to deploy the machinery of homogeneous spaces to the construction of
continuous and discrete anisotropic wavelet frames. All these constructions and re-
sults are presented in§3.

The third component of the theory we review here consists ofanisotropic
spacesassociated with anisotropic ellipsoid covers ofR

n. The anisotropic homo-
geneous (̇Bα

pq(Θ)) and inhomogeneous (Bα
pq(Θ)) Besov spaces (B-spaces) of pos-

itive smoothness are developed in [12] and briefly introduced in §4. In the same
section we compare them with the anisotropic B-spaces induced by multilevel SLR-
triangulations ofR2 and with classical Besov spaces. In§5 we show that, in analogy
to the classical case, certain B-spaces naturally occur in nonlinearN-term approxi-
mation from the two-level-split bases. In§6 we advance the idea of using adaptively
anisotropic B-space for measuring the smoothness of the functions, which is closely
related to the problem for sparse representation of functions. The development of
anisotropic Triebel-Lizorkin of an arbitrary smoothness is the grand open prob-
lem in this theory. The key is to construct anisotropic frames with well localized
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elements and prescribed vanishing moments which are faithfully aligned with the
underlying anisotropic ellipsoid cover.

Candès and Donoho (e.g. [5, 6]) have developed the so calledcurvlets, which
provide an alternative scheme for resolving singularitiesof functions along smooth
curves inR2. The advantage of curvlets over our approach is that the curvlets form a
frame, while our scheme is adaptive, and hence curvlets are easier to implement. On
the other hand, the curvlet frame is overly redundant. More precisely at every loca-
tion and scale there are numerous directional elements withvarious orientations (the
number of orientations increases with the scale). Curvletsare purelyL2-creatures
which rely on fine cancelations and are unusable for decomposition of functions in
Lp, p 6= 2.

Yet another approach to resolving singularities of functions along smooth curves
is developed in [1, 15] and is based on the so calledAdaptive Geometric Wavelets.
This method is closely related to the schemes employing ellipsoid covers and nested
triangulations considered here; it proved to be very effective in image compression.

In the final Section 7 the two-level-split bases and the machinery of Besov spaces
are applied in a regular set-up to the development of meshless multilevel Schwarz
preconditioners for elliptic boundary value problems. Thedetails of this develop-
ment are given in [11], which was the starting point of this work.

Throughout we will use|E| to denote the Lebesgue measure ofE ⊂ Rn; we will
denote byc, c1, c2, etc. positive constants which may vary at every appearance. The
equivalencea∼ b meansc1a≤ b≤ c2a.

2 Anisotropic multiscale structures onRn

In this article we are mainly concerned with anisotropic structures onRn induced by
anisotropic ellipsoid covers (dilations) ofRn and the related function spaces . For
comparison we will also briefly review the anisotropic multilevel nested triangula-
tions ofR2.

2.1 Anisotropic multilevel ellipsoid covers (dilations) of Rn

We denote byB(x, r) the Euclidean ball inRn of radiusr centered atx. The image of
the unit ballB∗ := B(0,1) in Rn via an affine transform will be called anellipsoid.

Definition 1. We call
Θ =

⋃

m∈Z

Θm

a discrete multilevel ellipsoid coverof Rn if the following conditions are obeyed,
wherea0, . . . ,a8, andN1 are positive constants:

(a) Every levelΘm (m∈ Z) consists of ellipsoidsθ such that
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a12−a0m ≤ |θ | ≤ a22−a0m (1)

andΘm is a cover ofRn, i.e.Rn =
⋃

θ∈Θm
θ .

(b) Forθ ∈Θ let Aθ be an affine transform of the form

Aθ (x) = Mθ x+vθ , Mθ ∈ R
n×n,

such thatθ = Aθ (B∗) andvθ := A(0) is the center ofθ . We postulate that for any
θ ∈Θm andθ ′ ∈Θm+ν (m∈ Z,ν ≥ 0) with θ ∩θ ′ 6= /0, we have

a32−a4ν ≤ 1/‖M−1
θ ′ Mθ‖ℓ2→ℓ2 ≤ ‖M−1

θ Mθ ′‖ℓ2→ℓ2 ≤ a52−a6ν . (2)

(c) Each ellipsoidθ ∈Θm can be intersected by at mostN1 ellipsoids fromΘm.
(d) For everyx∈ Rn andm∈ Z there existsθ ∈Θm such thatx∈ θ ⋄, whereθ ⋄ is the

dilated version ofθ by a factor ofa7 < 1, i.e.θ ⋄ = Aθ (B(0,a7)).
(e) If θ ∩η 6= /0 with θ ∈Θm andη ∈Θm∪Θm+1, then|θ ∩η | > a8|η |.

We will denote byp(Θ) := {a0,a1, . . . ,a8,N1} the set of all parameters in the above
definition.

Several clarifying remarks are in order.

1. It is crucial that the set of all discrete ellipsoid coversof Rn is invariant under
affine transforms. More precisely, the imagesA(θ ) of all ellipsoidsθ ∈ Θ of a
given coverΘ of Rn via an affine transformA of the formA(x) = Mx+ v with
|detM| = 1 form an ellipsoid cover ofRn with the same parameters asΘ .

2. Condition (b) above indicates that ifθ ∩θ ′ 6= /0, then the ellipsoidsθ andθ ′ are
similar in shape and orientation when they are from close levels. In particular, if
M := M−1

θ Mθ ′ andM = UDV is the singular value decomposition ofM, where
U andV are orthogonal matrices, andD = diag(σ1,σ2, . . . ,σn) is diagonal with
σ1 ≥ σ2 ≥ . . . ≥ σn > 0, then

‖M‖ℓ2→ℓ2 = σ1 and ‖M−1
θ ′ Mθ‖ℓ2→ℓ2 = ‖M−1‖ℓ2→ℓ2 = 1/σn.

Therefore, condition (b) is equivalently expressed as

a32−a4ν ≤ σn ≤ . . . ≤ σ1 ≤ a52−a6ν . (3)

This condition has a clear geometric interpretation: The affine transformA−1
θ ,

which maps the ellipsoidθ onto the unit ballB∗, maps the ellipsoidθ ′ onto an
ellipsoid with semi-axesσ1,σ2, . . . ,σn satisfying (3).

3. Condition (e) may seem restrictive, but this is not the case. As is shown in [12]
if Θ is a discrete ellipsoid cover satisfying conditions(a)− (d) above, then there
exists a discrete ellipsoid cover̃Θ of Rn which obeys conditions(a)− (e) (with
possibly different constantsa1 anda7) obtained by dilating every ellipsoidθ ∈Θ
by a factorrθ satisfying(a7 +1)/2≤ rθ ≤ 1.
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Continuous and semi-continuous ellipsoid covers.Discrete ellipsoid covers ofRn

are easy to derive from semi-continuous or continuous covers, which are in general
easier to construct.

In the case of asemi-continuous ellipsoid coverΘ = ∪m∈ZΘm, an ellipsoid
θ (v,m) ∈Θm is associated to everyv∈ Rn andm∈ Z such that

a12−a0m ≤ |θ (v,m)| ≤ a22−a0m,

which replaces (1) and the respective affine transforms satisfy a condition similar to
(2); conditions (c)-(e) are void.

In the case of acontinuous ellipsoid coverΘ := ∪t∈RΘt , an ellipsoidθ (v,t) ∈Θt

is associated to everyv∈ Rn andt ∈ R such that

a12−a0t ≤ |θ (v,t)| ≤ a22−a0t ,

i.e. the scale is continuous as well. For more detail and the exact definitions of
ellipsoid covers, see§2.2 in [12]

Examples.(i) The one parameter family of diagonal dilation matrices

Dt = diag(2−tb1,2−tb2, . . . ,2−tbn), b j > 0, j = 1, . . . ,n,

apparently induces a continuous ellipsoid cover ofR
n.

(ii) SupposeA is an n× n real matrix with eigenvaluesλ satisfying |λ | > 1.
Then it is easy to see that the affine transformsAv,m(x) := A−mx+v, v∈ Rn, m∈ Z,
define a semi-continuous ellipsoid cover (dilations) ofRn. This particular kind of
dilations are used in [2, 3, 4] for the development of anisotropic Hardy, Besov, and
Triebel-Lizorkin spaces.

(iii) The continuous covers used in Section 6 (see also§7 in [12]) are nontrivial
examples of anisotropic ellipsoid covers ofR2, where the ellipsoids change rapidly
from point to point and in depth.

The point is that, on the one hand, continuous and semi-continuous covers are
easier to construct and, on the other, given a semi-continuous or continuous cover
one can construct a discrete ellipsoid cover with essentially the same (equivalent)
metric (see [12]).

Quasi-distance.A quasi-distance is naturally associated with any discrete, semi-
continuous or continuous ellipsoid covers ofRn. Recall that aquasi-distanceon a
setX 6= /0 is a mapρ : X×X → [0,∞) satisfying the conditions:

(a) ρ(x,y) = 0⇐⇒ x = y,
(b) ρ(y,x) = ρ(x,y),
(c) ρ(x,z) ≤ κ(ρ(x,y)+ ρ(y,z)).

Hereκ ≥ 1 is a constant.

Definition 2. Assuming thatΘ is a continuous, semi-continuous or discrete ellip-
soid cover ofRn, we defineρ : Rn×Rn → [0,∞) by
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ρ(x,y) := inf{|θ | : θ ∈Θ andx,y∈ θ}. (4)

Proposition 1. [12]For any ellipsoid coverΘ of Rn the mapρ : Rn×Rn → [0,∞)
defined above is a quasi-distance onR

n.

Spaces of homogeneous typewere first introduced in [8] (see also [9, 16]) as a
means for extending the Calderón-Zygmund theory of singular integral operators to
more general settings. LetX be a topological space endowed with a Borel measureµ
and a quasi-distanceρ(·, ·). Assume that the ballsBρ(x, r) := {y∈ X : ρ(x,y) < r},
x∈ X, r > 0, form a basis for the topology inX. The space(X,ρ ,µ) is said to be of
homogenous typeif there exists a constantA > 0 such that for allx∈ X andr > 0,

µ(Bρ(x,2r)) ≤ Aµ(Bρ(x, r)). (5)

If (5) holds thenµ is said to be adoubling measure[25, Chapter 1, 1.1]. A space of
homogeneous type is said to benormal, if uniformly µ(B(x, r)) ∼ r.

SupposeΘ is an ellipsoid cover ofRn and letρ(·, ·) be the associated quasi-
distance, defined in (4). DenoteBρ(x, r) := {y∈ Rn : ρ(x,y) < r} for x∈ Rn, r > 0.
As is shown in [12] there exist ellipsoidsθ ′,θ ′′ ∈ Θ such thatθ ′ ⊂ Bρ(x, r) ⊂ θ ′′

and|θ ′| ∼ |Bρ(x, r)| ∼ |θ ′′| ∼ r. Consequently,Rn equipped with the distanceρ(·, ·)
and the Lebesgue measure, i.e.(Rn,ρ ,dx) is a homogeneous type space. Therefore,
the machinery of spaces of homogeneous type can be employed to our purposes
here.

2.2 Comparison of ellipsoid covers with nested triangulations in R
2

An alternative way of introducing anisotropic structures in R2 is through multilevel
nested triangulations. The strong locally regular (SLR) triangulations, introduced in
[20], provide a structure compatible with ellipsoid covers. We next recall briefly the
definition of SLR-triangulations.

We callT =
⋃

m∈Z Tm an SLR-triangulation ofR2 with levels{Tm} if the fol-
lowing conditions are obeyed:

(a) Every levelTm consists of closed triangles with disjoint interiors whichcover
R2 and there are no hanging vertices.

(b) Tm+1 is a refinement ofTm (m∈ Z) and each triangle△∈ Tm is subdivided
and has uniformly bounded number of children inTm+1.

(c) For each△∈ T let A△ be an affine transform of the form

A△(x) = M△x+v△, M△ ∈ R
n×n,

such that△ = A△(△∗), where△∗ is an equilateral reference triangle. Now the
condition is that for any△ ∈ Tm and△′ ∈ Tm∪Tm+1 such that△′ ∩△ 6= /0 one
has

c1 ≤ 1/‖M−1
△′ M△‖ℓ2→ℓ2 ≤ ‖M−1

△ M△′‖ℓ2→ℓ2 ≤ c2. (6)
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In [20] condition (c) is formulated in an equivalent form viaa minimum angle con-
dition.

Note that the multilevel SLR-triangulations provide a means for constructing
discrete ellipsoid covers ofR2. Given an SLR-triangulationT one considers for
each triangle△∈ T the minimum area circumscribed ellipse. Then one dilates the
resulting ellipses by a sufficiently large factor> 1 to obtain a discrete ellipse cover
of R2.

The main advantage of ellipse covers over SLR-triangulations is that the latter are
nested which makes them less flexible and harder to construct. On the other hand, as
shown in [13] in presence of an SLR-triangulation it is easier to construct building
blocks consisting of piecewise polynomials. Also the respective generalized Besov
spaces and nonlinear approximation theory are easier to develop. We will be more
specific about these issues later on.

3 Building blocks

The construction of simple elements (building blocks) which allow to represent the
functions and characterize the norms of the spaces of interest is imperative for our
theory. Here we first define a sequence of of bases consisting of C∞ functions sup-
ported on the ellipsoids of the underlying anisotropic ellipsoid cover. Secondly, we
construct compactly supported duals which generate local projectrors and two-level-
split bases. Thirdly, we develop smooth global duals which provide polynomial re-
producing kernels that we utilize to the construction of anisotropic frames.

3.1 Construction of a multilevel system of bases

Given a discrete ellipsoid coverΘ of Rn, we first construct for each levelm∈ Z

a stable basisΦm whose elements are smooth functions supported on the ellipsoids
of Θm. The procedure begins by firstcoloring the ellipsoids inΘ . It is easy to see
thatΘ can be split into no more than 2N1 disjoint subsets (colors){Θ ℓ}2N1

ℓ=1 so that
for anym∈ Z neither two ellipsoidsθ ′,θ ′′ ∈Θm∪Θm+1 with θ ′∩θ ′′ 6= /0 are of the
same color.

Our second step is to construct locally independent piecewise polynomial bumps.
For fixed positive integersM andk (M ≥ k) we define

φ̃ℓ(x) := (1−|x|2)M+ℓk
+ , ℓ = 1,2, . . . ,2N1.

Notice thatφ̃ℓ, ℓ = 1, . . . ,2N1, being of different degrees are linearly independent on
any ball contained inB∗ = B(0,1).

The next step is to smooth out eachφ̃ℓ by convolving it with a compactly sup-
portedC∞ function. Namely, leth∈ C∞(Rn) be such that supph = B∗, h ≥ 0, and
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∫
Rn h = 1. Denotehδ (x) := δ−nh(δ−1x). Then for 0< δ < 1 (we chooseδ suffi-

ciently small) the bump
φ∗

ℓ := φ̃ℓ ∗hδ

belongs toC∞, φ∗
ℓ is a polynomial of degree exactly 2(M + ℓk) on B(0,1− δ ) and

suppφ∗
ℓ = B(0,1+ δ ). Now we defineφℓ(x) := φ∗

ℓ ((1+ δ )x).
For anyθ ∈Θ we letAθ denote the affine transform from Definition 1 such that

Aθ (B∗) = θ and set

φθ := φℓ ◦A−1
θ for θ ∈Θ ℓ, 1≤ ℓ ≤ 2N1.

We introduce anmth level partition of unity by defining for eachθ ∈Θm

ϕθ :=
φθ

∑θ ′∈Θm φθ ′
. (7)

By property (d) of ellipsoids covers it follows that∑θ∈Θm ϕθ (x) = 1 for x∈ R
n.

Let
{Pβ : |β | ≤ k−1}, where degPβ = |β |, (8)

be an orthonormal basis inL2(B∗) for the spacePk of all polynomials inn variables
of total degreek−1. For eachθ ∈Θ and|β | < k we define

Pθ ,β := |θ |−1/2Pβ ◦A−1
θ and gθ ,β := ϕθ Pθ ,β . (9)

To simplify our notation, we denote

Λm := {λ := (θ ,β ) : θ ∈Θm, |β | < k} and gλ := gθ ,β , λ = (θ ,β ). (10)

Also, for λ = (θ ,β ) we will denote byθλ andβλ the components ofλ .
Now we define themth level basisΦm by

Φm := {gλ : λ ∈ Λm} and set Sm := span(Φm), (11)

where “span” means “closed span”.
By the definition of{gλ} it readily follows thatPk ⊂ Sm. More importantly,Φm

is locally linearly independent andLp-stable, which will be recorded in the next
theorem.

Theorem 1.Any function f∈ Sm has a unique representation

f (x) = ∑
λ∈Λm

〈 f , g̃λ 〉gλ (x), (12)

where for every x∈ Rn the sum is finite and the functions{g̃λ} have the follow-
ing properties:supp(g̃λ ) ⊂ θλ , ‖g̃θ ,β‖p ∼ |θ |1/p−1/2 and the biorthogonal rela-
tion 〈gλ ′ , g̃λ 〉 = δλ ′,λ holds. Moreover, for any f∈ Sm∩Lp, 0 < p ≤ ∞, such that
f = ∑λ∈Λm cλ gλ we have
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‖ f‖p ∼
(

∑
λ∈Λm

‖cλ gλ‖
p
p

)1/p
(13)

with the obvious modification when p= ∞.

The proof of this theorem is based on the local linear independence of the functions
{gλ : λ ∈ Λm} and uses a compactness argument, see [12] for the details.

We will denoteΦ̃m := {g̃λ : λ ∈ Λm}.

3.2 Compactly supported duals and local projectors

Our next step is to introduce simple operators which mapLloc
p into Sm and locally

preserve the polynomialsP∈Pk with Pk being the set of all polynomials of degree
< k. These operators will give us a vehicle for developing a decomposition scheme
which allows to characterize the anisotropic Besov norms induced by ellipsoid cov-
ers ofRn.

Using the bases{Φm} and their duals{Φ̃m} from Theorem 1 we introduce pro-
jectorsQm mappingLloc

p (1≤ p≤ ∞) onto the spacesSm defined by

Qm f :=
∫

Rn
Qm(x,y) f (y)dy with Qm(x,y) := ∑

λ∈Λm

g̃λ (y)gλ (x). (14)

Evidently,Qm is a linear operator which mapsLloc
p into Sm and preserves locally all

polynomials fromPk. To be more specific, setting

θ ∗ := ∪{θ ′ ∈Θm : θ ∩θ ′ 6= /0} for θ ∈Θm, (15)

it is easy to see that iff |θ∗ = P|θ∗ with P∈ Pk, thenQm f |θ = P|θ .
Another simple operator with similar properties is given in[12].
Evidently, the operators{Qm} from above are no longer usable, when working in

Lp with p < 1. In this case, for a given ellipsoidθ ∈Θ , we letTθ ,p : Lp(θ )→ Pk|θ
be a projector such that

‖ f −Tθ ,p f‖Lp(θ) ≤ cEk( f ,θ )p, f ∈ Lp(θ ), (16)

whereEk( f ,θ )p := infP∈Pk ‖ f −P‖Lp(θ). ThusTθ ,p f is simply a near best approx-
imation to f from Pk in Lp(θ ), and henceTθ ,p can be realized as a linear projector
ontoPk|θ if p ≥ 1 by using, say, the Averaged Taylor polynomials, see e.g. [13].
Of course,Tθ ,p is a nonlinear operator ifp < 1.

We now define the operatorTm,p : Lloc
p → Sm by

Tm,p f := ∑
θ∈Θm

ϕθ Tθ ,p f . (17)
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Evidently, the operatorTm,p (0 < p≤ ∞) is a local projector ontoPk (nonlinear if
p < 1) just like Qm. SinceTm,p f ∈ Sm, it can be represented in terms of the basis
functionsgλ as

Tm,p f = ∑
θ∈Θm

∑
|β |<k

bθ ,β ( f )gθ ,β = ∑
λ∈Λm

bλ ( f )gλ , (18)

wherebλ ( f ) := 〈Tm,p f , g̃λ 〉 depends nonlinearly onf if p < 1.
In summary, ifT̂m := Qm or T̂m := Tm,p, then

T̂m f = ∑
λ∈Λm

bλ ( f )gλ , where bλ ( f ) =

{
〈 f , g̃λ 〉 if T̂m = Qm,
〈Tm,p f , g̃λ 〉 if T̂m = Tm,p.

(19)

We now recall briefly the definition of local and global moduliof smoothness
that are standard means for describing the quality of approximation. The forward
differences of a functionf on a setE ⊂ Rn in directionh∈ Rn are defined by

∆k
h f (x) :=

k

∑
j=0

(−1)k+ j
(

k
j

)
f (x+ jh) if [x,x+kh]⊂ E

and∆k
h f (x) := 0 otherwise. Then thekth Lp-moduli of smoothness onE andRn are

defined by

ωk( f ,E)p := sup
h∈Rn

‖∆k
h f‖Lp(E) and ωk( f ,t)p := sup

|h|≤t
‖∆k

h f‖p, t > 0. (20)

We next give the most important properties of the operatorsQm andTm,p from
above.

Proposition 2. SupposeT̂m is any of the operators Qm or Tm,p if 1 ≤ p ≤ ∞, and
T̂m := Tm,p if 0 < p < 1. Then for f∈ Lloc

p andθ ∈Θm (m∈ Z)

‖ f − T̂m f‖Lp(θ) ≤ c ∑
θ ′∈Θm:θ ′∩θ 6= /0

ωk( f ,θ ′)p,

and‖ f − T̂m f‖Lp(K) → 0 as m→ ∞ for any compact K⊂ Rn.

Furthermore, if f∈ Lp (L∞ := C0), then‖ f − T̂m f‖p → 0 as m→ ∞.

3.3 Two-level-split bases

Assume thatTm (m∈ Z) is one of the operatorsQm or Tm,p if p≥ 1, andTm := Tm,p

if p < 1, defined in§3.2. These operators and the bases{Φm}m∈Z from (11) will
be used to define two-level-split bases which will play an important role in what
follows.
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We will make use of the following representation of consecutive level polynomial
bases, defined in (9):

Pθ ,α =: ∑
|β |<k

Cθ ,η
α ,β Pη,β , θ ∈Θm, η ∈Θm+1. (21)

Then since∑η∈Θm+1
ϕη = 1, we have

Pθ ,α = ∑
η∈Θm+1:θ∩η 6= /0

∑
|β |<k

Cθ ,η
α ,β Pη,β ϕη on θ .

This yields

Tm+1 f −Tm f = ∑
η∈Θm+1

∑
|β |<k

bη,β ( f )Pη,β ϕη − ∑
θ∈Θm

∑
|α |<k

bθ ,α( f )Pθ ,α ϕθ (22)

= ∑
θ∈Θm

ϕθ ∑
η∈Θm+1

∑
|β |<k

bη,β ( f )Pη,β ϕη

− ∑
θ∈Θm

∑
|α |<k

bθ ,α( f ) ∑
θ∩η 6= /0

∑
|β |<k

mθ ,η
α ,β Pη,β ϕθ ϕη

= ∑
η∈Θm+1

∑
θ∈Θm:θ∩η 6= /0

∑
|β |<k

{
bη,β ( f )− ∑

|α |<k

mθ ,η
α ,β bθ ,α( f )

}
Pη,β ϕηϕθ ,

wherebλ ( f ) are given by (19) and depends on the choice ofTm. Thus, setting

Vm := {ν = (η ,θ ,β ) : η ∈Θm+1,θ ∈Θm,θ ∩η 6= 0, |β | < k}, m∈ Z, (23)

the building blocks in (22) have the form

Fν := Pη,β ϕη ϕθ , ν = (η ,θ ,β ) ∈ Vm, (24)

wherePη,β are defined in (9) andϕη , ϕθ are from (7). We define

Fm := {Fν : ν ∈ Vm} and Wm := span(Fm), m∈ Z. (25)

Note thatFν ∈C∞, suppFν = θ ∩η if ν = (η ,θ ,β ) and‖Fν‖2 ∼ 1.
One uses the argument of the proof of Theorem 1 (see [12]) to establish the

stability of the two-level-split bases:

Theorem 2.Any f ∈Wm has a unique representation

f = ∑
ν∈Vm

cν( f )Fν , (26)

where the dual functionals cν(·) are of the following form: For eachν ∈ Vm, ν =
(η ,θ ,β ), there is an ellipsoid Bν ⊂ θ ∩η with |Bν | ∼ |η | and Bν = Aη(B∗

ν) for some
ball B∗

ν ⊂ B∗ such that cν ( f ) = 〈 f , F̃ν 〉, wheresuppF̃ν ⊂ Bν , ‖F̃ν‖p ∼ |η |1/p−1/2.
Moreover, if f∈Wm and f = ∑ν∈Vm aνFν , then
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‖ f‖p ∼
(

∑
ν∈Vm

‖aνFν‖
p
p

)1/p
, 0 < p≤ ∞, (27)

with the obvious modification when p= ∞.

Using the results from§3.2 one easily derives multilevel decompositions of func-
tions using the two-level-split bases from above.

Theorem 3.For any f ∈ Lloc
p (Rn), 0 < p≤ ∞,

f = T0 f + ∑
m≥0

(Tm+1 f −Tm f ) = ∑
m≥−1

∑
ν∈Vm

dν( f )Fν , (28)

where the convergence is in Lp(K) for all compacta K⊂ Rn. Here for m≥ 0

dν( f ) = bη,β ( f )− ∑
|α |<k

Cθ ,η
α ,β bθ ,β ( f ), ν := (η ,θ ,β ) (29)

with Cθ ,η
α ,β from (21), whileV−1 := Λ0, Fλ := gλ and dλ ( f ) := bλ ( f ) if λ ∈ V−1.

Moreover, if f∈ Lp (L∞ := C0), then(28) as well as

f = ∑
m∈Z

(Tm+1−Tm) f (30)

hold in Lp.

3.4 Global duals and polynomial reproducing kernels

A substantial drawback of the operatorsQm andTm,p considered in§§3.2-3.3 is that
their transposed operators do not reproduce polynomials. For instance, it is easy
to see that for the operatorQm from (14) we haveQmP(x) =

∫
Rn Qm(x,y)P(y)dy

∀P∈Pk, however,QmP(y)=
∫
Rn Qm(x,y)P(x)dx is no longer true forP∈Pk. Con-

sequently, these operators do not fit in the general framework of approximation to
the identity operators in homogeneous spaces, which allowsto construct anisotropic
wavelet frames (see e.g. [16]). This problem is fixed in [14] by introducing smooth
duals to the bases{gλ}λ∈Λm, which we describe next.

As in [14] to simplify our set-up we will assume for the rest ofthis section that
in the definition of ellipsoid covers ofRn we havea0 = 0 (see Definition 1). Also
to make our presentation more compatible with [14] we will slightly change our
notation assuming that all operators of interest reproducepolynomials of degree< r
instead of degree< k.

The next step is to introduce an appropriate generalizationto higher orders of the
approximation to the identitydefinition given in [16]. To this end we first have to
establish some convenient notation. LetK(x,y) be a smooth kernel. Forx,y ∈ Rn

the Taylor representation ofK(x,y) centered atx with y fixed can be written in the
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form
K(z,y) = Tr−1,x(K(·,y))(z)+Rr,x(K(·,y))(z), z∈ R

n, (31)

whereTr−1 is the Taylor polynomial of degreer −1 andRr,x is therth order Taylor
remainder.

In the particular case of spaces of homogeneous type generated by an anisotropic
ellipsoid cover ofRn with a qusi-distanceρ(·, ·) we will need the notation

µ(x,y,d) :=

{
µ0 if ρ(x,y) < d,
µ1 if ρ(x,y) ≥ d.

(32)

Definition 3. Let (Rn,ρ ,dx) be a normal space of homogeneous type. A sequence
of kernel operators{Sm}m∈Z, formally defined bySm( f )(x) :=

∫
Rn Sm(x,y) f (y)dy,

is anapproximation to the identity of order(µ ,δ , r), whereµ = (µ0,µ1), 0< µ0 ≤
µ1 ≤ 1, δ > 0, r ∈ N, with respect toρ(·, ·), if for some constantc> 0 the following
conditions are satisfied:

(i) |Sm(x,y)| ≤ c 2−mδ

(2−m+ρ(x,y))1+δ , ∀x,y∈ Rn.

(ii) For 1≤ k≤ r and allx,y,z∈ Rn,

|Rk,x(Sm(·,y))(z)| ≤ cρ(x,z)µ(x,z,2−m)k

×

(
2−mδ

(2−m+ ρ(x,y))1+δ+µ(x,z,2−m)k
+

2−mδ

(2−m+ ρ(y,z))1+δ+µ(x,z,2−m)k

)
,

|Rk,y(Sm(x, ·))(z)| ≤ cρ(y,z)µ(y,z,2−m)k

×

(
2−mδ

(2−m+ ρ(x,y))1+δ+µ(y,z,2−m)k
+

2−mδ

(2−m+ ρ(x,z))1+δ+µ(y,z,2−m)k

)
,

(iii) For 1 ≤ k≤ r and allx,x′,y,y′ ∈ Rn

|Rk,y(Rk,x(Sm(·, ·))(x′))(y′)|, |Rk,x(Rk,y(Sm(·, ·))(y′))(x′)|

≤ cρ(x,x′)µ(x,x′,2−m)kρ(y,y′)µ(y,y′,2−m)k

×

(
2−mδ

(2−m+ ρ(x,y))1+δ+µ(x,x′,2−m)k+µ(y,y′,2−m)k

+
2−mδ

(2−m+ ρ(x,y′))1+δ+µ(x,x′,2−m)k+µ(y,y′,2−m)k

+
2−mδ

(2−m+ ρ(x′,y))1+δ+µ(x,x′ ,2−m)k+µ(y,y′,2−m)k

+
2−mδ

(2−m+ ρ(x′,y′))1+δ+µ(x,x′,2−m)k+µ(y,y′,2−m)k

)
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[To clarify our notation, denotegm(x,x′,y) := Rk,x (Sm(·,y)) (x′), then for fixed
x,x′ ∈ Rn, Rk,y

(
Rk,x (Sm(·, ·)) (x′)

)
(y′) := Rk,y (gm(x,x′, ·)) (y′)].

(iv) P(x) =
∫
Rn Sm(x,y)P(y)dy and P(y) =

∫
Rn Sm(x,y)P(x)dx for all P∈ Pr .

Note that the definition of an approximation of the identity given in [16] corre-
sponds to the case 0< δ < r = 1.

To construct well localized kernelsSm(x,y) which reproduce polynomials we
need to construct an appropriate dual basis toΦm. Let Gm be the Gram matrix

Gm :=
[
Aλ ,λ ′

]
λ ,λ ′∈Λm

, Aλ ,λ ′ := 〈gλ ,gλ ′〉 :=
∫

Rn
gλ gλ ′ .

By Theorem 1, for any sequencet = (tλ )λ∈Λm in l2(Λm) we have

c1‖t‖l2 ≤ 〈Gmt,t〉 =
∥∥∥ ∑

λ∈Λm

tλ gλ

∥∥∥
2
≤ c2 ≤ ‖t‖l2,

where the constantsc1,c2 > 0 are independent ont andm. Therefore, the operator
Gm : l2 → l2 with matrixGm is symmetric, positive andc1I ≤ Gm≤ c2I . Hence,G−1

m
exists andc−1

2 I ≤ G−1
m ≤ c−1

1 I . Denote byG−1
m =:

[
Bλ ,λ ′

]
λ ,λ ′∈Λm

the matrix of the

operatorG−1
m .

The next lemma shows that the entries ofG−1
m decay away from its main diagonal

at sub-exponential rate.

Lemma 1. [14] There exist constants0 < q∗,γ < 1 and c> 0 depending only on
p(Θ) and r such that for any entry Bλ ,λ ′ of G−1

m (λ ,λ ′ ∈ Λm) and points x∈ θλ ,
y∈ θλ ′

|Bλ ,λ ′| ≤ cq(2mρ(x,y))γ
∗ . (33)

Definition of smooth duals.We define new duals by

˜̃gλ := ∑
λ ′∈Λm

Bλ ,λ ′gλ ′, λ ∈ Λm, (34)

and set ˜̃Φm := { ˜̃gλ}λ∈Λm. For λ ∈ Λm, let x0 be any point inθλ . Combining (33)
and (34) it follows that

| ˜̃gλ (x)| ≤ c2−m/2 ∑
x∈θλ ′

|Bλ ,λ ′| ≤ c2−m/2q(2mρ(x,x0))γ
∗ . (35)

Therefore, each̃̃gλ has sub-exponential decay with respect to the quasi-distance
induced byΘ . Also, it is easy to verify the biorthogonality relation, namely,

〈gλ , ˜̃gλ ′〉 = ∑
λ ′′∈Λm

Bλ ′,λ ′′〈gλ ,gλ ′′〉 =
(
G−1

m Gm
)

λ ′,λ = δλ ,λ ′.
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We use the basesΦm and ˜̃Φm to introduce an approximation to the identity deter-
mined by the operators{Sm}m∈Z with kernels

Sm(x,y) := ∑
λ∈Λm

gλ (x) ˜̃gλ (y). (36)

In the next theorem we record the fact that these kernels define the desired ap-
proximation to the identity.

Theorem 4. [14]For a discrete ellipsoid coverΘ , the kernels from(36) define an
approximation to the identity with respect to the quasi-distanceρ(·, ·) induced byΘ .
Here the vectorµ can be defined asµ := (a6,a4), the parameterδ can be selected
arbitrarily large and the parameter r is the degree of the polynomials used in the
construction of the local ellipsoid “bumps” in§3.1.

3.5 Construction of anisotropic wavelet frames

Wavelet operators. Let {Sm}m∈Z be an approximation to the identity of order
(µ ,δ , r). Then evidently the kernels of thewavelet operators Dm := Sm+1−Sm sat-
isfy conditins (i)-(iii) in Definition 3, while the polynomial reproduction condition
(iv) is replaced by the followingzero momentcondition

∫

Rn
Dm(x,y)P(y)dy= 0,

∫

Rn
Dm(x,y)P(x)dx= 0 ∀P∈ Pr . (37)

The next lemma shows that any two wavelet operators (kernels) from different
scales are “almost orthogonal”.

Lemma 2. [14]Suppose two kernel operators{D1
m}m∈Z and{D2

m}m∈Z satisfy(37)
for some r≥ 1 and conditions(i)-(ii) of an approximation to the identity of order
(µ ,δ , r) for someδ ≥ µ1r. Then

|D1
kD2

l (x,y)| ≤ c2−|k−l |µ0r 2−min{k,l}δ

(
2−min{k,l} + ρ(x,y)

)1+δ , k, l ∈ Z. (38)

Dual wavelet operators.In this section we leverage significantly on the results of
Han and Sawyer [19] (see also [16]) concerning the Calderónreproducing formula
in spaces of homogeneous type and adapt them to our specific setting. We begin
with the definitions for anisotropic test functions and molecules.

Definition 4. Let ρ(·, ·) be a quasi-distance onRn. A function f ∈C(Rn) is said to
be in theanisotropic test function spaceM (ε,δ ,x0,t), 0< ε,δ ≤ 1,x0 ∈ Rn, t ∈ R,
if there exists a constantC > 0 such that

(i) | f (x)| ≤C 2−tδ

(2−t+ρ(x,x0))
1+δ ∀x∈ Rn.

(ii) | f (x)− f (y)| ≤Cρ(x,y)ε 2−tδ

(2−t+ρ(x,x0))
1+δ+ε for all x,y∈ Rn,
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whereρ(x,y) ≤ 1
2κ (2−t + ρ(x,x0)) with κ the constant of the quasi-distance (see

§2.1).

One can easily show thatM (ε,δ ,x0,t) is a Banach space with norm‖ f‖M de-
fined as the infimum of all constantsC such that (i)-(ii) are valid. We also denote
M (ε,δ ) := M (ε,δ ,0,0).

Definition 5. The set ofmoleculesM0(ε,δ ,x0,t) is defined as the set of all anisotropic
test functionsf ∈ M (ε,δ ,x0, t) such that

∫
Rn f (y)dy= 0.

We denote byM0(ε,δ ) the subspace of all molecules inM (ε,δ ).

For someγ > ε, let
◦

M (ε,δ ) be the closure ofM (γ,δ ) in the norm ofM (ε,δ ).

Then, we define
◦

M ′(ε,δ ) as the dual of
◦

M (ε,δ ).
We are now prepared to state the Calderón reproducing formula which implies

the existence of dual wavelet operators.

Theorem 5. [Continuous Caldeŕon reproducing formula] Suppose(Rn,ρ ,dx) is
a normal space of homogeneous type and let{Sm}m∈Z be an approximation to the
identity of order(µ ,δ , r) with respect toρ(·, ·). Set Dm := Sm+1−Sm for m∈Z. Then
there exist linear operators{D̃m}m∈Z and{D̂m}m∈Z such that for any f∈M0(ε,γ),
0 < ε,γ < µ0,

f = ∑
m∈Z

D̃mDm( f ) = ∑
m∈Z

DmD̂m( f ), (39)

where the series converge in the norm ofM (ε ′,γ ′), ε ′ < ε, γ ′ < γ, and in Lp(R
n),

1< p< ∞. Furthermore, for anyε < µ0, the kernels of{D̃m} and{D̂m} satisfy con-
ditions(i)-(iii ) of an approximation to the identity of order(µ ,ε,1) (with constants
depending onε) and the r-th zero moments condition(37).

By a duality argument we obtain

Corollary 1. Under the hypothesis of Theorem 5 for any f∈
◦

M ′(ε,δ ) the series in

(39) converges in
◦

M ′(ε∗,δ∗) with ε < ε∗ < µ0, γ < γ∗ < µ0.

We next sketch the proof of Theorem 5. The method of proof is essentially similar
to the method used in [19]. We use Coifman’s idea to write the identity operatorI as

I = ∑
k

Dk = ∑
k

Dk∑
l

Dl = ∑
k,l

DkDl .

For an integerN > 0 we introduce the operatorDN
m := ∑| j |≤N Dm+ j and define the

operatorsTN andRN by

I = ∑
k,l

DkDl = ∑
k∈Z

DN
k Dk + ∑

| j |>N
∑
k∈Z

Dk+ jDk =: TN +RN.

Let 0< ε,γ < µ0. We claim thatRN is bounded onM0(ε,γ,x0,t) for anyx0 ∈ Rn

andt ∈ R. Moreover, there exist constantsτ > 0 andc > 0 such that
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‖RN f‖M0(ε,γ,x0,t) ≤ c2−Nτ‖ f‖M0(ε,γ,x0,t) for f ∈ M0(ε,γ,x0,t). (40)

Assume the claim for a moment. ChoosingN so thatc2−Nτ < 1, then (40) implies
that the operatorT−1

N exists and is bounded onM0(ε,γ,x0,t). Thus, we obtain

I = T−1
N TN = ∑

m

(
T−1

N DN
m

)
Dm = ∑

m
D̃mDm,

whereD̃m := T−1
N DN

m. The regularity conditions on the kernels{Dm} and (37) imply
that for any fixedN andy∈ R

n the functionDN
m(·,y) is in M0 (µ0,δ ). This imme-

diately implies thatD̃m(·,y) = T−1
N DN

m(·,y) is in M0 (ε,γ) for any 0< ε,γ < µ0.
Similarly, we can write

I = TNT−1
N = (∑

m
DN

mDm)T−1
N = ∑

m
DmDN

mT−1
N = ∑

m
DmD̂m,

whereD̂m := DN
mT−1

N . By the same token, for any fixedN andx∈ Rn, the function
D̂m(x, ·) is in M0(ε,γ) for any 0< ε,γ < µ0 and the proof is complete.

Discussion.In the proof of Theorem 5 we applied tools from the general theory
of spaces of homogeneous type to construct dual wavelet operators. Although the
kernels of the dual operators{D̃m} and{D̂m} have the same vanishing moments as
{Dm}, we only claim very “modest” regularity and decay on them. For example, in
Theorem 5 we claim that for any 0< γ < µ0, there exists a constantc > 0 such that

|D̃m(x,y)|, |D̂m(x,y)| ≤
c2−mγ

(2−m+ ρ(x,y))1+γ .

At the same time, the construction of the anisotropic approximation of the identity
over an ellipsoid cover in§3.4 (see Theorem 4) produces wavelet kernels{Dm} such
that for anyδ > 0

|Dm(x,y)| ≤
c2−mδ

(2−m+ ρ(x,y))1+δ , c = c(δ ).

It is an open problemto define higher order anisotropic test function spaces and
prove that the operatorsRN := ∑| j |>N ∑k∈Z Dk+ jDk are bounded on these higher
order spaces as in (40).

Applying the Calderón reproducing formula we obtain the following Littlewood-
Paley type result (see [16]).

Proposition 3. Suppose{Sm}m∈Z is an anisotropic approximation of the identity
and let Dm = Sm+1−Sm, m∈ Z. Then for any f∈ Lp(R

n), 1 < p < ∞, we have

‖ f‖p ∼
∥∥∥
(
∑
m
|Dm( f )(·)|2

)1/2∥∥∥
p
.
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3.6 Discrete wavelet frames

Here we describe briefly the construction of wavelet frames using the discrete
Calderón reproducing formula, which in turn is obtained by“sampling” the con-
tinuous Calderón reproducing formula (see e.g. [16, 14]).We first introduce the
following sampling process.

Definition 6. Let ρ(·, ·) be a quasi-distance onRn. We call a set of closed domains
Ωm,k ⊂ Rn, m∈ Z, k ∈ Im, and pointsym,k ∈ Ωm,k, a sampling setif the following
conditions are satisfied:

(a) For eachm∈ Z, the setsΩm,k, k∈ Im, have disjoint interiors.
(b) R

n = ∪k∈ImΩm,k for m∈ Z.
(c) Each setΩm,k satisfiesΩm,k ⊂ Bρ(xm,k,c2−m) for some pointxm,k ∈ Rn (c > 0 is

a constant).
(d) There exists a constantc′ > 0 such that for anym∈ Z and k ∈ Im, we have

ρ(ym,k,ym,k′) > c′2−m for all k′ ∈ Im, k′ 6= k, except perhaps for a set of uniformly
bounded number of points.

In the next theorem we present the discrete Calderón reproducing formula.

Theorem 6. [14] Let {Sm}m∈Z be an anisotropic approximation to the identity of
order (µ ,δ , r) with respect to the quasi-distance induced by an ellipsoid coverΘ
of Rn. Denote Dm := Sm+1−Sm and let{Ωm,k} and{ym,k} with ym,k ∈ Ωm,k be a
sampling set forΘ . Then there exist N> 0 and linear operators{Êm} such that for
any f ∈ M0(ε,γ), 0 < ε,γ < µ0,

f = ∑
m∈Z

∑
k∈Im+N

|Ωm+N,k|Êm( f )(ym+N,k)Dm(·,ym+N,k), (41)

where the convergence is inM (ε ′,γ ′), ε ′ < ε, γ ′ < γ, and in Lp(R
n), 1 < p < ∞.

Furthermore, the kernels of{Êm} satisfy conditions(i)-(iii ) of anisotropic approx-
imations to the identity of order(µ ,ε,1) for anyε < µ0 (with constants depending
on ε) and the rth degree zero moments condition(37).

The proof of this theorem follows in the footsteps of the proof in the general case
of homogeneous spaces (see e.g. [16]).

Definition of anisotropic wavet frames.We denote brieflyKm := Im+N and define
the functions{ψm,k} by

ψm,k(x) := |Ωm+N,k|
1/2Dm(x,ym+N,k)

and the functionals{ψ̃m,k} by

ψ̃m,k(x) := |Ωm+N,k|
1/2Êm(ym+N,k,x), m∈ Z, k∈ Km.

Then (41) takes the form
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f = ∑
m

∑
k∈Km

〈 f , ψ̃m,k〉ψm,k. (42)

The next theorem shows that{ψm,k}, {ψ̃m,k} is a pair of dual frames.

Theorem 7. [14] Let {Sm}m∈Z be an anisotropic approximation to the identity of
order (µ ,δ , r). Denote Dm := Sm+1−Sm and let{Ωm,k} and{ym,k}, ym,k ∈ Ωm,k be
a sampling set forΘ . Then there exist constants0 < A≤ B < ∞ such that for any
f ∈ L2(R

n)
A‖ f‖2

2 ≤ ∑
m

∑
k∈Km

|〈 f , ψ̃m,k〉|
2 ≤ B‖ f‖2

2. (43)

3.7 Two-level-split frames

We now use the two-level-split construction from§3.3 and the smooth duals{ ˜̃gλ}
from §3.4 to derive a useful representation for the wavelet kernelsDm(x,y).

Forλ = (θ ,β ) we denotẽ̃gθ ,β := ˜̃gλ , where˜̃gλ is defined in (34). Then the kernel
Sm(x,y), defined in (36), has the representation

Sm(x,y) = ∑
θ∈Θm

∑
|β |<r

˜̃gθ ,β (y)Pθ ,β ϕθ (x).

Now precisely as in§3.3 we get

Dm(x,y) := Sm+1(x,y)−Sm(x,y)

= ∑
η∈Θm+1

∑
θ∈Θm:θ∩η 6= /0

∑
|β |<r

{
˜̃gη,β (y)− ∑

|α |<r

Cθ ,η
α ,β

˜̃gθ ,α (y)
}

Pη,β (x)ϕη (x)ϕθ (x),

The new dual functions̃̃Fν , ν = (η ,θ ,β ) ∈ Vm, are defined by

˜̃Fν = ˜̃Fη,θ ,β := ˜̃gη,β − ∑
|α |<r

Cθ ,η
α ,β

˜̃gθ ,α . (44)

Thus we arrive at the following representation

Dm(x,y) = ∑
ν∈Vm

˜̃Fν (y)Fν(x).

Observe that since eachθ ∈ Θm is intersected by finitely many ellipsoids from
Θm+1 it follows by (35) that the duals{ ˜̃Fν} have sub-exponential localization as the
duals{ ˜̃gλ}. Also, Theorem 2 and Proposition 3 imply that{Fν}, { ˜̃Fν} is a pair of
dual frames.

Proposition 4. For any f ∈ L2(R
n)
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‖ f‖2 ∼
(
∑
m
‖Dm( f )‖2

2

)1/2
∼
(
∑
ν
〈 f , ˜̃Fν〉

2
)1/2

.

4 Anisotropic Besov spaces (B-spaces)

In this section we review the anisotropic Besov spaces of positive smoothness in-
duced by discrete ellipsoid covers ofR

n, introduced in [12], and compare them with
the B-spaces based on anisotropic nested triangulations ofR2 from [13, 20]. We will
be mainly interested in the homogeneous versions of these spaces.

4.1 B-spaces induced by anisotropic covers of Rn

Assuming thatΘ is discrete ellipsoid cover ofRn (see Definition 1) we will define
the homogeneous B-spacesḂα

pq(Θ) of positive smoothnessα > 0. In this definition
there is a hidden parameterk which we choose to be the smallest integer satisfying
the condition

k >
a0

a6
·

α
n

. (45)

This will guarantee the equivalence of the norms inḂα
pq(Θ) introduced below. Here

a0 anda6 are the constants from Definition 1,§2.1.

Definition of Ḃα
pq(Θ) via local moduli of smoothness.Forα > 0 and 0< p,q≤ ∞

the spacėBα
pq(Θ) is defined as the set of all functionsf ∈ Lloc

p such that

‖ f‖Ḃα
pq(Θ ) :=

(
∑

m∈Z

(
∑

θ∈Θm

|θ |−α p/nωk( f ,θ )p
p

)q/p)1/q
< ∞, (46)

whereωk( f ,θ )p is thekth local modulus of smoothness off (see (20)).
This definition needs some additional clarification. Observe that‖P‖Ḃα

pq(Θ ) = 0

for P ∈ Pk and hence the norm iṅBα
pq(Θ) is a semi-(quasi-)norm anḋBα

pq(Θ) is
a quotient space moduloPk. We will use the operatorsQm andTm,p from §3.2 to
construct a meaningful representation of eachf ∈ Ḃα

pq(Θ). Let Tm (m∈ Z) be one
of the operatorsQm or Tm,p if p≥ 1, andTm := Tm,p if p < 1. We define

‖ f‖T
Ḃα

pq(Θ ) :=
(

∑
m∈Z

(
2a0mα/n‖(Tm+1−Tm) f‖p

)q)1/q
. (47)

Proposition 2 and property (c) of ellipsoid covers imply

‖ f −Tm f‖p ≤ c
(

∑
θ∈Θm

ωk( f ,θ )p
p

)1/p
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and since‖(Tm+1−Tm) f‖p ≤ c‖ f −Tm+1 f‖p +c‖ f −Tm f‖p, we get

‖ f‖T
Ḃα

pq(Θ ) ≤ c‖ f‖Ḃα
pq(Θ ). (48)

For more precise description ofḂα
pq(Θ) we have to distinguish between two basic

cases.

Case 1:0 < α < n/p or α = n/p and q ≤ 1. Then as is shown in [12] for any
f ∈ Ḃα

pq(Θ) there exists a polynomialP∈ Pk such that

f = ∑
m∈Z

(Tm+1−Tm) f +P in Lp(K) (49)

for all compact setsK ⊂ Rn.

Case 2:α > n/p or α = n/p andq > 1. Now the spacėBα
pq(Θ) can be viewed as

the set of all regular tempered distributionsf such that‖ f‖Ḃα
pq(Θ ) < ∞ and

f = ∑
m∈Z

(Tm+1−Tm) f ,

where the convergence is inS ′/Pk. This means that there exist polynomialsP ∈
Pk andPm ∈ Pk, m∈ Z, such that

f = P+ lim
j→−∞

∞

∑
m= j

(Tm+1−Tm) f +Pm in S
′.

In addition,Ḃα
pq(Θ) is continuously embedded inS ′.

Other norms in Ḃα
pq(Θ). The good understanding of the B-spaces depends on hav-

ing several equivalent norms iṅBα
pq(Θ). Note that if {dν( f )} are defined from

(Tm+1−Tm) f = ∑ν∈Vm dν( f )Fν , then using Theorem 2

‖ f‖T
Ḃα

pq(Θ ) ∼
(

∑
m∈Z

(
∑

ν∈Vm

(|ην |
−α/n‖dν( f )Fν‖p)

p
)q/p)1/q

. (50)

Observe that the above equivalence holds ifdν( f ) are replaced by〈 f , ˜̃Fν〉 due to the
sub-exponential localization of the duals{ ˜̃Fν}.

Also, we define

‖ f‖A
Ḃα

pq(Θ ) := inf
f=∑ν∈V aν Fν

(
∑

m∈Z

(
∑

ν∈Vm

(|ην |
−α/n‖aνFν‖p)

p
)q/p)1/q

. (51)

Here the infimum is taken over all representationsf = ∑ν∈V aνFν , where the con-
vergence is to be understood as described in Cases 1-2 above.

In the next theorem we record the equivalence of the above norms.
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Theorem 8. [12] If α > 0, 0 < p,q ≤ ∞, and condition(45) is satisfied, then the
norms‖ · ‖Ḃα

pq(Θ ), ‖ · ‖
T
Ḃα

pq(Θ )
, and‖ · ‖A

Ḃα
pq(Θ )

are equivalent.

The embedding oḟBα
pq in S ′ or (49) readily imply the completeness ofḂα

pq(Θ).

Inhomogeneous B-spaces.Sometimes it is more convenient to use the inhomoge-
neous versionsBα

pq(Θ+) of the B-spaces induced by anisotropic ellipsoid covers of
Rn, which are simpler than the homogeneous counterpartsḂα

pq(Θ).
For the definition of the inhomogeneous spacesBα

pq(Θ+) one only needs ellip-
soid covers with levelsm= 0,1, . . ., i.e. covers of the form

Θ+ :=
∞⋃

m=0

Θm.

The spaceBα
pq(Θ+), α > 0, 0 < p,q ≤ ∞, is defined as the set of all functions

f ∈ Lp(R
n) such that

| f |Bα
pq(Θ+) :=

(
∑

m≥0

(
∑

θ∈Θm

(|θ |−α p/nωk( f ,θ )p
p

)q/p)1/q
< ∞, (52)

whereωk( f ,θ )p is thekth local modulus of smoothness off in Lp(θ ).
The (quasi-)norm inBα

pq(Θ+) is defined by

‖ f‖Bα
pq(Θ+) := ‖ f‖p + | f |Bα

pq(Θ+).

Other equivalent norms inBα
pq(Θ+) can be defined similarly as for the homogeneous

B-spaces from above. In particular, using the notation fromfrom Theorem 3 one has

‖ f‖Bα
pq(Θ+) ∼

(
∑

m≥−1

(
∑

ν∈Vm

(|ην |
−α/n‖dν( f )Fν‖p)

p
)q/p)1/q

. (53)

For more details about anisotropic B-spaces induced by ellipsoid covers and
proofs we refer the reader to [12].

4.2 B-spaces induced by nested multilevel triangulations of R2

We first recall briefly some basic definitions and facts from [20, 13].

Spline multiresolution analysis (MRA).LetT =
⋃

m∈Z Tm be an SLR-triangulation
of R2 (see§2.2). Denote byVm the set of all vertices of triangles fromTm.

For r ≥ 0 andk ≥ 2, we denote bySk,r
m = Sk,r(Tm) the set of allr times dif-

ferentiable piecewise polynomial functions of degree< k overTm, i.e. s∈ Sk,r
m if

s∈Cr(R2) ands= ∑△∈Tm1△ ·P△ with P△ ∈ Pk.
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It will be convenient to denote, for any vertexv ∈ Vm, by Star1(v) the union of
all triangles△ ∈ Tm attached tov. Inductively forℓ ≥ 2, we define Starℓ(v) as the
union of Starℓ−1(v) and the stars of all vertices of Starℓ−1(v).

We assume that for eachm∈ Z there exists a subspaceSm of Sk,r
m and a family

Φm = {ϕθ : θ ∈Θm} ⊂ Sm satisfying the following conditions:
(a)Sm ⊂ Sm+1 andPk̃ ⊂ Sm, for some 1≤ k̃≤ k,
(b) Φm is a stable basis forSm in Lp (1≤ p≤ ∞),
(c) For everyθ ∈ Θm there is a vertexvθ ∈ Vm such thatϕθ and its dual are

supported on Starℓ(vθ ), whereℓ ≥ 1 is a constant independent ofθ andm.
We denoteΦ :=

⋃
m∈Z Φm andΘ :=

⋃
m∈ZΘm.

A simple example of spline MRA is the sequence{Sm}m∈Z of all continuous
piecewise linear functions (r = 0, k = 2) on the levels{Tm}m∈Z of a given SLR-
triangulationT of R2. A basis for each spaceSm is given by the setΦm of the
Courant elementsϕθ , supported on the cellsθ of Tm (θ is the union of all triangles
of Tm attached to a vertex, say,vθ ). The functionϕθ takes value 1 atvθ and 0 at all
other vertices.

A concrete construction of a spline MRA for an arbitrary SLR-triangulationT

is given in [13], whereSm = Sk,r
m = Sk,r(Tm) for givenr ≥ 1 andk > 4r +1.

Local spline approximation.For△∈ Tm we set

Ω ℓ
△ := ∪{Starℓ(v) : v∈Vm, △⊂ Starℓ(v)}.

We now letS△( f )p denote the error ofLp-approximation fromSm on Ω ℓ
△, i.e.

S△( f )p := inf
s∈Sm

‖ f −s‖Lp(Ω ℓ
△). (54)

Definition of Ḃα
pq(Φ). Given a spline MRA{Sm}m∈Z over an SLR-tiangulationT

of R2 and an associated family of basis functionsΦ, as described above, we define
the B-spaceḂα

pq(Φ), α > 0, 0< p,q≤ ∞, as the set of allf ∈ Lloc
p (R2) such that

‖ f‖
Ḃα

pq(Φ) :=

(
∑

m∈Z

[
2mα

(
∑

△∈T ,2−m≤|△|<2−m+1

S△( f )p
p

)1/p]q)1/q

< ∞ (55)

with theℓq-norm replaced by the sup-norm ifq = ∞.

4.3 Comparison of different B-spaces and Besov spaces

The most substantial distinction betweenḂα
pq(Θ) and Ḃα

pq(Φ) is that the spaces
Ḃα

pq(Θ) are defined vialocal polynomialapproximation∼ωk( f ,θ )p, whileḂα
pq(Φ)

are defined vialocal splineapproximation:S△( f )p. As a result, loosely speaking the
spacesḂα

pq(Θ) have larger norms that the spacesḂα
pq(Φ). However, ifS△( f )p in

(55) is replaced byωk( f ,Ω1
△)p then the resulting quantity would be equivalent to
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‖ f‖Ḃα
pq(Θ ), whereΘ is the ellipse cover ofR2 obtained by dilating the minimum

area circumscribed ellipses for all triangle△∈ T as mentioned in§2.2.
Another important distinction betweeṅBα

pq(Θ) andḂα
pq(Φ) is that the underly-

ing multilevel triangulation for the later space is nested,while the ellipsoid cover
generating the former is not nested. Therefore, in constructing ellipsoid cover and
dealing with B-spaceṡBα

pq(Θ) one has much more freedom.
It is quite easy to show that (see [11]) ifΘ is an ellipsoid cover ofRn con-

sisting of Euclidean balls, then the B-spacesḂα
pq(Θ) are the same as the respec-

tive classical Besov spacesḂα
q (Lp) (with equivalent norms). We maintain that local

moduli of smoothness rather than global ones are more natural for the definition
of anisotropic (and even classical) Besov spaces of positive smoothness since they
more adequately reflect the nature of the spaces. For the theory of (classical) Besov
spaces we refer the reader to [23, 26].

As already mentioned the powersA j of a realn× n matrix A with eigenvalues
λ obeying|λ | > 1 generate a semi-continuous and hence discrete ellipsoid cover
of Rn. It can be shown that forα > n(1/p− 1)+ the associated B-spacesḂα

pq are
exactly the same (with equivalent norms) as the anisotropicBesov spaces (with
weight 1) developed in [3].

As indicated in§2.1, Rn equipped with the distanceρ(·, ·) introduced in Defi-
nition 2 and the Lebesgue measure is a space of homogeneous type and hence the
general theory of Besov spaces on homogeneous spaces applies (see e.g. [19]). In
fact, in the specific setting of this paper the anisotropic Besov spaces given by the
general theory are the same as the B-spaces from here for sufficiently smallα > 0.
The main distinction between the two theories is that we can handle B-spaces of an
arbitrary smoothnessα > 0, while the general theory of Besov spaces on homoge-
neous spaces is only feasible for smoothnessα with |α| < ε for some sufficiently
smallε.

5 Nonlinear approximation

One of the main applications of the anisotropic B-spaces is to nonlinearN-term ap-
proximation from the two-level-split bases introduced in§3.3, which is the purpose
of this section. We will also compare here the two-level-split bases with anisotropic
hierarchical spline bases as tools for nonlinear approximation.

The B-spaces of nonlinear approximation.A particular type of B-spaces plays
an important role in nonlinearN-term approximation inLp. Given 0< p < ∞ and
α > 0 let τ be defined by

1/τ = α/n+1/p, (56)

which in the case of classical Besov spaces signifies the critical embedding inLp.
For nonlinear approximation inL∞ := C0 τ is determined by 1/τ = α/n and neces-
sarily α ≥ 1 (otherwise the embedding (60) below is not valid).
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For a given discrete ellipsoid coverΘ of Rn, the homogeneous B-spacesḂα
τ (Θ) :=

Ḃα
ττ(Θ) are of a particular importance in nonlinear approximation from the two-

level-split bases. From (46) we have

‖ f‖Ḃα
τ (Θ ) :=

(
∑

θ∈Θ
|θ |−ατ/nωk( f ,θ )τ

τ

)1/τ
. (57)

Observe that in generalτ < 1, however, just as in [20] it can be showen that for any
0 < q < p

‖ f‖Ḃα
τ (Θ ) ∼

(
∑

θ∈Θ
|θ |(1/p−1/q)τωk( f ,θ )τ

q

)1/τ
. (58)

This allows to work inLq with q≥ 1 if p > 1 instead ofLτ .
The key point here is that the norm iṅBα

τ (Θ) has the representation

‖ f‖Ḃα
τ (Θ ) ∼

(
∑

ν∈V

‖dν( f )Fν‖
τ
p

)1/τ
, V := ∪m∈ZVm, (59)

which implies the embedding oḟBα
τ (Θ) in Lp: Every f ∈ Ḃα

τ (Θ) can be identified
moduloPk as a function inLp(R

n) such that

‖ f‖p ≤ c‖ f‖Ḃα
τ (Θ ). (60)

This identification will always be assumed in what follows. In fact, the above shows
thatḂα

τ (Θ) lies on the Sobolev embedding line.
The situation is quite the same for the inhomogeneous B-spacesBα

τ := Bα
ττ(Θ+)

associated with a discrete ellipsoid coverΘ+ = ∪m≥0Θm of Rn.

Nonlinear N-term approximation from F := ∪m∈ZFm = {Fν : ν ∈ V }. We let
EN denote the nonlinear set of all functionsg of the form

g = ∑
ν∈ΓN

aνFν ,

whereΓN ⊂ V , #Γ ≤ N, andΓ is allowed to vary withg. Then the errorσN( f )p of
bestLp-approximation off ∈ Lp(R

n) from EN is defined by

σN( f )p := inf
g∈EN

‖ f −g‖p.

Theorem 9 (Jackson estimate).If f ∈ Ḃα
τ (Θ), α > 0, 0 < p≤ ∞, then

σN( f )p ≤ cN−α/n‖ f‖Ḃα
τ (Θ ), (61)

where c depends only onα, p, and the parameters ofΘ .

When 0< p < ∞, estimate (61) follows by the general Theorem 3.4 in [20] and
in the casep = ∞ its proof can be carried out as the proof of Theorem 3.1 in [21].
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In a standard way the Jackson estimate (61) leads to a direct estimate for nonlin-
earN-term approximation fromF which involves theK-functional betweenLp and
Ḃα

τ (Θ). It is a challengingopen problemto prove a companion inverse estimate due
to the fact thatF is possibly redundant and nonnested.

Comparison with nonlinear N-term approximation from nested spline bases.
NonlinearN-term approximation inLp (0< p≤∞) from the spline basis elements in
Φ = ∪m∈ZΦm (see§4.2) has been developed in [20, 13, 21, 10]. In [20, 13] Jackson
and Bernstein estimates are established involving the B-spacesḂα

τ (Φ) := Ḃα
ττ (Φ)

with norm

‖ f‖
Ḃα

τ (Φ) :=
(

∑
△∈T

(|△|−α
S△( f )τ )

τ
)1/τ

, (62)

where 1/τ := α + 1/p for α > 0 if 0 < p < ∞ and α ≥ 1 if p = ∞. Then the
standard machinery of Approximation theory is used to characterize the respective
approximation spaces as real interpolation spaces betweenLp andḂα

τ (Φ).
The most important difference between the nonlinear N-termapproximation

from F andΦ is that the spaceṡBα
τ (Φ) (defined by local spline approximation)

are specifically designed for the purposes of nonlinear spline approximation and al-
low to characterize the rates of approximationO(N−β ) for all β > 0, while in the
former caseβ is limited. On the other hand, the spacesḂα

τ (Θ) are of more general
nature and are direct generalization of Besov spaces. They are much less sensitive
to changes in the underlying ellipsoid coverΘ compared to changes iṅBα

τ (Φ)
when changing the respective triangulationT . In general, the spaceṡBα

τ (Θ) are
better thanḂα

τ (Φ) as a tool for measuring the anisotropic features of functions (see
below).

6 Measuring smoothness via anisotropic B-spaces

It has always been a question in analysis how to measure the smoothness of a given
function, and as a consequence, there is a variety of smoothness space. We next show
how the anisotropic B-spaceṡBα

τ (Θ) can be deployed to measuring the smoothness
of functions and how this is related to nonlinearN-term approximation from the
two-level-split bases.

We focus on two “simple” examples of discontinuous functions onR2, namely,1B(0,1) the characteristic function of the unit diskB(0,1) and1Q the characteristic
function of a squareQ ⊂ R2. As shown in [12] each of these functions has higher
order smoothnessα in Ḃα

τ (Θ) for an appropriately selected ellipse coverΘ com-
pared with its (classical) Besov space smoothness. Moreover, their smoothness via
suitable covers will be seen to differ substantially.

As in the previous section, for given 0< p < ∞ andα > 0, let τ be defined by
1/τ = α/2+1/p.
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Theorem 10. [12](i) There exists an anisotropic ellipsoid coverΘ of R2 such that1B(0,1) ∈ Ḃα
τ (Θ) for anyα < 4/p. In comparison, in the scale of Besov spacesḂα

ττ
one has1B(0,1) ∈ Ḃα

ττ for α < 2/p. Here the bounds forα are sharp.
(ii) For any square Q inR2 and anyα > 0 there exists an anisotropic ellipsoid

coverΘ of R2 such that1Q ∈ Ḃα
τ (Θ), while in the scale of Besov spacesḂα

ττ one
has only1Q ∈ Ḃα

ττ for α < 2/p and this bound forα is sharp.

This theorem coupled with the Jackson estimate (61) leads tothe following ap-
proximation result.

Corollary 2. [12] (i) There exists a discrete ellipse coverΘ of R2 such that for any
0 < p < ∞ the nonlinear N-term approximation fromFΘ satisfies

σN(1B(0,1))p ≤ cN−γ for all γ < 2/p.

(ii) For anyα > 0 there exists a discrete ellipse coverΘ of R2 such that for any
0 < p < ∞ the nonlinear N-term approximation fromFΘ satisfies

σN(1Q)p ≤ cN−α .

For comparison, ifσW
m ( f )p denotes the best N-term approximation of f in Lp

(p≥ 1) from any reasonable wavelet basis, then for E= B(0,1) or E = Q

σW
N (1E)p ≤ cN−γ for all γ < 1/p.

All estimates above are sharp.

Discussion.As indicated above for appropriate ellipse covers, the B-space smooth-
ness of the characteristic functions of the unit ball and anysquare inR2 is higher
than their Besov space smoothness. Thus by using adaptive dilations the anisotropic
B-spaces are better able to resolve the singularities alongsmooth or piecewise
smooth curves. Consequently, the two-level-split decompositions of these functions
are substantially sparser than their wavelet decompositions, which leads to better
rates of nonlinearN-term approximation. It might surprise that characteristic func-
tions of polygonal domains have, in a sense, infinite smoothness while those of
domains with smooth boundaries have limited regularity. However, the covers that
yield higher and higher smoothness in the polygonal case have to become less and
less constrained, which means that the parameters inp(Θ) are subjected to more
and more generous bounds. Keeping these parameters within acompact set would
limit the regularity that could be described in this way.

The above two examples illustrate clearly the concept of measuring the smooth-
ness of functions via anisotropic B-space and in particularby the B-spaces of non-
linear approximatioṅBα

τ (Θ). The key idea is to allow the underlying ellipsoid cover
to adapt to the given function.

It is a challengingopen problemto devise a scheme which for a given functionf
finds an optimal (or near optimal) ellipsoid coverΘ such thatf exhibits the highest
orderα of smoothness iṅBα

τ (Θ) in the above sense.
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7 Application to Preconditioning for Elliptic Boundary Val ue
Problems

In this section we apply the two-level-split bases from§3.3 in a regular set-up to
the development of multilevel Schwarz preconditioners forelliptic boundary value
problems. We consider the following model problem. Leta(·, ·) : V ×V → R be a
symmetric bilinear form on a Hilbert spaceV with norm ‖ · ‖V = 〈·, ·〉1/2 that is
V-elliptic, i.e. there exist positive constantsca,Ca such that

a(v,v) ≥ ca‖v‖2
V , |a(v,w)| ≤Ca‖v‖V‖w‖V , v,w∈V. (63)

The problem is, for a givenf ∈V ′ to findu∈V such that

a(u,v) = 〈 f ,v〉, ∀ v∈V. (64)

For simplicity we only consider the model caseV = H1
0(Ω) corresponding to

Dirichlet boundary conditions. Higher order problems could be treated in an anal-
ogous way. We assume thatΩ is a boundedextensiondomain, which means that
Ω has a sufficiently regular boundary to permit any elementv of any Sobolev
or Besov spaceX(Ω) over Ω to be extended to ˜v ∈ X(Rn), ṽ|Ω = v, so that
‖v‖X(Rn) ≤ CX‖v‖X(Ω). This is e.g. the case when the boundary ofΩ is piecewise
smooth andΩ obeys a uniform cone condition. The homogeneous boundary condi-
tions are supposed to be realized in the trial spaces by suitable polynomial factors
in the atoms.

We assume thatΘ = ∪m≥−1Θm is a regular multilevel cover ofRn consisting of
balls. We will utilize the atoms{Fγ} defined in§3.3 for γ ∈ V =

⋃∞
m=−1Vm, see

Theorem 3. For better notation we will index the elementsFγ of the two-level-split
basesFm by γ instead ofν as before.

We will put this in the context ofstable splittingsin the theory ofmultilevel
Schwarz preconditioners, see e.g. [22, 27].

Let Vγ := span(Fγ ), so thatH1
0(Ω) := V = ∑γ Vγ . The key fact is that{Vγ}γ∈V

form astable splittingfor V:

Theorem 11.There exist constants cV ,CV > 0 such that for any v∈V

cV‖v‖V ≤ inf
v=∑γ vγ

(

∑
γ∈V

|ηγ |
−2/d‖vγ‖

2
2

)1/2

≤CV‖v‖V . (65)

Moreover,{Vγ}γ∈V ℓ with V ℓ :=
⋃ℓ

m=−1Vm form a uniformly stable splitting for the
spaces Sm := span(Φm) in the sense of(65) with the same constants cV ,CV .

Using that the normsa(·, ·)1/2 and‖ · ‖H1(Ω) are equivalent and the well known
fact that‖ · ‖H1(Ω) ∼ ‖ · ‖B1

2(L2(Ω)), estimates (65) are immediate from Theorem 8
taking into account that Besov and B-norms are equivalent inthe regular setting.
The second part of Theorem 11 follows from the fact that the telescoping expansions
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underlying the inhomogeneous version of‖ · ‖T
Bα (Θ ) (see (47) and (53)) terminate

without affecting this norm. For more details, see [11].
This allows us to apply the theory of Schwarz methods along the following lines.

ForV0 := S0 = span(Φ0) definePV0 : V →V0 andrV0 ∈ S0 by

a(PV0v,Fγ) = a(v,Fγ), (rV0,Fγ )L2 = 〈 f ,Fγ 〉, γ ∈ V0 = Θ0.

Furthermore, we introduce the auxiliary bilinear forms:

bγ(v,w) := |ηγ |
−2/d(v,w)L2, v,w∈Vγ , γ ∈ V \V0. (66)

We now consider the spacesVγ with norms‖v‖Vγ := (bγ (v,v))1/2 and define the
linear operatorsPVγ : V →Vγ and fγ ∈Vγ by

|ηγ |
−2/d(PVγ v,Fγ)L2 = a(v,Fγ),

|ηγ |
−2/d( fγ ,Fγ )L2 = 〈 f ,Fγ 〉.

(67)

Thus, as usual,
PVγ v = aγ(v)Fγ , fγ = rγ ( f )Fγ , (68)

where

aγ(v) =
|ηγ |

2/da(v,Fγ)

〈Fγ ,Fγ〉
, rγ ( f ) =

|ηγ |
2/d〈 f ,Fγ 〉

〈Fγ ,Fγ〉
. (69)

The following theorem now is an immediate consequence of theresults in [18, 22].

Theorem 12.Problem(64) is equivalent to the operator equation

PVu = f̄ , where (70)

PV := PV0 + ∑
γ∈V \V0

PVγ , f̄ := rV0 + ∑
γ∈V \V0

fγ .

Moreover, the spectral condition numberκ(PV) of the additive Schwarz operator PV

satisfies

κ(PV) ≤
CaCV

cacV
, (71)

where ca,Ca,cV ,CV are the constants from(63) and(65).

Estimate (71) yields that simple iterative schemes, such asRichardson iterations,

un+1 = un + α( f̄ −PVun), n = 0,1,2, . . . , (72)

converge with a fixed error reduction rate per step.
We conclude with a few remarks. First, the operator equation(70) is formulated

in the full infinite dimensional space. Alternatively, restricting the summation to a
finite subsetV̄ of V (e.g.V̄ = V ℓ), we obtain a finite dimensional discrete problem
whose condition fulfills (on account of Theorem 11) the same bound uniformly in
the size and choice of̄V . In this sense our preconditioner is asymptotically optimal.
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On the other hand, it is conceptually useful to consider the full infinite dimen-
sional problem (70). Then (72) has to be understood as anidealizedscheme whose
numerical implementation requires appropriateapproximateapplications of the (in-
finite dimensional) operatorPV quite in the spirit of [7]. This can be done by com-
puting in addition to solving the coarse scale problem onS0 =V0 only finitely many
but properly selected componentsPVγ each requiring only the solution of a one-
dimensional problem. This hints at the adaptive potential of such an approach sim-
ilar to the developments in [7]. This, in turn, raises the question what accuracy can
be achieved at best when using linear combinations of at mostN of the atoms. Thus
we arrive at the problem for nonlinearN-term approximation from{Fγ} in H1.

For more details we refer the reader to [11].
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