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FIBONACCI SETS ARE GOOD FOR DISCREPANCY AND
NUMERICAL INTEGRATION

DMITRIY BILYK, V.N. TEMLYAKOV, AND RUI YU∗

Abstract. We study the Fibonacci sets from the point of view of their quality

for numerical integration and discrepancy. Let {bn}∞n=0 be the sequence of

Fibonacci numbers. The bn-point Fibonacci set Fn ⊂ [0, 1]2 is defined as

Fn := {(µ/bn, {µbn−1/bn})}bnµ=1, where {x} is the fractional part of a number

x ∈ R. It is known that cubature formulas based on Fibonacci sets Fn give

optimal in the sense of order rate of error of numerical integration for classes

of functions with mixed smoothness.
We prove that the Fibonacci sets have optimal in the sense of order L∞

discrepancy. We establish that the symmetrized Fibonacci set F ′n has mini-

mal in the sense of order L2 discrepancy and provide an exact formula for this
quantity. We also introduce centered Lp discrepancy which is a modification

of the Lp discrepancy to make it symmetric with respect to the center of the

unit square. We prove that the Fibonacci set Fn has minimal in the sense of
order centered Lp discrepancy for all p ∈ (1,∞). We apply the Fourier method

to prove the results.

Keywords: Discrepancy, Fibonacci Numbers, Numerical Integration,
Fourier Coefficients.

AMS-classification numbers: 11K38, 11B39, 65D30, 42A16.

1. Introduction

Let PN be a set of N points in the unit cube [0, 1]d in dimension d, then the
extent of uniform distribution of PN can be measured by the discrepancy function:

(1.1) D(PN ,x) := #
{
PN ∩ [0,x)

}
−N · |[0,x)|,

where x = (x1, . . . , xd), [0,x) =
d∏
j=1

[0, xj), and | · | denotes the Lebesgue measure.

The Lp norm of the above discrepancy function, usually called the Lp discrepancy,
is a benchmark that one uses to evaluate quality of a particular set of N points.
The fundamental problem of the discrepancy theory is to construct sets with small
Lp discrepancy.

The main principle of discrepancy theory, or theory of irregularities of distribu-
tion, states that the quantity

D(N, d)p := inf
PN
‖D(PN ,x)‖p
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must necessarily increase with N in the case d ≥ 2. We refer to Kuipers and
Niederreiter [12], Beck and Chen [2], Matoušek [14], and Chazelle [4] for a detailed
survey. The principal results in estimating D(N, d)p from below are:
K. Roth’s Theorem. ([16], 1954) In all dimensions d ≥ 2, we have

(1.2) D(N, d)2 ≥ C(d)(logN)
d−1
2 ,

where C(d) is a positive constant that may depend on d.

W. Schmidt’s Theorem. ([19], 1972) In dimension d = 2,

(1.3) D(N, 2)∞ ≥ C logN,

where C is a positive absolute constant.

Both bounds (1.2) and (1.3) are known to be sharp in the sense of order, see
[7], [8], [17] and [9] for more detail. One of the most famous examples showing
sharpness of (1.3) is the van der Corput “digit-reversing” set, which has been well
studied in [7]. The reader is referred to [14] for a geometric proof of the fact that the
L∞ discrepancy of the N -point van der Corput set is of order logN . Another im-
portant example, described in several books, e.g. [14], [11], is the irrational lattice.
Consider {( iN , {iα})}

N
i=1, where α is an irrational number and {x} is the fractional

part of the number x. If the partial quotients of the continued fraction of α are
bounded, then the L∞ discrepancy of this set is of the order of logN . The idea of
this example goes back to Lerch [13].

Unfortunately, the L2 discrepancy of these “classical” examples either fails to be
of optimal order (the L2 discrepancy of the N -point van der Corput set is of order
logN , [10]), or is unknown. However, there are standard ways to modify these sets
in order to achieve the smallest possible order of the L2 discrepancy:

1. Cyclic Shifts. The translation idea originated in K. Roth’s paper [17], who
later applied it to the van der Corput set probabilistically, [18]. A deterministic
example of such a shift was recently constructed by Bilyk [3].

2. Random Digital Scrambling. This approach is introduced in [5] and one may
refer to [14] for a comprehensive discussion and interesting constructive examples.

3. Davenport’s Reflection Principle. Roughly speaking, if a finite set PN has
low L∞ discrepancy, then symmetrizing this set produces a new set of low L2

discrepancy. Davenport proved this in the case of irrational lattice, see [8]; Chen
and Skriganov [6] established this for the van der Corput set (also Proinov [15]
employed the symmetrization idea for the generalized van der Corput sequences).
In the present paper, we apply this principle to the Fibonacci set.

We study the Fibonacci sets from the point of view of their quality for numerical
integration and discrepancy. Let {bn}∞n=0 be the sequence of Fibonacci numbers
that is defined as follows

b0 = b1 = 1, bn = bn−1 + bn−2, for n ≥ 2.

The bn-point Fibonacci set Fn ⊂ [0, 1]2 is defined as

Fn := {(µ/bn, {µbn−1/bn})}bnµ=1,
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where {x} is the fractional part of a number x ∈ R.
In Section 2 we prove that

‖D(Fn,x)‖∞ ≤ C log bn.

This bound, combined with Schmidt’s lower bound (1.3), shows that the Fibonacci
sets have optimal in the sense of order L∞ discrepancy. We do not know if Fn has
minimal in the sense of order Lp discrepancy for p < ∞. However, in Sections 3
and 4 we give arguments that the Fibonacci set Fn is also good in the sense of Lp
for p ∈ (1,∞). In Section 3 we prove that the symmetrized set F ′n has minimal in
the sense of order L2 discrepancy. We also derive a formula, which allows one to
compute the exact value of this quantity. In Section 4 we introduce centered Lp
discrepancy which is a modification of the Lp discrepancy to make it symmetric
with respect to the center of the unit square. We prove that the Fibonacci set Fn
has minimal in the sense of order centered Lp discrepancy for all p ∈ (1,∞). In
both Section 3 and Section 4 we apply the Fourier method to prove the results. On
the base of these results we make a conclusion that the Fibonacci set Fn is good
from the point of view of discrepancy. This set is related to another low discrepancy
sequence – the aforementioned irrational lattice. In particular, the set

An(α) :=
{(µ

b n
, {µα}

)}bn
µ=1

,

where α =
√

5− 1
2

is the golden section, is close to the set Fn for large n.

It is well known (see, for instance, [21]) that the L∞ discrepancy of a finite set is
closely related to the error of numerical integration with knots at the given points.
We shall discuss this topic in more detail here. The quality of a set of N points
for numerical integration can be measured in the following standard way. For a
certain function class W compare the error of numerical integration with knots
from the given set with optimal error for cubature formulas with N knots. We give
a precise formulation of the problem. Numerical integration seeks good ways of
approximating an integral ∫

Ω

f(x)dµ

by an expression of the form

(1.4) ΛN (f, ξ) :=
N∑
j=1

λjf(ξj), ξ = (ξ1, . . . , ξN ), ξj ∈ Ω, j = 1, . . . , N.

It is clear that we must assume that f is integrable and defined at the points
ξ1, . . . , ξN . The expression (1.4) is called a cubature formula (Λ, ξ) (in our case
Ω ⊂ R2) with knots ξ = (ξ1, . . . , ξN ) and weights Λ = (λ1, . . . , λN ). For a function
class W we introduce a concept of error of the cubature formula ΛN (·, ξ) by

(1.5) ΛN (W, ξ) := sup
f∈W

∣∣∣∣∫
Ω

fdµ− ΛN (f, ξ)
∣∣∣∣ .

In the case of equal weights λj = 1/N we denote this error by ΛeN (W, ξ). The
following errors are the best we can achieve with cubature formulas with N knots

δN (W ) := inf
λ1,...,λN
ξ1,...,ξN

ΛN (W, ξ); δeN (W ) := inf
ξ1,...,ξN

ΛeN (W, ξ).
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With these definitions at hand, the relation between the L∞ discrepancy of
a set PN ⊂ [0, 1]2 and the error of numerical integration with knots at PN is
straightforward. Define the following class of functions

χd := {χ[0,x](y) :=
d∏
j=1

χ[0,xj ](yj), xj ∈ [0, 1], j = 1, . . . , d},

where χ[0,u](v) is a characteristic function of the interval [0, u]. Then it is clear that

(1.6) ΛeN (χd,PN ) = N−1‖D(PN ,x)‖∞.

Thus, the results of the paper, discussed above, show that the Fibonacci sets Fn
are good for numerical integration of functions in this class.

We now define classes of functions with bounded mixed derivative. These classes
are important in numerical integration of multivariate functions. Let for r > 0

(1.7) Fr(t) := 1 + 2
∞∑
k=1

k−r cos(2πkt− rπ/2).

For x = (x1, x2) denote
Fr(x) := Fr(x1)Fr(x2)

and
MW r

p := {f : f = ϕ ∗ Fr, ‖ϕ‖p ≤ 1},
where ∗ means convolution and ‖ · ‖p is the standard Lp norm.

It is known (see, for instance, survey [21]) that the Fibonacci sets Fn are also
good for numerical integration of functions from the classes MW r

p . The following
known result gives the order of Λebn(MW r

p ,Fn) for all parameters 1 ≤ p ≤ ∞,
r > 1/p. In our paper, “�” stands for “of the same order of magnitude as” and
“�” stands for “less than a constant multiple of”.

Theorem 1.1. We have
(1.8)

Λebn(MW r
p ,Fn) �


b−rn (log bn)1/2, 1 < p ≤ ∞, r > max

(
1
p ,

1
2

)
;

b−rn log bn, p = 1, r > 1;
b−rn (log bn)1−r, 2 < p ≤ ∞, 1

p < r < 1
2 ;

b−rn ((log bn)(log log bn))1/2, 2 < p ≤ ∞, r = 1/2.

The following theorem gives the lower bounds for optimal rates of numerical
integration (again, see survey [21]).

Theorem 1.2. The following lower bound is valid for any cubature formula (Λ, ξ)
with N knots (r > 1/p)

ΛN (MW r
p , ξ) ≥ C(r, p)N−r(logN)

1
2 , 1 ≤ p <∞.

The lower bounds provided by Theorem 1.2 and the upper bounds from Theorem
1.1 show that the Fibonacci cubature formulas Λebn(·,Fn) are optimal (in the sense
of order) among all cubature formulas in the case 1 < p <∞, r > max(1/p, 1/2):

δbn(MW r
p ) � Λebn(MW r

p ,Fn) � b−rn (log bn)1/2.
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We shall also make a remark in Section 2 which shows that the sets Fn are much
better than their siblings An(α) from the point of view of numerical integration of
smooth functions.

These results motivate us to conduct a thorough study of the Fibonacci sets.
It is well known (see, e.g., [21], Proposition 1.2) that the L∞ discrepancy governs
integration errors not only for characteristic functions, but also for the class MW 1

1 :

(1.9) c1(d)ΛeN (χd, ξ) ≤ ΛeN (MW 1
1 , ξ) ≤ c2(d)ΛeN (χd, ξ).

This allows us to prove the relation

(1.10) Λebn(MW 1
1 ,Fn) � b−1

n log bn,

that is not covered by Theorem 1.1.

2. L∞ discrepancy of the Fibonacci set

Discrepancy was introduced as a quantitative measure of non-uniformity of dis-
tribution for infinite sequences. The difference between the discrepancy of a finite
point set and discrepancy of an infinite sequence is not radical, but rather, it dis-
tinguishes a “static” and a “dynamic” setting, see [14] for more information. The
discrepancy of an infinite sequence u = {u1, u2, . . .} in [0, 1] is defined as

(2.1) ∆(u,N) := sup
0≤a≤1

∣∣#{{u1, . . . , uN} ∩ [0, a)} −Na
∣∣,

which can be viewed as a well-defined function of the natural number N .

In the definition of the discrepancy function for rectangles (1.1), one deals with
the behavior of the whole set, whereas in the definition of the discrepancy for infinite
sequence (2.1), one looks at all the initial j-segments with j ≤ N simultaneously.
It has been shown by Roth [16] that the dynamic problem in dimension one is
equivalent to the static problem in dimension two, and similar reduction is possible
between dynamic settings in dimension d and static settings in dimension d + 1.
The following relationship is easily verified, see [14] for details,

(2.2) ‖D(Fn,x)‖∞ ≤ 2 max{∆(u,N) : N ∈ {1, 2, . . . , bn}}+ 2,

where in our case ∆(u,N) denotes the discrepancy for the sequence u =
{
{µbn−1

bn
}
}∞
n=1

up to the first N terms.

It is well-known that the sequence of Fibonacci numbers {bn}∞n=0 gives the de-

nominators of the partial quotients of the golden ratio
√

5− 1
2

. Based on the
property of the Fibonacci numbers, we prove the following lemmas.

Lemma 2.1. For any Fibonacci numbers bi and bj, with i > j ≥ 1, there exists an
εj ∈ R with |εj | < 1, satisfying

bi−1

bi
=
bj−1

bj
+
εj
b2j
.
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Proof. The identity bn = bn−1 + bn−2 gives

|bi−1bj − bibj−1| = |bi−1bj − (bi−1 + bi−2)bj−1| = |bi−1(bj − bj−1)− bi−2bj−1|
= |bi−1bj−2 − bi−2bj−1| = |(bi−2 + bi−3)bj−2 − bi−2(bj−2 + bj−3)|
= | − bi−2bj−3 + bi−3bj−2| = ...

= |bi−j+1b0 − bt−jb1| = bi−j−1

and

bi = bi−1 + bi−2 = bi−2 + bi−3 + bi−3 = 2bi−2 + bi−3

= . . . = bjbi−j + bj−1bi−j−1.

Thus bi > bjbi−j ≥ bjbi−j−1, which gives∣∣∣∣bi−1

bi
− bj−1

bj

∣∣∣∣ =
∣∣∣∣bi−1bj − bibj−1

bibj

∣∣∣∣ =
bi−j−1

bibj

<
bi−j−1

bjbi−j−1bj
=

1
b2j
.

Therefore there exists some εj with |εj | < 1 such that
bi−1

bi
− bj−1

bj
=
εj
b2j

. �

Now for any interval [0, a) ⊂ [0, 1], defining

(2.3) Z(nj , bj , [0, a)) := #

{{
(nj + r)bn−1

bn

}bj
r=1

∩ [0, a)

}
, j = 0, 1, . . . ,

we prove that

Lemma 2.2.
∣∣Z(nj , bj , [0, a))− bja

∣∣ ≤ 4.

Proof. When bj ≤ 2, both Z(nj , bj , [0, a)) and bja are at most 2, and thus it is
obvious to see

∣∣Z(nj , bj , [0, a))− bja
∣∣ ≤ 4.

When bj > 2, It follows from Lemma 2.1 that

(2.4)
(nj + r)bn−1

bn
=
njbn−1

bn
+ r

(
bj−1

bj
+
εj
b2j

)
=
njbn−1

bn
+ r

bj−1

bj
+ r

εj
b2j
,

for some εj with |εj | < 1.

We want to investigate when
(nj + r)bn−1

bn
modulo 1 lies in [0, a).

If nj = 0 and εj = 0 in (2.4),{{
(nj + r)bn−1

bn

}}bj
r=1

=
{{

rbj−1

bj

}}bj
r=1

=
{
r

bj

}bj
r=1

,

since bj and bj−1 are relatively prime. Thus it is easy to see that∣∣Z(nj , bj , [0, a))− bja
∣∣ =

∣∣∣∣[ a

1/bj

]
− bja

∣∣∣∣ = bja− [bja] ≤ 1,

where [x] is the integer part of a real number x.
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If nj 6= 0 and εj = 0 in (2.4),

(nj + r)bn−1

bn
=
njbn−1

bn
+ r

bj−1

bj
,

the sequence
{{

(nj + r)bn−1

bn

}}bj
r=1

is merely shifted by the value of
njbn−1

bn
, and

the distance of every two elements is unchanged from the case when nj = 0 and
εj = 0. Thus the change of Z(nj , bj , [0, a)) is at most 1, therefore we have∣∣Z(nj , bj , [0, a))− bja

∣∣ ≤ 2.

If nj 6= 0 and εj 6= 0, the change from
rbj−1

bj
to

rbj−1

bj
+
rεj
b2j

only causes the

terms of the sequence modulo 1 to deviate slightly from points in case when nj 6= 0

and εj = 0. However the deviation can be at most
1
bj

, because of

|εj | < 1 and
∣∣∣∣rεjbj

∣∣∣∣ < 1
bj
.

In other words, there will be at most two elements of the sequence that will be
deviated outward or into the interval [0, a). Therefore∣∣Z(nj , bj , [0, a))− bja

∣∣ ≤ 4

which proves the lemma.
�

Now we have the following theorem which is one of our main results.

Theorem 2.3. For Fn = {(µ/bn, {µbn−1/bn})}bnµ=1, we have

(2.5) ‖D(Fn,x)‖∞ � log bn.

Proof. We reduce the problem to the study of the discrepancy ∆(u,N) defined in

(2.1) for the sequence u =
{
{µbn−1

bn
}
}∞
µ=1

and use the relation (2.2) to deduce our

result. For each natural number 2 ≤ N ≤ bn, we divide it into ct−1 blocks of
bt−1, ct−2 blocks of bt−2 consecutive numbers and so on. Then if bt−1 ≤ N < bt,
1 ≤ t ≤ n, let

ct−1 :=
[
N

bt−1

]
,

where [x] denotes the integer part of a positive real number x and [x] ≤ x < [x]+1.
We write

N = ct−1bt−1 +N
′

with 0 ≤ N
′
< bt−1.

Let ct−2 :=

[
N
′

bt−2

]
, then

N = ct−1bt−1 + ct−2bt−2 +N
′′
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with 0 ≤ N
′′
< bt−2. This process gives

(2.6) N = ct−1bt−1 + ct−2bt−2 + . . .+ c1b1 + c0

with

(2.7) 1 ≤ ct−1 ≤
N

bt−1
< 2, 0 ≤ cj−1 <

bj
bj−1

, j = 1, . . . , t− 1.

In fact, by the way they are defined, ct−1 must be 1, and c0 through ct−2 could
be either 0 or 1.

For the sequence u = {u1, u2, . . .} =
{
{µbn−1

bn
}
}∞
µ=1

, consider the case that all

c′js are nonzero and one can easily see that general case will have the same result.
Its first N elements {u1, u2, . . . , uN} can be divided into t disjoint subesets S0, S1,
. . ., St−1 of cardinaties b0, b1, . . ., bt−1 respectively. We denote these sets by Sj ={{

(nj + r)bn−1

bn

}}bj
r=1

, where nj is some nonnegative integer, j = 0, 1, . . . , t − 1.

Therefore

|#{{u1, . . . , uN} ∩ [0, a)} −Na| =

∣∣∣∣∣∣#{
t−1⋃
j=0

Sj ∩ [0, a)} −
t−1∑
j=0

cjbja

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t−1∑
j=0

cj#{Sj ∩ [0, a)} −
t−1∑
j=0

cjbja

∣∣∣∣∣∣
≤

t−1∑
j=0

cj |Z(nj , bj , [0, a)− bja|

≤ 4
t−1∑
j=0

cj ≤ 4t.

Note that
bt−1

bt−3
≥ 2 which gives bt−1 ≥ 2bt−3 ≥ .. ≥ 2[ t2 ], we have t is of order logN

at most. This implies∣∣#{{u1, . . . , uN} ∩ [0, a)} −Na
∣∣� logN.

Thus by definition (2.1),

∆(u,N) = sup
0≤a<1

∣∣#{{u1, . . . , uN} ∩ [0, a)} −Na
∣∣� logN.

and hence the relation (2.2) gives

‖D(Fn,x)‖∞ ≤ 2 max{∆(u,N) : N ∈ {1, 2, . . . , bn}}+ 2
� log bn.

�
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As we stated in the introduction the irrational lattice
{(

µ

bn
, {µα}

)}bn
µ=1

has

sharp L∞ norm if partial quotients of the continued fraction of α are bounded.

Now consider α =
√

5− 1
2

, then the set

An(α) :=
{(

µ

bn
, {µα}

)}bn
µ=1

is closely related to the set Fn and it is known that

(2.8) ‖D(An(α),x)‖∞ � log bn.

The sets Fn and An(α) are close to each other in the following sense. For µ ∈ [1, bn]
the x-coordinates of the µth points of Fn and An(α) are the same and the difference
between the y-coordinates of these points is small. This follows from the well-known
inequality

(2.9)
∣∣∣∣α− bn−1

bn

∣∣∣∣ ≤ 1
2b2n

.

For completeness we give a simple proof of the above inequality. Consider P (x) =
x2 + x− 1. Then P (α) = 0 and |P (bn−1/bn)| = b−2

n . We have

|P (bn−1/bn)− P (α)| = P ′(ξ)|bn−1/bn − α|,

ξ ∈
(
bn−1

bn
, α

)
. It is easy to see that

1
2
≤ bn−1

bn
≤ 2

3
and

1
2
≤ α ≤ 2

3
.

Therefore,

(2.10) 2 ≤ |P ′(ξ)| ≤ 7
3
.

This implies (2.9).
By (2.9) we obtain

|{µbn−1/bn} − {µα}| ≤ |µbn−1/bn − µα| ≤
µ

2b2n
≤ 1

2bn
.

This inequality and the following simple known lemma show that the bound

(2.11) ‖D(Fn,x)‖∞ � log bn, n ≥ 2

can also be derived as a perturbation of (2.8).

Lemma 2.4. Let PN = {pk}Nk=1 ⊂ [0, 1]d and QN = {qk}Nk=1 ⊂ [0, 1]d be such that
‖pk − qk‖∞ ≤ δ, k = 1, . . . , N. Then∣∣‖D(PN ,x)‖∞ − ‖D(QN ,x)‖∞

∣∣ ≤ Nδd.
The bounds (2.8) and (2.11) show that the sets Fn and An(α) are equally good

from the point of view of the L∞ discrepancy. Theorem 1.1 from the introduction
shows that the sets Fn are good for numerical integration. We now demonstrate by
a simple example that sets An(α) are not good for numerical integration. Indeed,
consider a function

f(x1, x2) := e2πix2 .
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It is easy to check that f ∈MW r
p for all r and 1 ≤ p ≤ ∞. The error of numerical

integration of f using An(α) with equal weights
1
bn

is

∣∣∣∣∣ 1
bn

bn∑
µ=1

e2πiµα

∣∣∣∣∣ =
1
bn

∣∣∣∣1− e2πibnα

1− e2πiα

∣∣∣∣ .
Using (2.10) we get

3
7
· 1
b2n
≤
∣∣∣∣α− bn−1

bn

∣∣∣∣ ≤ 1
2b2n

.

This implies for n ≥ 3

|1− e2πibnα| ≥ | sin 2π{bnα}| ≥
2
π
· 2πbn ·

3
7
· 1
b2n

=
12
7
· 1
bn
.

Therefore, the error of numerical integration of f is bounded from below by cb−2
n .

It means that the cubature formula

Qn,α(g) :=
1
bn

∑
q∈An(α)

g(q)

has a saturation property for r > 2.

We now prove (1.10) which is the result of numerical integration by using the
results we got for discrepancy. Therorem 2.3 and Schmidt’s lower bound (1.3) imply

‖D(Fn,x)‖∞ � log bn.

This and relation (1.6) give

(2.12) Λebn(χ2,Fn) � b−1
n log bn.

The relation (1.10) now follows from (2.12) and the well-known inequalities (1.9).

3. L2 discrepancy of Modified Fibonacci Set

Inspired by the Davenport’s Reflection Principle, mentioned in the first section,
we now symmetrize Fn to a 2bn-point set

(3.1) F ′n := {(p1, p2) ∪ (p1, 1− p2) : (p1, p2) ∈ Fn}.

Its discrepancy function is

D(F ′n,x) := #{F ′n ∩ [0, x1)× [0, x2)} − 2bnx1x2,

where x = (x1, x2) ∈ (0, 1]2.
Rewriting it to

D(F ′n,x) =
∑

p=(p1,p2)∈Fn

[
χ[p1,1)×[p2,1)(x) + χ[p1,1)×[1−p2,1)(x)

]
− 2bnx1x2,



FIBONACCI SETS ARE GOOD FOR DISCREPANCY AND NUMERICAL INTEGRATION 11

and computing the Fourier coefficients of the D(F ′n,x) give

D̂(F ′n,k) =
∑

p=(p1,p2)∈Fn

[
χ̂[p1,1)×[p2,1)(k) + χ̂[p1,1)×[1−p2,1)(k)

]
− ̂2bnx1x2

=
∑

p∈Fn

[ ∫ 1

0

∫ 1

0

χ[p1,1)×[p2,1)(x1, x2)e−2πik·xdx1dx2

+
∫ 1

0

∫ 1

0

χ[p1,1)×[1−p2,1)(x1, x2)e−2πik·xdx1dx2

]
−2bn

∫ 1

0

∫ 1

0

x1x2e
−2πik·xdx1dx2

=
∑

p∈Fn

[ ∫ 1

p1

e−2πik1x1dx1

∫ 1

p2

e−2πik2x2dx2

+
∫ 1

p1

e−2πik1x1dx1

∫ 1

1−p2
e−2πik2x2dx2

]
−2bn

∫ 1

0

x1e
−2πik1x1dx1

∫ 1

0

x2e
−2πik2x2dx2.(3.2)

Note that

(3.3)
bn∑
µ=1

e−2πilµ/bn =
{
bn, l ≡ 0 (mod bn),
0, l 6≡ 0 (mod bn).

Let L(n) := {k = (k1, k2) ∈ Z2 : k1 + bn−1k2 ≡ 0 (mod bn)}, then

(3.4)
bn∑
µ=1

e−2πi(k1+bn−1k2)µ/bn =
{
bn, (k1, k2) ∈ L(n),
0, (k1, k2) 6∈ L(n).

Now let’s consider different cases:

Case 1. k1 = 0, k2 = 0. We have the following lemma:

Lemma 3.1. D̂(F ′n,0) = −1
2

.

Proof. From (3.2) we get

D̂(F ′n,0) =
∑

p∈Fn

[
(1− p1)(1− p2) + (1− p1)p2

]
− bn

2

=
∑

p∈Fn

(
1− p1)− bn

2

=
bn∑
µ=1

(1− µ/bn)− bn
2

= bn −
bn(bn + 1)

2bn
− bn

2

= −1
2
.(3.5)
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�

Case 2. k1 6= 0, k2 6= 0.
In this case

D̂(F ′n,k) =
−1

4π2k1k2

∑
p∈Fn

[
(1− e−2πik1p1)(1− e−2πik2p2)

+(1− e−2πik1p1)(1− e−2πik2(1−p2))
]

+
bn

2π2k1k2

=
−1

4π2k1k2

∑
p∈Fn

[
(1− e−2πik1p1)(1− e−2πik2p2)

+(1− e−2πik1p1)(1− e2πik2p2)
]

+
bn

2π2k1k2
.(3.6)

Then we have the following lemma:

Lemma 3.2. If k1 6= 0, k2 6= 0, then

(3.7) D̂(F ′n,k) =
bn

2π2k1k2

provided that at least one of k1 and k2 is 0 modulo bn.

Proof. Without loss of generality assume k1 ≡ 0 (mod bn), then

e−2πik1p1 = e
−2πik1µ

bn = 1.

So from (3.6) we get

(3.8) D̂(F ′n,k) =
bn

2π2k1k2
.

�

Lemma 3.3. Assume k1 6≡ 0 (mod bn) and k2 6≡ 0 (mod bn), then
(3.9)

D̂(F ′n,k) =



−bn
2π2k1k2

, k1 + k2bn−1 ≡ 0 (mod bn), k1 − k2bn−1 ≡ 0 (mod bn),

−bn
4π2k1k2

, k1 + k2bn−1 ≡ 0 (mod bn), k1 − k2bn−1 6≡ 0 (mod bn),

−bn
4π2k1k2

, k1 + k2bn−1 6≡ 0 (mod bn), k1 − k2bn−1 ≡ 0 (mod bn),

0, k1 + k2bn−1 6≡ 0 (mod bn), k1 − k2bn−1 6≡ 0 (mod bn).

Proof. We first rewrite (3.6) as

D̂(F ′n,k) =
−1

4π2k1k2

∑
p∈Fn

[
(1− e−2πik1p1 − e−2πik2p2 + e−2πi(k1p1+k2p2))

+(1− e−2πik1p1 − e2πik2p2 + e−2πi(k1p1−k2p2))
]

+
bn

2π2k1k2
.(3.10)

By (3.3) ∑
p∈Fn

e±2πxikjpj = 0, for j = 1, 2.
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Thus

D̂(F ′n,k) =
−1

4π2k1k2

∑
p∈Fn

[
2 + e−2πi(k1p1+k2p2) + e−2πi(k1p1−k2p2)

]
+

bn
2π2k1k2

=
−1

4π2k1k2

∑
p∈Fn

[
e−2πi(k1p1+k2p2) + e−2πi(k1p1−k2p2)

]
=

−1
4π2k1k2

bn∑
µ=1

[
e
−2πiµ(k1+k2bn−1)

bn + e
−2πiµ(k1−k2bn−1)

bn

]
.(3.11)

If both k1+k2bn−1 ≡ 0 (mod bn) and k1−k2bn−1 ≡ 0 (mod bn) hold, i.e. (k1, k2) ∈
L(n) and (k1,−k2) ∈ L(n), we get

D̂(F ′n,k) =
−bn

2π2k1k2
.(3.12)

Note that for odd bn the congruences k1 + k2bn−1 ≡ 0 (mod bn), k1 − k2bn−1 ≡ 0
(mod bn) imply k1 ≡ 0 (mod bn) that violates the assumptions of Lemma 3.3. Thus
this case is possible only for even bn.
If only one of k1 + k2bn−1 ≡ 0 (mod bn), k1 − k2bn−1 ≡ 0 (mod bn) holds, or in
other words only one of (k1, k2), (k1,−k2) is in L(n), then

D̂(F ′n,k) =
−bn

4π2k1k2
.(3.13)

If k1 + k2bn−1 6≡ 0 (mod bn) and k1 − k2bn−1 6≡ 0 (mod bn), i.e. both (k1, k2) and
(k1,−k2) are not in L(n), then we get

D̂(F ′n,k) = 0.(3.14)

�

Case 3. k1 6= 0, k2 = 0. We have the following lemma:

Lemma 3.4. If k1 6= 0, k2 = 0,

(3.15) D̂(F ′n,k) =


bn

2πik1
, k1 ≡ 0 (mod bn),

0, k1 6≡ 0 (mod bn).

Proof. We obtain from (3.2),

D̂(F ′n,k) =
−1

2πik1

∑
p∈Fn

[
(1− e−2πik1p1)(1− p2) + (1− e−2πik1p1)p2

]
+

bn
2πik1

=
−1

2πik1

∑
p∈Fn

[
1− e−2πik1p1

]
+

bn
2πik1

.(3.16)

If k1 ≡ 0 (mod bn), then e−2πik1p1 = 1, so we get

(3.17) D̂(F ′n,k) =
bn

2πik1
.
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If k1 6≡ 0 (mod bn), then
∑

p∈Fn

e−2πik1p1 = 0, so we get

(3.18) D̂(F ′n,k) = 0.

�

Case 4. k1 = 0, k2 6= 0. We have the following lemma:

Lemma 3.5. If k1 = 0, k2 6= 0,

(3.19) D̂(F ′n,k) =


bn

2πik2
, k2 ≡ 0 (mod bn),

0, k2 6≡ 0 (mod bn).

Proof. We obtain from (3.2),

D̂(F ′n,k) =
−1

2πik2

∑
p∈Fn

[
(1− p1)(1− e−2πik2p2) + (1− p1)(1− e2πik2p2)

]
+

bn
2πik2

=
−1

2πik2

∑
p∈Fn

[
(1− p1)(2− e−2πik2p2 − e2πik2p2)

]
+

bn
2πik2

=
−1

2πik2

∑
p∈Fn

[
2− e−2πik2p2 − e2πik1p2 − 2p1 + p1e

−2πik2p2 + p1e
2πik2p2

]
+

bn
2πik2

.

If k2 ≡ 0 (mod bn), then e±2πik2p2 = 1, and we get

(3.20) D̂(F ′n,k) =
bn

2πik2
.

If k2 6≡ 0 (mod bn), then
∑

p∈Fn

e±2πik2p2 = 0, and we get

D̂(F ′n,k) =
−1

2πik2

∑
p∈Fn

[
2− 2p1 + p1e

−2πik2p2 + p1e
2πik2p2

]
+

bn
2πik2

=
−1

2πik2

bn∑
µ=1

[
2− 2

µ

bn
+

µ

bn
e−

2πik2µbn−1
bn +

µ

bn
e

2πik2µbn−1
bn

]
+

bn
2πik2

=
−1

2πik2

[
2bn − (bn + 1)− bn +

bn∑
µ=1

(
µ

bn
e−

2πik2µbn−1
bn +

µ

bn
e

2πik2µbn−1
bn

)]

=
1

2πik2
+
−1

2πik2

bn−1∑
µ=0

(
µ

bn
e−

2πik2µbn−1
bn +

µ

bn
e

2πik2µbn−1
bn

)
+ 2

 .
(3.21)

Let

f(x) =
bn−1∑
µ=0

e
2πiµx
bn =

e2πix − 1

e
2πix
bn − 1

.

On one hand,

(3.22) f ′(x) =
bn−1∑
µ=0

2πiµ
bn

e
2πiµx
bn ,
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and thus

(3.23) f ′(k2bn−1) =
bn−1∑
µ=0

2πiµ
bn

e
2πiµk2bn−1

bn ;

on the other hand

f ′(x) =
2πie2πix(e

2πix
bn − 1)− (e2πix − 1) 2πi

bn
e

2πix
bn(

e
2πix
bn − 1

)2 .(3.24)

Note that e2πik2bn−1 = 1 and thus

f ′(k2bn−1) =
2πi(e

2πik2bn−1
bn − 1)(

e
2πik2bn−1

bn − 1
)2(3.25)

=
2πi

e
2πik2bn−1

bn − 1
.

Comparing (3.23) and (3.25) we find

bn−1∑
µ=0

µ

bn
e

2πik2µbn−1
bn =

1

e
2πik2bn−1

bn − 1
.

In the same way we get

bn−1∑
µ=0

µ

bn
e
−2πik2µbn−1

bn =
1

e
−2πik2bn−1

bn − 1
.

Therefore,

bn−1∑
µ=0

[
µ

bn
e
−2πik2µbn−1

bn +
µ

bn
e

2πik2µbn−1
bn

]
=

1

e
−2πik2bn−1

bn − 1
+

1

e
2πik2bn−1

bn − 1

=

(
e

2πik2bn−1
bn − 1

)
+
(
e
−2πik2bn−1

bn − 1
)

(
e
−2πik2bn−1

bn − 1
)(
e

2πik2bn−1
bn − 1

)
=

e
2πik2bn−1

bn + e
−2πik2bn−1

bn − 2

2− e
−2πik2bn−1

bn − e
2πik2bn−1

bn

= −1.

Hence from (3.21)

D̂(F ′n,k) =
1

2πik2
+
−1

2πik2
(−1 + 2)

= 0.(3.26)

�
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Remark 3.6. We define the sets

S1 = {(k1, k2) : k1, k2 6= 0, k1 ≡ 0 (mod bn)},
S2 = {(k1, k2) : k1, k2 6= 0, k2 ≡ 0 (mod bn)},
S3 = {(k1, 0) : k1 ≡ 0 (mod bn), k1 6= 0},
S4 = {(0, k2) : k2 ≡ 0 (mod bn), k2 6= 0},
S5 = {(k1, k2) : (k1, k2) ∈ L(n) \ {0}, k1, k2 6≡ 0 (mod bn)},
S6 = {(k1, k2) : (k1,−k2) ∈ L(n) \ {0}, k1, k2 6≡ 0 (mod bn)}.

Based on previous lemmas, we have the following observations. The results of
lemmas 3.2, 3.3, 3.4, and 3.5 imply that for k ∈ S1 ∪ ... ∪ S6 we have

(3.27) |D̂(F ′n,k)| � bn
2∏
j=1

max(|kj |, 1)

.

In all other cases, the corresponding Fourier coefficients are equal to zero, see (3.14),
(3.18) and (3.26).

For k ∈ S1, we write k1 = lbn, where l ∈ Z \ {0}. Then |D̂(F ′n,k)| =
1

2π2|k1l|
.

We deal with S2, S3, and S4 similarly. We are now ready to proceed to the main
theorem.

Theorem 3.7. For the symmetrized Fibonacci set F ′n ⊂ [0, 1]2, we have

(3.28) ‖D(F ′n,x)‖2 �
√

log bn,

Proof. By Parseval’s theorem,

‖D(F ′n,x)‖22 = ‖D̂(F ′n,k)‖22 ≤ |D̂(F ′n,0)|2 +
6∑
i=1

∑
k∈Si

|D̂(F ′n,k)|2

�
∑

k∈L(n)\{0}

b2n
2∏
j=1

max(k2
j , 1)

+
∑

(k1,−k2)∈L(n)\{0}

b2n
2∏
j=1

max(k2
j , 1)

+2
∑
l 6=0

∑
k 6=0

1
(kl)2

+ 2
∑
l 6=0

1
l2
.

It is easy to see that the last two sums converge to some constants and the first
two are completely similar to each other. We can thus estimate

‖D(F ′n,x)‖22 �
∑

k∈L(n)\{0}

b2n
2∏
j=1

max(k2
j , 1)

.(3.29)
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We now use the following lemma, see Lemma 2.1 from Chapter 4 of [20].

Lemma 3.8. Denote

Γ(N) :=
{
k = (k1, · · · , kd) ∈ Zd :

d∏
j=1

max(|kj |, 1) ≤ N
}

and
Zl :=

(
Γ(2l+1γbn) \ Γ(2lγbn)

)
∩ L(n), l = 0, 1, · · · ,

then there exists an absolute constant γ > 0 such that for any n > 2

Γ(γbn) ∩
(
L(n) \ 0

)
= ∅,

and

(3.30) |Zl| � 2l(l + 1) log bn, l = 0, 1, · · · .

Therefore, the summation in (3.29) can be estimated as

‖D(F ′n,x)‖22 �
∑
l≥0

∑
k∈Zl

1
|2l|2

,(3.31)

and using the cardinality estimate of Zl in (3.30), we get,

‖D(F ′n,x)‖22 �
∑
l≥0

2l(l + 1) log bn
(2l)2

= log bn
∑
l≥0

l + 1
2l

� log bn.

Hence
‖D(F ′n,x)‖2 �

√
log bn.

�

Remark 3.9. In this section we symmetrize the original Fibonacci set to obtain a
2bn−point set F ′n = {(p1, p2) ∪ {(p1, 1 − p2) : (p1, p2) ∈ Fn}. Obviously, the L∞
discrepancy of F ′n satisfies the same upper bound as Fn in the order of magnitude
and thus is optimal. Theorem 3.7 verifies the sharpness of its L2 discrepancy.

In fact, we can also demonstrate that a 4bn−point set F̃n = {(p1, p2) ∪ (1 −
p1, p2) ∪ {(p1, 1 − p2) ∪ {(1 − p1, 1 − p2) : (p1, p2) ∈ Fn} achieves the minimal
L2 discrepancy as well. The computation is completely analogous, and, in Case 4
(Lemma 3.5), it is much more straightforward.

We now derive a formula which provides the exact value of ‖D(F ′n,x)‖2. For
simplicity, we shall first assume that bn is odd, and thus S5∩S6 = ∅. We start with
the contribution of k ∈ S5, using the notation introduced in Remark 3.6. In this
case, D̂(F ′n,k) = − bn

4π2k1k2
. We shall make use of the well-known identity, see e.g.

[1]:

(3.32)
∑
n∈Z

1
(n+ x)2

=
π2

sin2(πx)
.
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Denote k1 + k2bn−1 = lbn, for l ∈ Z and toward the end of the computation
write k2 = mbn + r, where m ∈ Z and r = 1, ..., bn − 1. We have, by Lemma 3.3∑

k∈S5

∣∣∣D̂(F ′n,k)
∣∣∣2 =

b2n
16π4

∑
k2 6≡0 mod bn

1
k2

2

∑
l∈Z

1
b2n
· 1(
l − bn−1k2

bn

)2

=
1

16π2

∑
k2 6≡0 mod bn

1

k2
2 sin2

(
πbn−1k2

bn

)
=

1
16π2

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

) ∑
m∈Z

1
b2n
· 1(
m+ r

bn

)2

=
1

16b2n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) ,(3.33)

where we have used identity (3.32) in the second and the last equalities above. It
is obvious that the contribution of k ∈ S6 is identical. If bn is even, a “correction
term” 1

8b2n
arises due to the fact that S5 ∩ S6 6= ∅ (we leave the computation to the

reader).
Using the inclusion-exclusion principle and the identity

(3.34)
∑
l∈N

1
l2

=
π2

6
,

we obtain, by Lemma 3.2∑
k∈S1∪S2

∣∣∣D̂(F ′n,k)
∣∣∣2 = 4

∑
l1∈N,k2∈N

b2n
4π4 · l21b2n · k2

2

+ 4
∑

k1∈N,l2∈N

b2n
4π4 · k2

1 · l22b2n

−4
∑

l1∈N,l2∈N

b2n
4π4b4nl

2
1l

2
2

= 8 · 1
4π4
· π

2

6
· π

2

6
− 4

1
144b2n

=
1
36

(
2− 1

b2n

)
.(3.35)

(The multiplication by 4 above accounts for all possible choices of signs).
Finally, Lemmas 3.4 and 3.5 yield∑

k∈S3∪S4

∣∣∣D̂(F ′n,k)
∣∣∣2 = 2 · b

2
n

4π2

∑
l∈Z\{0}

1
b2nl

2
=

1
6
.(3.36)

Putting together equations (3.33), (3.35), and (3.36), and the relation D̂(F ′n,0) =
1
2

(Lemma 3.1) we obtain

Theorem 3.10. For n ≥ 2 we have
(3.37)

‖D(F ′n,x)‖22 =
1

8b2n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) +
17
36
− 1

36b2n
when bn is odd ,
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(3.38)

‖D(F ′n,x)‖22 =
1

8b2n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) +
17
36

+
7

72b2n
when bn is even.

It can be shown directly that the main therm in the equations above is of the
order log bn � n. Besides, numerical experiments indicate that

(3.39)
1
b2n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) ≈ 0.1193n.

4. Centered Lp discrepancy

Consider the following modification of the classical Lp discrepancy function. For
a parameter a ∈ [0, 1/2] define the following univariate characteristic function for
t ∈ [0, 1).

S(a, t) := χ[1/2−a,1/2+a](t),

and for the multivariate case x ∈ [0, 1/2]d, y ∈ [0, 1]d

S(x,y) :=
d∏
j=1

S(xj , yj).

Define for a set ξ := {ξµ}Nµ=1 ⊂ [0, 1]d the centered Lp discrepancy as follows

Dc(ξ,N, d)p :=

∥∥∥∥∥
N∑
µ=1

S(x, ξµ)−N
∫

[0,1]d
S(x,y)dy

∥∥∥∥∥
Lp([0,1/2]d,x)

.

In this section we estimate Dc(ξ,N, d)p from above in the case d = 2, p < ∞,
N = bn and

ξµ = (µ/bn, {µbn−1/bn}), Fn := {ξµ}bnµ=1.

We apply here the technique that is based on the Fourier representation of S(x,y)
as a function on y. First, we find the Fourier representation of the univariate
function

Ŝ(a, k) =
∫ 1

0

S(a, t)e−2πiktdt = (−1)k(2πik)−1(e2πika − e−2πika).

It is clear that Ŝ(a, 0) = 2a. Second, it follows directly from the definition of S(x,y)
and the above formulas that

(4.1) |Ŝ(x,k)| =
d∏
j=1

|Ŝ(xj , kj)| ≤
d∏
j=1

max(|kj |, 1)−1.

Denote

Φ(k) =
bn∑
µ=1

e2πi(k,ξµ).

Then for a trigonometric polynomial f one has

(4.2) Φn(f) :=
bn∑
µ=1

f
(
µ/bn, {µbn−1/bn}

)
=
∑
k

f̂(k)Φ(k).
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It is known and easy to see that the following relation holds

(4.3) Φ(k) =
{
bn, k ∈ L(n),
0, k 6∈ L(n).

Therefore, in the case p = 2, that we discuss first

(4.4) Dc(Fn, bn, 2)2 ≤

∥∥∥∥∥∥
∑

k6=(0,0)

Φ(k)Ŝ(x,k)

∥∥∥∥∥∥
2

.

Using the fact that functions Ŝ(x,k) and Ŝ(x,k′) are orthogonal on [0, 1]2 if
(|k1|, |k2|) 6= (|k′1|, |k′2|) and using the bound (4.1) and using the (3.30) again we get
from (4.4)

Dc(Fn, bn, 2)2
2 �

∞∑
l=0

b2n(2lbn)−2|Zl| � log bn
∞∑
l=0

2l(l + 1)
22l

� log bn.

Thus,
Dc(Fn, bn, 2)2 �

√
log bn.

We now proceed to the case p ∈ [2,∞). Let

ψl(x) :=
∑
k∈Zl

Ŝ(x,k).

Then

(4.5) Dc(Fn, bn, 2)p ≤ bn
∞∑
l=0

‖ψl‖p.

By the corollary of the Littlewood-Paley theorem we have for ‖ψl‖p

‖ψl‖p �

(∑
s

∥∥δs(ψl)∥∥2

p

)1/2

,

where for s = (s1, s2), sj are nonnegative integers

δs(f,x) :=
∑

[2sj−1]≤|kj |<2sj ,
j=1,2

f̂(k)ei(k,x).

It is not difficult to see that for ψl only those δs(ψl) can be nonzero for which∣∣ ‖s‖1 − log2(2lγbn)
∣∣ ≤ C.

In addition by lemma 3.8 the number of terms of δs(ψl) is not greater than C2l.
Therefore,

(4.6)
∥∥δs(ψl)∥∥p ≤ ∥∥δs(ψl)∥∥2/p

2

∥∥δs(ψl)∥∥1−2/p

∞ � 2−l/pb−1
n

and

(4.7) ‖ψl‖p � (l + log bn)1/22−l/pb−1
n .

The bounds (4.5) and (4.6) imply

Dc(Fn, bn, 2)p ≤ C(p)
√

log bn.
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We discuss the relations between centered Lp discrepancy and standard Lp discrep-
ancy. We have

S(a, t) = χ[0, 12 +a](t)− χ[0, 12−a](t).

This allows us to obtain the following inequality

Dc(ξ,N, d)p ≤ 2d‖D(ξ,x)‖p.
The centered Lp discrepancy can be bounded from below by the Lp discrepancy of
a symmetrized set ξ̄, that we define momentarily. We describe it in the case d = 2.
Let R1 and R2 be reflection operators that act as follows: for u = (u1, u2) ∈ [0, 1]2

R1(u) := (1− u1, u2), R2(u) := (u1, 1− u2).

For a set ξ = {ξj}Nj=1 ⊂ [0, 1]2, define the symmetrized set

ξ̄ := ξ ∪R1(ξ) ∪R2(ξ) ∪R2(R1(ξ)).

This set contains 4N points, counting multiplicity. The sets

G1(x) :=
[

1
2
,

1
2

+ x1

)
×
[

1
2
,

1
2

+ x2

)
, G2(x) :=

[
1
2
,

1
2
− x1

)
×
[

1
2
,

1
2

+ x2

)
,

G3(x) :=
[

1
2
,

1
2
− x1

)
×
[

1
2
,

1
2
− x2

)
, G4(x) :=

[
1
2
,

1
2

+ x1

)
×
[

1
2
,

1
2
− x2

)
,

counting the same number of points of ξ̄ since we split the same number of the
points in set ξ̄ on the boundary evenly.
Then for the centered Lp discrepancy of ξ̄ we have

Dc(ξ̄, 4N, 2)pp = 4
∫ 1

2

0

∫ 1
2

0

∣∣∣∣∣∣
∑

u∈ξ̄∩[ 12 ,1]×[ 12 ,1]

χG1(x)(u)− 4N · x1x2

∣∣∣∣∣∣
p

dx1dx2

=
∫ 1

0

∫ 1

0

∣∣∣∣∣∑
v∈η

χG1(z)(v)−N · z1z2

∣∣∣∣∣
p

dz1dz2,

where

z = 2x,v = 2
(

u− 1
2

)
+

1
2

= 2u− 1
2

;

η :=
{

v = 2u− 1
2
, u ∈ ξ̄ ∩

(
[
1
2
, 1]× [

1
2
, 1]
)}

.

Thus,

Dc(ξ̄, 4N, 2)p ≥ ‖D(η − 1
2
,x)‖p.

Clearly,
Dc(ξ̄, 4N, 2)p ≤ 4Dc(ξ,N, 2)p.

Therefore,

Dc(ξ,N, 2)p ≥
1
4
‖D(η − 1

2
,x)‖p.

It is known that for all p > 1 and any set PN of N points one has

(4.8) ‖D(PN ,x)‖p ≥ C
√

logN,

where C is some positive absolute constant.
This implies that the Fibonacci sets Fn have optimal centered Lp discrepancy

for p ∈ (1,∞) in the sense of order.
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