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Compressed Sensing and Electron Microscopy

Peter Binev, Wolfgang Dahmen, Ronald DeVore, Philipp Lamby,
Daniel Savu, and Robert Sharpley ∗

Abstract

Compressed Sensing (CS) is a relatively new approach to signal acquisition which
has as its goal to minimize the number of measurements needed of the signal in order
to guarantee that it is captured to a prescribed accuracy. It is natural to inquire
whether this new subject has a role to play in Electron Microscopy (EM). In this
paper, we shall describe the foundations of Compressed Sensing and then examine
which parts of this new theory may be useful in EM.

AMS Subject Classification: 94A12, 65C99, 68P30, 41A25, 15A52

Key Words: compressed sensing, electron microscopy, sparsity, optimal encoding and
decoding.

1 Introduction

Images formed from modern electron microscopes play a central role in the analysis of the
composition and structure of materials [23, 32]. In particular, processing the data from
STEM (scanning transmission electron microscopes [22, 2]), is becoming increasingly im-
portant for the analysis of biological and other soft materials at fine resolution. However,
the effective and realistic imaging of fine scale structures requires high density sampling
with good signal to noise ratios and consequently a significant number of electrons must
be applied per unit area. This intrusion into the sampled material can result in structural
changes or even a destruction of the observed portion. Thus, a critical issue in electron
microscopy is the electron dosage needed to produce a suitable quality image. Higher dose
scans can damage the specimen while lower dose scans result in high noise content in the
signal. It is therefore a central question to determine how low can one keep the dose while
still being able to faithfully extract the information held at the highest physically possible
resolution level. This calls for the development of specially tailored imaging techniques for
electron microscopy that are able to go beyond the confines of currently used off-the-shelf
tools.

∗This research was supported in part by the College of Arts and Sciences at the University of South
Carolina, the ARO/DoD Contracts W911NF-05-1-0227 and W911NF-07-1-0185; the Office of Naval Re-
search Contract ONR-N00014-08-1-1113; the NSF Grants DMS-0915104 and DMS-0915231; the Special
Priority Program SPP 1324, funded by DFG.
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Compressed Sensing (CS) is an emerging new discipline which offers a fresh view of
signal/image acquisition and reconstruction. The goal of compressed sensing is to acquire
a signal with the fewest number of measurements. This is accomplished through innovative
methods for sampling (encoding) and reconstruction (decoding). The purpose of this
paper is to describe the main elements of compressed sensing with an eye toward their
possible use in Electron Microscopy (EM). In fact, correlating “low dose” with “fewest
possible measurements” triggers our interest in exploring the potentially beneficial use of
CS-concepts in EM.

In the following section, we shall give the rudiments of Compressed Sensing. We tailor
our presentation to the acquisition and reconstruction of images since this matches the
goals of EM. The subsequent sections of this paper will discuss possible uses of CS in
Electron Microscopy. More specifically, we shall address two scenarios. The first applies
to high resolution EM acquisition for materials with crystalline-like lattice structure, and
the second corresponds to a much lower resolution level, which is a typical setting for
electron tomography.

2 The foundations of compressed sensing

The ideas of compressed sensing apply to both image and signal acquisition and their
reconstruction. Since our main interest is to discuss whether these ideas have a role to
play in Electron Microscopy, we shall restrict our discussion to image acquisition.

Typical digital cameras acquire an image by measuring the number of photons that
impinge on a collection device at an array of physical locations (pixels). The resulting
array of pixel values is then compressed by using a change of basis from pixel representa-
tion to another representation such as discrete wavelets or discrete cosines. In this new
representation, most basis coefficients are small and are quantized to zero. The positions
and quantized values of the remaining coefficients can be described by a relatively small
bitstream.

Since the compressed bitstream uses far fewer bits than the original pixel array, it is
natural to ask whether one could have - in the very beginning - captured the image with
fewer measurements; for example a number of measurements which is comparable to the
number of bits retained. Compressed Sensing answers this question in the affirmative
and describes what these measurements should look like. It also develops a quantitative
theory that explains the efficiency (distortion rate) for these new methods of sampling.

The main ingredients of this new theory for sensing are: (i) a new way of modeling real
world images by using the concept of sparsity, (ii) new ideas on how to sample images,
(iii) innovative methods for reconstructing the image from the samples. Each of these
components can shed some light on Electron Microscopy and indeed may improve the
methodology of EM acquisition and processing. To understand these possibilities we first
describe the primary components of CS.

2



2.1 Models classes for images

A digitized image is an array of N pixel values which can be represented by a matrix
with real entries. We can also think of each digitized image as a vector f ∈ IRN obtained
by scanning the pixel values in a specified order; usually this is the first row from left to
right and then the second row left to right and so on. We shall treat the components of f
as real numbers, although sensors would quantize these real numbers to a certain number
of bits (typically eight or sixteen). One should view N as very large. As the resolution of
sensors improves, N will grow.

If all possible vectors f ∈ IRN could appear as the pixel array of an image, there
would be no hope for compression or fast acquisition. However, it is generally agreed that
the images that are of interest represent a small number of the mathematically possible
f . How can we justify this claim when we do not have a precise definition of real world
images? We present the two most common arguments.

Firstly, one can carry out the following experiment. Randomly assign pixel values
and display the resulting image. Each such image is a mathematically allowable image
occurring with equal probability. One will see that all of the resulting images will have
no apparent structure and do not match our understanding of real world images. Thus,
real world images are such a small percentage of the mathematically possible images that
we never even see one by this experiment.

A second more mathematical argument is to recognize that the pixel values that
occur in a real world image have some regularity. This is not easy to see with the pixel
representation of the image so we shall make a basis transformation to draw this out.
The pixel representation can be thought of as representing the vector f in terms of the
canonical basis functions ei ∈ IRN , i = 1, . . . , N , where the vector ei is one in the i-th
position but zero in all other entries. So f =

∑N
i=1 p(i)ei with p(i) the corresponding

pixel value. There are of course many other natural bases {b1, b2, . . . , bN} (with bj ∈ IRN)
that could also be used to represent f . Two that are commonly used for images are the
discrete Fourier and a discrete wavelet bases. We can write our image vector f in terms
of these basis elements, f =

∑N
i=1 x(i)bi. Notice that the coefficient vector x = Bf for a

suitable change of basis N ×N matrix B. The vector x is again in IRN . If one carries out
this change of basis for real world images to either of the above mentioned bases, then
one observes that most of the coefficients x(i) are zero or very small.

Figures 1-2 are an illustration of this fact. The 512× 512 raw image in Figure 1 a) is
of an M1 catalyst, a phase of mixed-metal oxide in the system Mo-V-Nb-Te-O from EM.
Although this image looks to have very regular structure, a magnification of the image
(Figure 1 b)) demonstrates that there is little regularity at the pixel level.

If we look at the histogram of pixel values there is no particular structure (Figure 2 a)).
However, if we write this image in a wavelet representation (Haar system, for example),
then we see that the histogram of coefficients noticeably peak at zero, meaning that most
coefficients in this basis representation are either zero or very small (Figure 2 b)). This
behavior is typical of all real world images.

It is useful to give this second argument a more mathematical formulation. For this,
we introduce the concepts of sparsity and compressibility. We say a vector x ∈ IRN has
sparsity k if at most k of the entries in x are nonzero. We denote by Σk the set of all
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(a) (b)

Figure 1: Electron microscopy images: (a) 512 by 512 M1 catalyst in the Mo-V-Nb-Te-O
family of mixed oxides; (b) four times magnification of cropped northwest corner of EM
image.

(a) (b)

Figure 2: Comparison of histograms of coefficients in the pixel and wavelet bases for the
M1 catalyst demonstrating sparsity in the wavelet basis: (a) standard image histogram
of pixel values; (b) histogram of wavelet coefficients showing sparsity.
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vectors x ∈ IRN which have sparsity k. Notice that Σk is not a linear space since we have
not specified the location of the nonzero entries. For example, each of the coordinate
vectors ei, i = 1, . . . , N , is 1-sparse but their linear span is all of IRN .

A vector x ∈ Σk is much simpler than a general vector x ∈ IRN since it can be
described by 2k pieces of information, namely, the k positions i where x(i) 6= 0 (called the
support of x) and the values of x at these positions. Thus, if an image f has a coefficient
vector x = Bf which is in Σk for some small value of k, then this f is considerably simpler
than a general vector in IRN . Notice that we are not saying that f itself is sparse (this
would correspond to only a small number of pixel values of f are nonzero). Rather, we
are saying that after we transform f to a suitable basis, the resulting basis coefficients are
sparse. For example, if f has a periodic structure, then transforming to a Fourier basis
would result in a sparse representation.

Of course, it is a very idealized assumption to say that x = Bf is sparse. Real images
do not give sparse coefficients sequences x because the images have detail at fine scale and
also the image may be corrupted by sensor noise. What is true is that real world images
are usually well approximated by sparse sequences and it is indeed this fact and this fact
alone that allows them to be successfully compressed by transform methods.

We shall next give a precise mathematical formulation for the notion of being well
approximated. To do this, we must first agree upon a method to measure distortion. In
engineering disciplines, the measurement of distortion is almost exclusively done in the
least squares sense. Given our original image f = (f(i))Ni=1 and given some compressed

version f̂ = (f̂(i))Ni=1 of f , the least squares distortion between these two images is 1

‖f − f̂‖ :=

(
N∑
i=1

|f(i)− f̂(i)|2
)1/2

. (2.1)

The smaller this quantity is the better we think that f̂ represents f . If our basis (bi) is
an orthonormal system x = Bf and x̂ = Bf̂ are the coefficient sequences for f and f̂
respectively, then

‖f − f̂‖`2 :=

(
N∑
i=1

|x(i)− x̂(i)|2
)1/2

. (2.2)

Thus, we can also measure the distortion after we have transformed to a new basis.
Measuring distortion in the above least squares norm, while customary, is not the only

possibility and it may indeed be that other norms better describe the intended application.
The least squares norm is a special case of the `p norms (or quasi-norms) of sequences
defined by

‖x‖`p := ‖x‖`Np :=


(∑N

i=1 |xj|p
)1/p

, 0 < p <∞,
max

j=1,...,N
|xj|, p =∞. (2.3)

Notice that for p = 2 we have the least squares norms used above to measure distortion.

1In mathematics the symbol := is used to mean that the quantity nearest the colon : is defined by the
quantity nearest the equal sign =
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Any of these norms could equally well be used to measure distortion but this is not
our main reason for introducing them. Rather, we want to point out that when these
norms are applied to the basis coefficients x of our image f , they give a measure of how
nice f is, as we shall now explain. Let us first notice two properties of the `p norms.

Rearrangement Property: The `p norm depends only on the size of the entries in
x and not where they appear in the sequence. If we rearrange the entries in the sequence
we get a new vector but it has exactly the same `p norm as x.

Monotonicity Property: If we fix the vector x then ‖x‖`p ≤ ‖x‖`q whenever q ≤ p.
For example, the vector x = (1, 1, . . . , 1) has least squares norm N1/2 but ‖x‖`1 = N .
Thus, a requirement placed on x of the form ‖x‖`p ≤ 1 is stronger (harder to satisfy) as
p gets smaller.

We have made the claim that compression of an image is possible if its transformed
coefficients x = Bf can be well approximated by sparse vectors. In order to make this
claim precise, we introduce the error in approximating a general vector x by the elements
of Σk. Although we are primarily interested in such approximation in the least squares
norm, we can make the definition for any norm ‖ · ‖X and in particular for the `p norms
just introduced. Namely, given a sparsity level k, we define

σk(x)X := inf
z∈Σk
‖x− z‖X . (2.4)

Thus, σk(x)X measures how well we can approximate x by the elements of Σk if we decide
to measure the error in ‖ · ‖X . This process is referred to as k-term approximation and
σk(x)X is the error of k-term approximation in X.

It is particularly simple to understand k-term approximation in the `p norms. The
best approximation to x is obtained by finding the set Λk := Λk(x) of k coordinates where
the entries |x(i)|, i ∈ Λk, are largest. Then the vector xΛk , which agrees with x on the
coordinates of Λk and is otherwise zero, will be in Σk and is a best approximation to x
(in any of the `p norms) from Σk. The error of k-term approximation is then

σk(x)`p =

∑
i/∈Λk

|x(i)|p
1/p

. (2.5)

That is, ‖x − xΛk‖`p = ‖xΛck
‖`p = σk(x)`p , where Λc

k denotes the set compliment of Λk.
This approximation process should be considered as adaptive since the indices of those
coefficients which are retained vary from one image to another. Note that while the set
Λk is not unique because of possible ties in the size of coefficients, the error σk(x)`p is
unique.

Let us return to the case of measuring error in the least squares norm (the case p = 2).
Given an image f and the coefficients x = Bf , a typical encoding scheme for compression
(see [15], [11], [16], [33]) is to list the absolute value |x(i)| of the coefficients in decreasing
size. Thus, we determine i1, i2, . . . , iN such that |x(i1)| ≥ |x(i2)| ≥ · · · ≥ |x(iN)|. The first
information we would encode (or send to a client) about f is the position i1 and the value
x(i1). This would be followed by i2 and x(i2) and so on. In actuality, we cannot send
complete information about x(i1) because it is a real number and would possibly need an
infinite number of bits to exactly describe it. Instead, one sends a fixed number of bits (the
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lead bits in its binary representation) so that it is captured to a sufficiently high accuracy.
This process is called quantization of the coefficients. The smaller coefficients need fewer
bits to capture them to the same accuracy and, once the magnitude of a coefficient is
beneath the quantization level, no bits are sent at all (the coefficient is quantized to
zero). There are various ways to encode the positions of the coefficients that try to take
advantage of the fact that large coefficients tend to organize themselves in certain clusters
corresponding to specific image locations (e.g. edges).

The reason the above compression scheme is so efficient lies in the observation we
made earlier that for real images f , the coefficient sequence x has relatively few large
coefficients. Said in another way, the k term approximation error σk(x)`2 tends to zero
quite fast. Let us dig into this a little deeper.

One way to understand how the entries of x tend to zero, when rearranged in decreasing
order, is to examine the `p norm of x. Indeed, if ε is the size of the largest coordinate
x(i), with i /∈ Λk, then we have for p ≤ 2

σk(x)2
`2

=
∑
i/∈Λk

|x(i)|2 ≤ ε2−p
∑
i/∈Λk

|x(i)|p ≤ ε2−p‖x‖p`p . (2.6)

There is a simple way to estimate ε. Since all the coordinates x(i), i ∈ Λk, are larger than
ε, we must have

εpk ≤
∑
i∈Λk

|x(i)|p ≤ ‖x‖p`p . (2.7)

When this is combined with (2.6), we obtain the fundamental inequality

σk(x)`2 ≤ ‖x‖`pk1/2−1/p. (2.8)

Thus, the smaller we can make p then the faster the decay of σk(x) and the better that
the image f can be compressed.

We have to add some further explanation and words of caution to the above. Since N
is finite, every vector from IRN is in `p and ‖x‖`p is finite. So as we decrease p, the decay
rate k1/2−1/p will get better but we have to also consider the increase in ‖x‖`p . Usually,
this has a natural solution as the following examples will point out. First consider the
case where x(i) = i−1, i = 1, . . . , N . If p > 1, then ‖x‖`p has a reasonable bound. If
p = 1, then ‖x‖`p ≈ logN and if p < 1 then ‖x‖`p ≈ N1−p. So the natural demarcation
occurs when p = 1. This demarcation also becomes obvious if we let N = ∞ because
then the sequence x is not in `1 but in every `p, p > 1.

One can also see this demarcation for natural images. Consider again the EM image f
of Figure 1 and its wavelet coefficients x = Bf . If we compute σk(x)`2 and display σk(x)`2
versus k on a log - log plot as in Figure 3, we see an approximate straight line whenever k
is not too close to the the dimension N of f . This slope of this line is the log of the right
side of (2.8) and gives for this particular image that 1/2− 1/p = −0.1007. The negative
slope α = 0.2014 of this line was estimated by a least squares fit. This value thereby
determines the natural value of p, which for this example is p = 1.6647. The ordinate-
intercept on the plot for this example gives an estimate of the norm ‖x‖`p = 0.1738.
The linear fit breaks down as k nears the dimension of the vector f . If we took a finer
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Figure 3: Log-log plot of σk(x)`2 versus k to demonstrate the near linear behavior over
the primary range of values. A least squares linear fit of the plot provides an exponential
decay rate of α/2 = 0.1007 for σk(x)`2 .

resolution of the underlying image (more pixels), then the value of N would increase and
the linear fit would hold for a larger range of k.

In summary, we have shown in this section that a natural model for real world images is
given by sparsity or more generally compressibility (the decay rate of σk(x)`2 , k = 1, 2, . . .).
This decay rate is determined by the smallest value of p for which ‖x‖`p does not depend
on N . The smaller the value of p, the more compressible the image.

2.2 Sampling

Let us now agree to model images by sparsity or compressibility as described above.
Given the extra information that x = Bf is sparse or well approximated by sparse vectors
(σk(x)→ 0 suitably fast), can we say what would be an ideal way to sample f? To enter
such a discussion, we first have to agree on what we would allow as a sample.

CS allows as a measurement any inner product of f with a vector v of our choosing.
The result is a real number which is recorded as our sample. In actuality, this number
would be quantized but we neglect that aspect at this stage of our discussion. Notice
what such an inner product looks like for the image f . We multiply each pixel value
f(i) = p(i), i = 1, . . . , N , by a real number v(i) and add them all together. The simplest
case to understand is when the entries v(i) of v are either 0 or 1. In this case, the inner
product counts the total number of photons corresponding to pixels given a one and does
not count any others. This is quite easy to implement in a sensor by using micro mirror
arrays. So in contrast to a measurement being one pixel value as is the case for digital
cameras, now a measurement is a sum of pixel values, the positions of which are of our
choosing.

If we make n inner product measurements, then we can represent the totality of
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samples by the application of an n × N matrix A to f . The n entries in Af are the
samples we have taken of f . We can also view this as matrix multiplication on the basis
coefficient vector x. Namely, since f = B−1x, we have that Af = Φx where Φ = AB−1.
This clarifies the problem. Since our model is that x is either sparse or well approximated
by sparse vectors, our problem is to find an appropriate n × N matrix Φ (called the CS
matrix) such that

y = Φx, (2.9)

captures enough information about x so that we can approximate x well (or perhaps even
determine x exactly in the case it is a sparse vector) from the vector y.

When using CS matrices to sample f , it will not be obvious how to extract the informa-
tion that the measurement vector y holds about x (respectively f). This is the problem of
decoding. A decoder ∆ is a mapping from IRn into IRN . The vector x∗ := ∆(y) = ∆(Φx)
is our approximation to x extracted from the information y. We use x∗ to create the
image f ∗ :=

∑N
i=1 x

∗(i) bi as our approximation to f . In contrast to the sensing matrices
Φ, we allow the decoder ∆ to be nonlinear and perhaps computationally more intensive.
We shall discuss good decoders in the following section. The remainder of this section
will concentrate on what are good CS-matrices Φ.

How should we evaluate an encoder-decoder pair (Φ,∆)? Although not exclusively,
by far most research has focused on the ability of such an encoder-decoder pair (Φ,∆) to
recover x exactly when it is sparse. One can show (see [12]) that there are such pairs that
recover each x ∈ Σk by using only n = 2k measurement which is obviously the smallest
number of samples that could work. However, these pairs have a glaring deficiency in that
they are unstable. Namely, if we perturb a sparse vector x slightly, the system (Φ,∆)
will give an x∗ which is not close to x. Such systems are obviously not useful in practice.
It is known that one cannot avoid the instability if one does not enlarge the number of
measurements some. The instability problem can be fixed at the expense of requiring
slightly more samples. For example, a typical theorem says that there are stable pairs
(Φ,∆) such that whenever x ∈ Σk, with k ≤ an/ log(N/k) for a specified constant a,
then x∗ = x. We will describe such sensing systems in due course but first we formulate
a better way to evaluate an encoder-decoder pair.

From both a theoretical and a practical perspective, it is highly desirable to have pairs
(Φ,∆) that are robust in the sense that they are effective even when the vector x is not
assumed to be sparse. The question arises as to how we should measure the effectiveness
of such an encoder-decoder pair (Φ,∆) for non-sparse vectors. In [12] we have proposed
to measure such performance in a metric ‖ · ‖X by the largest value of k for which

‖x−∆(Φx)‖X ≤ C0σk(x)X , ∀x ∈ IRN , (2.10)

with C0 a constant independent of k, n,N . We say that a pair (Φ,∆) which satisfies
property (2.10) is instance-optimal of order k with constant C0. Notice that such an
instance-optimal pair will automatically preserve vectors x with sparsity k. Indeed, such
a vector has σk(x)X = 0 and so (2.10) shows that ∆(Φx) = x.

Our goal regarding instance-optimality has two formulations. We could be given a
value of k and ask to design a pair (Φ,∆) such that instance optimality of order k holds
and the number of rows n in Φ is as small as possible. Another view is that the size n
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is fixed for the matrix and we ask what is the largest value of k such that Φ is instance
optimal of order k. These two formulations are equivalent.

Instance-optimality heavily depends on the norm employed to measure error. Let us
illustrate this by two contrasting results from [12]:

(i) If ‖ · ‖X is the `1-norm, it is possible to build encoding-decoding pairs (Φ,∆)
which are instance-optimal of order k with a suitable constant C0 whenever n ≥
ck log(N/k) provided c and C0 are sufficiently large. Therefore, in order to obtain
the accuracy of k-term approximation, the number n of samples needs only to ex-
ceed k by the small factor c log(N/k). We shall speak of the range of k which satisfy
k ≤ an/ log(N/k) as the large range since it is known to be the largest range of k
for which instance-optimality can hold.

(ii) In the case ‖ · ‖X is the `2-norm, if (Φ,∆) is any encoding-decoding pair which
is instance-optimal of order k = 1 with a fixed constant C0, then the number of
measurement n is always larger than aN where a > 0 depends only on C0. Therefore,
the number of non-adaptive measurements has to be very large in order to compete
with even one single adaptive measurement. In other words, instance optimality in
the least squares norm is not viable. However, as we shall describe in a moment the
situation in the least squares norm is not all that bleak.

What are the matrices Φ which give the largest range of instance-optimality for `1?
Unfortunately, all constructions of such matrices are given by using stochastic processes.
Perhaps the simplest to understand is the Bernoulli random family. If we fix n and N ,
we can construct a family of matrices with entries ±1/

√
n as follows. We take a fair coin

and flip it. If it lands heads we place +1/
√
n in the (1, 1) position; if it is tails we place

−1/
√
n as this first entry. We then repeat the coin flip to decide on the (1, 2) entry and

so on. It is known that with overwhelmingly high probability (but not with certainty)
this matrix will satisfy instance optimality for the large range of k.

The unfortunate part of this construction is that if we construct a fixed matrix with
±1/
√
n entries using coin flips, we cannot check whether this matrix actually satisfies

instance optimality of order k. So we have to accept the fact that the result of our
encoding-decoding may not represent f well. However, this happens with extremely low
probability. From this view, it is also possible to remedy the lack of instance optimality
in `2. Namely, if we use the same Bernoulli matrices then the following probabilistic
results hold. Given any x, if we draw the matrix Φ from the Bernoulli family at random
then using this Φ together with an appropriate decoder (see [12, 13, 17]) will result in an
approximation x∗ to x which with high probability satisfies instance optimality in `2:

‖x− x∗‖`2 ≤ C0σk(x)`2 , (2.11)

for the large range of k.
What is different between the `1 and `2 instance optimality results? In `1 instance

optimality, when we draw a matrix we are sure that with high probability it will work
for all x. So it is either good or bad for all x. On the other hand, in the `2 case, if we
draw the matrix first, no matter how fortunate we are with the draw, our adversary could
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find an x for which the instance-optimality fails. However, once x is fixed, for the vast
majority of these random matrices we will have instance optimality for this particular x.

There is nothing magical in the Bernoulli family given above other than it is the easiest
to describe. It can be replaced by other random variables (for example independent draws
of suitably normalized Gaussians) to fill out the matrix. As long as the underlying random
variable is sub-Gaussian, the results stated above hold equally well for these other random
constructions (see [17]). In fact, a sufficient probabilistic property, shared by all the
instances mentioned above, is the following concentration property. For the vast majority
of draws Φ from such a family of random matrices one has∣∣‖Φx‖2

`2
− ‖x‖2

`2

∣∣ ≤ δ‖x‖2, (2.12)

where δ ∈ (0, 1] is fixed. More precisely, the probability that the above inequality fails
decays like be−cδ

2n with fixed constants b, c depending on the particular random family.
As an important consequence, one can show that most elements Φ of a family of random
matrices satisfying (2.12) enjoy the so called restricted isometry property (RIP) of order
k

(1− η)‖x‖`2 ≤ ‖Φx‖`2 ≤ (1 + η)‖x‖`2 , ∀ x ∈ Σk, (2.13)

where η ∈ (0, 1) and k is from the large range. This latter property means that any
submatrix of Φ consisting of any k columns of Φ is nearly orthogonal. The RIP is an
important analytic property of matrices and is useful because a good RIP guarantees
that the matrix will be good in CS.

Finally, let us point out another favorable property of CS matrices constructed by
stochastic methods. Suppose that our sample y of x is contaminated by noise, as it
almost certainly would be in the design of any practical sensor. Then instead of y we
observe y+ e, where e is a noise vector. Again, applying appropriate decoding techniques
to such noisy observations, for instance, those based on greedy or thresholding algorithms
(see [13, 27]), we obtain a vector x̄ = ∆(y + e) which satisfies

‖x− x̄‖`2 ≤ C0 [σk(x) + ‖e‖`2 ] , (2.14)

again with high probability. So, as long as the noise level is relatively low, we can retain
the performance of k-term approximation. We shall explain below for which type of
decoder favorable relations like (2.14) hold.

2.3 Decoding in Compressed Sensing

As we have already noted, the decoding of the information y = Φx to get a good ap-
proximation to x is not a trivial problem. Historically, the fact that random matrices
encode enough information to stably capture sparse vectors was known from the 1970’s
(see [24, 20]). This fact was not used in designing sensors since it was not known how to
reasonably decode this information. It was only recently through the work of Candes and
Donoho that practically efficient decoders emerged (see, [9, 7, 18]). Practical decoding
still remains an active research area.

To begin the discussion of decoding let us see why the problem is difficult. Given any
x ∈ IRN and the samples y = Φx, there are actually many other vectors z which give
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the same information, i.e. Φz = y. Indeed, Φ maps the large dimensional space IRN

into the small dimensional space IRn and so there is a lot of collapsing of information.
For example, any vector η in the null space N = N (Φ) of Φ is mapped into zero and
this null space has dimension at least N − n. Confronted with this fact, one should be
skeptical that compressed sensing can actually work as stated above. However, what is
saving the day is our model assumption that x is sparse (or that it is well approximated
by sparse vectors). For example, the random matrices Φ used in compressed sensing have
the property that with high probability no suitably sparse vectors are in this null space
save for the zero vector. Namely, if the matrix Φ has size n × N with n ≥ ck log(N/k),
then no vector from Σ2k is in the null space of Φ. This geometrical fact is behind the
amazing performance of these matrices.

In designing a decoder we want to take advantage of the above geometry. Assume for
a moment that y = Φx for a sparse x. While

Φz = y (2.15)

is a highly underdetermined system of equations for the unknown z, we know there is only
one sparse solution (namely x) and we want to find it. The question is how we should
proceed.

A standard approach in solving underdetermined system like (2.15) is to use least
squares minimization. This procedure looks at all of the z that solve (2.15) and chooses
the one that has smallest least squares norm, i.e. ‖z‖`2 is smallest. It is easy to find this
least squares z by using the Moore-Penrose pseudo-inverse. However, it fails to be the
sparse solution and in fact is generally not even a good approximation to the sparse x.

If the reader will recall our discussion of `p spaces, then the sparse solution we want is
the z that satisfies (2.15) which has smallest smallest support. Solving this minimization
would definitely find x but it turns out that this minimization problem is a difficult
combinatorial problem (NP hard in the language of complexity). So this minimization
cannot be made into a practical decoder.

Therefore we are caught between the `2 solution which does not capture sparsity and
the `0 solution which cannot be numerically executed. One may try to replace `0 by an `p
with p close to zero. But this leads to a nonconvex optimization problem (whenever p < 1)
which has its own numerical difficulties. A compromise is to consider `1 minimization
which is a convex optimization problem that can be solved by linear programming. This
gives us the decoder ∆, where

∆(y) := argmin
Φz=y

‖z‖`1 . (2.16)

An intuitive idea of why `1-minimization promotes sparsity may be obtained from
Figure 4 illustrating the way (2.16) works in the case N = 2, n = 1 of a single equation
in one unknown when the solution set is a line in the plane. Compressed sensing would
position the line so that gradually inflating an initially small `1-ball the solution set is
touched first by a vertex on one of the coordinate axis, thereby picking a solution with a
single nonzero entry.

When this decoder is combined with the random matrices of the previous section, we
obtain compressed sensing pairs (Φ,∆) which perform near optimally for capturing sparse
vectors x and also gives the highest range k of instance-optimality.
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{x : Φx = y}

Figure 4: Geometric idea of `1 minimization.

The general case is not that obvious but, for instance, using Bernoulli random matrices
together with the `1 minimization decoder (2.16) gives a CS system which is instance-
optimal in probability for `2 and the large range of k (see [17]).

There is continued interest in improving the decoding in CS. One goal is to find
alternatives to `1 minimization which may be numerically faster and still provide the same
recovery performance as `1 minimization. This has led to alternatives such as iterative
reweighted least squares and greedy algorithms. Reweighted least squares has its initial
goal to capture the `1 minimizer in (2.16) by solving simpler least squares problems (see
[14]). Let us refer the reader to [13] for an extensive discussion of greedy decoders that
are computationally very simple. However, for the latter methods to work well it seems
to be important that the sensing matrix Φ satisfies RIP (2.13) for rather small values of
η while `1 minimization is quantitatively less stringent on η.

2.4 Dealing with Noise

Decoding in Compressed Sensing may be viewed as one specific instance of an ill-posed
problem (since uniqueness is lacking) and `1-minimization appears as a regularization
method promoting sparsity. The methodology of `1 minimization itself and related vari-
ants – in a regularization context – existed long before the emergence of Compressed
Sensing and was used for a myriad of inversion/estimation/optimization problems, like
deconvolution, deblurring, denoising as well as for general problems in statistical estima-
tion.

For example, it plays a role in what is called Total Variation (TV) denoising used in
image processing and more general inverse problems, see e.g. [30]. We recall that the
BV-norm ‖g‖BV of a function g measures in a certain way the jump discontinuities of g.
We refer the reader to standard analysis texts for its definition.

It will be instructive to digress for a moment and briefly sketch some relevant facts
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(a) (b)

Figure 5: Denoising and feature extraction using multiresolution thresholding and mor-
phological operations: (a) single frame tomographic image from a tilt series (courtesy of
Nigel Browning); (b) processed image.

concerning the issue of denoising when f is fully observed, which is of course not the case
in CS and EM where we only see f through the sensor via the measurements y. Suppose
an image function f is corrupted by additive noise e so that one observes f̄ = f +e rather
than f . The motivation behind TV denoising is that the image f has structure and finite
bounded variation whereas the noise e will not. This leads one to choose a number λ > 0
and try to approximate the corrupted f̄ by a function f̂ of bounded variation through the
extremal problem

f̂ := argmin
g

{
‖f̄ − g‖2 + λ|g|BV

}
. (2.17)

The function f̂ is called a total variation (TV) denoising of f̄ . Under some models for the
noise, one can predetermine the best choice of λ. In most cases λ is found experimentally.

There is a closely related extremal problem in terms of basis coefficients. We write
f̄ =

∑N
j=1 x̄jφj in terms of our chosen transform basis (e.g. a wavelet basis). If the basis is

orthonormal and the noise is white, the perturbation of f translates into a corresponding
perturbation of its expansion coefficients x. The analogue of (2.17) is then to solve (see
[10])

x̂ := argmin
z∈IRN

{
‖x̄− z‖2

`2
+ λ‖z‖`1

}
. (2.18)

This is very easy to implement numerically (in terms of what is called soft thresholding)
and gives results close to the denoising of (2.17). For example, using the simplest image
processing techniques provides results such as that in Figure 5.

In fact, a heuristic argument why an `1 penalization helps denoising is that the noise
manifests itself in all of the coefficients of x and we want to retain only the large coefficients
since they will be guaranteed to be part of the signal. In the present situation of wavelet
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expansions, there is a rigorous explanation of its effectiveness. Namely, the `1-norm of
the wavelet coefficients (normalized in L2) turns out to be equivalent to a Besov norm
that is very close to the BV-norm in (2.17).

Returning now to Compressed Sensing, the sensor noise manifests itself in measure-
ments y and not in x per se. If we assume that this noise e ∈ IRn is additive then in place
of y, we observe the vector ỹ = y + e. As we have noted earlier, for standard families of
random matrices, when we decode ỹ by the decoder (2.16) based on `1 minimization, we
receive an x̄ which satisfies the `2 instance optimality estimate (2.14). Notice that in this
case there is not a noise reduction (it appears in full force on the right side of (2.14)) but
it has not been amplified by the decoding. An alternative often used in the literature (see
[7]) is to decode by

x∗ := argmin
{
‖z‖`1 : z ∈ IRN , ‖Φz − ỹ‖`2 ≤ ε

}
, (2.19)

where ε is a bound for ‖e‖`2 : ‖e‖`2 ≤ ε. The disadvantage of this approach is that
it requires an a priori bound for the noise level. Problem (2.19) in turn, is essentially
equivalent to the formulation

x∗ := argmin
{
‖Φz − ỹ‖2

`2
+ λ‖z‖`1 : z ∈ IRN

}
, (2.20)

where λ is related to ε and hence to the noise level. Thus, we are back in a situation
similar to (2.18). It is not hard to show that solving (2.19) or (2.20) is a decoder realizing
(2.14), provided the noise level is known.

There are several strategies to actually solve the optimization problems (2.19) or (2.20).
One option is to employ convex optimization techniques. Another is to employ iterative
methods involving soft thresholding in each step (as used in a single step for (2.18)). Such
concepts have been analyzed for coefficient sequences x appearing in frame representa-
tions. Corresponding assumptions do not quite hold in the Compressed Sensing context
and one therefore generally experiences a very slow convergence. A certain improvement
is offered by variants of such iterations such as Bregman-iteration, see [5, 31, 37, 30]. As
mentioned above, greedy techniques also lead to decoders satisfying (2.14), however, under
much more stringent conditions on η for RIP, see [13, 27]. To ensure their validity for the
above examples of random matrix families, the sparsity range k, although asymptotically
still in the large range, needs to be more constrained.

2.5 Summary

Let us briefly summarize the essential points of the above findings in order to provide some
orientation for the second half of this paper where we discuss possible uses of compressed
sensing techniques in EM.

• Objects/images of size N , that are (nearly) k-sparse in some basis, can be recovered
(with high accuracy) through a number n of linear (nonadaptive) measurements
that is not much larger than the sparsity level, namely

n ≥ ck log(N/n). (2.21)
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• Appropriate measurements that work for the above large range of k make heavy use
of randomness.

• The decoders are highly nonlinear and computationally expensive.

• Decoding may be arranged not to amplify noise. But, by themselves they would
generally not reduce the noise level. One generally has to be able to tell between
noise and best k-term approximation error. Thus, noise control should be part of
the acquisition process, a point to be picked up later in more detail.

A small number of random measurements coupled with an appropriate nonlinear de-
coding allows one to capture a sparse image with relatively few non-adaptive measure-
ments. However, to reconstruct the image using the decoder will require the knowledge
of the basis in which the image has a sparse representation. In fact, precise information
on sparse representations may relax demands on the measurement side when properly in-
corporated in the decoding part. The following well-known example (from [8]) illustrates
this fact and will later guide one of our approaches.

(a) (b) (c)

Figure 6: (a) Logan-Shepp phantom; (b) minimum energy reconstruction from 22 pro-
jections; (c) TV-regularized reconstruction. The images have been produced using the
`1-Magic code [6].

Figure 6 shows a very simple digital N×N -image f representing a “piecewise constant”
function taking only very few different grey level values associated with 11 ellipses. The
pixel representation of f is, of course, a large object. Yet the actual information content
is rather small and is held by the pixels demarking the grey level boundaries and the grey
levels themselves. In the experiment the discrete Fourier transform

Ff(ωx, ωy) =
N−1∑
k=0

N−1∑
l=0

f(k, l)e−2πi(ωxk+ωyl)/N (2.22)

was computed for ω = (ωx, ωy) ∈ {0, . . . , N − 1}2, but only the coefficients ω ∈ Ω lying
approximately on 22 equidistributed radial lines were retained. In practice this would
correspond to the available Fourier data from 22 parallel projections. The minimum
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energy reconstruction that puts all the other Fourier coefficients to zero and then inverts
the discrete Fourier transform yields the Figure 6(b) showing the expected well-known
aliasing artifacts caused by subsampling. This reconstruction is actually equivalent to the
solution of the problem

f̂Ω,`2 = arg min {‖g‖`2 : Fg(ω) = Ff(ω), ω ∈ Ω} . (2.23)

However, the retained Fourier information turns out to be sufficient for even reconstructing
f exactly when employing a different decoder. In fact, using the prior information that
f is piecewise constant, one can look for g which has the same Fourier data Fg(ω) as f
and in addition minimizes the (discrete) total variation:

f̂Ω,TV = arg min {‖g‖TV : Fg(ω) = Ff(ω), ω ∈ Ω} . (2.24)

to observe that f̂Ω,TV = f .

3 What Could CS Buy for Electron Microscopy?

Electron Microscopy differs significantly from other types of image acquisition such as
digital cameras. A detailed account of the hardware and physical models for EM would
go far beyond the scope of this article. We refer the reader to other contributions in this
volume for more discussion on this issue. However, in order to bring forward possible
directions in which ideas from Compressed Sensing may offer improvements in EM data
acquisition and its image reconstruction, we shall give an idealization of EM imaging in
two settings that arise in practice.

To begin the discussion, we need some description of the materials to be studied by
EM with the goal of deriving a model class for the images that are to be reconstructed.
There are many possibilities here but we shall concentrate on two of these which will be
sufficient to illustrate the directions in which we see that CS may have a useful impact.

Model Class 1: Our first example is concerned with the classical case of an extremely
thin specimen of at most a few hundred atomic layers thickness. The atoms align them-
selves in columns and the goal of EM, in particular of STEM, is to determine the position
of these columns and the (interpreted) atomic number associated to each of these columns.
Ideally, a column consists of atoms of the same type but aberrations of this occur and are
important to detect. In any given specimen the possible atoms are drawn from a small
class of possibilities (typically no more than five). If there are a total of N columns in
the portion of the material under observation, then we can think of the ideal specimen as
determined by the set of N positions p̃i of these columns and the N (interpreted) atomic
number Zi of the atoms in the given column. Here, without loss of generality, we can think
of p̃i as a point in the unit square [0, 1]2. Due to atomic vibration, the positions p̃i are
viewed as stochastic variables with a mean pi and a probabilistic distribution describing
its deviation about the mean. The electron beam is assumed to be positioned parallel to
the columns. In a simplistic model deviation from this ideal case could be considered as
noise. However, the quantification of the possible local deviations is important and one
should try to capture them with a finer model as we propose in Phases 2 and 3 of the
experiments considered in Section 3.1.
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Even in the simple setting, we want to demarcate between two types of materials
depending on their sensitivity to beam intensity.

Type 1: For these materials, the specimen is not significantly altered during the
acquisition process provided the beam intensity is low enough. Moreover, we assume that
after a suitable relaxation time the material returns to its natural state. Therefore, one
can think of rescanning the material many times as long as the beam intensity is low
enough. Strontium Titanite and M1 catalysts are examples of materials of this type. Of
course, if the maximum allowable beam intensity is small, then the measurements are
very noisy, as will be discussed in more detail below.

Type 2: For this type of material, the totality of exposure to electron beams deter-
mines whether the material is altered. Zeolites are a typical example. In this case, the
arbitrarily rescanning of the specimen is not possible. However, a fixed number of low
intensity scans may be utilized in place of one higher intensity scan.

Model Class 2: In the second model class, we assume that material is truly three
dimensional. If N is now the number of atoms in the portion of the material under
observation, then the position vectors pi, i = 1, . . . , N , are three dimensional. The EM
sensing is a form of electron tomography. In this case, one is interested in the 3D-structure
of the material under inspection. The resolution is much lower than in the first model
class and far from physical resolution limits. The reasons for this are that the material
is generally more beam sensitive and that more scans are needed to resolve the three
dimensional structure.

For the scenario of Model Class 2 that we shall focus on here, one is primarily interested
in the distribution and geometric formation of heavy material clusters immersed in some
carrier material whose atomic structure is far from resolved, see e.g. Figure 5. The
methodology of approaching this problem is described, for instance, in [36]. The quality
of tomographic reconstructions increases with the number of projections. However, we
are again faced with the problem of the beam sensitivity of the material which places a
limit on the number of projections that can be used.

We shall discuss each of these model classes in detail below. We shall denote by p the
position of an atomic column (Model Class 1) or atom (Model Class 2) and by P the set of
all positions in the given specimen. But before beginning such a discussion, we first make
some general remarks on EM acquisition and the imaging of the sensor measurements.
These remarks will be expanded upon in later sections when we examine each model class
in more detail.

The imaging of materials in EM is not a simple process and it seems there is no agreed
upon description of the image that would be obtained from a perfect sensor and decoder.
However, the following relation exists between the sensor and the material specimen. The
electron beam width is smaller than the atomic spacing. A typical setting in STEM is
that the beam width is a fraction of an angstrom while the atomic spacing is at least
3 angstroms. When the beam is centered near a particular atom or atom column, the
beam produces an intensity distribution at the collector that is proportional to the square
of the (interpreted) atomic number Z, i.e. Z2. The proportionality constant depends
on the distance between the center of the beam and the atom (or atom column). This
proportionality constant decays as the center of the beam moves away from the atom.

In Model Class 1, for beam resistant materials like Strontium Titanite or M1 catalysts
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(a) (b)

Figure 7: Low dose STEM micrographs of different types of materials (courtesy of Doug
Blom): (a) M1 catalyst; (b) zeolite.

the physically feasible level of resolution can be nearly exploited and high resolution
images are available, see the left image in Figure 7. But more beam sensitive material
like zeolites, that still exhibit similar lattice structures, pose much more of a challenge,
see the right part of Figure 7.

Rasterring of the beam across the sample enables certain electron imaging and spec-
troscopic techniques such as mapping by energy dispersive X-ray (EDX) spectroscopy,
electron energy loss spectroscopy (EELS) and annular dark-field imaging (ADF). These
signals can be obtained simultaneously, allowing direct correlation of image and spectro-
scopic data. By using a STEM and a high-angle annular detector, it is possible to obtain
atomic resolution images where the contrast is directly related to the atomic number
(≈ Z2). This is in contrast to conventional high resolution electron microscopy, which
uses phase-contrast, and therefore produces results which need simulation to aid in in-
terpretation. Therefore, we shall confine our discussion primarily to HAADF–STEM
(High-Angle Annular Dark Field Scanning Transmission Electron Microscopy).

EM, in particular HAADF-STEM will be increasingly important especially in biology.
However, the corresponding materials tend to be very beam sensitive so that only very low
dosage is applicable without destroying the specimen. As a result one faces extremely low
signal to noise ratios. The question is to what extent suitably tailored imaging techniques
are able to resolve or at least ameliorate this dilemma, for instance, exploiting CS ideas
towards minimizing the number of necessary measurements viz. lowering (or spreading
the application of) the total dose.

3.1 High Resolution 2D Images: Model Class 1

In this section, we shall be concerned with images that arise in EM of materials from
Model Class 1 (see Figure 7). We shall discuss a model for the ideal STEM images for
specimens from this class and argue that these images are sparse with respect to a suitable
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dictionary. This will enable the use of ideas from CS for both encoding and decoding.

3.1.1 Image Model and Data Acquisition

Images produced by electron microscopes offer only an indirect reflection of reality. The
image is generated from the information extracted by the sensor, namely, the distribution
of the intensity of electron scattering at a detector when the beam is centered at chosen
locations of the material. We want to understand how this image relates to the atomic
description of the material sample and thereby derive a model for such resulting images.

Any image has the form

f̂ =
∑
P

f̂PχP , (3.1)

where χP is the characteristic function of the pixel support P and the sum runs over
all pixels in the image. In the case of EM, it remains to understand the nature of the
intensities f̂P and how they relate to the atomic structure in the material sample. We
shall think of the f̂P as noisy versions of an ideal pixel value fP which would result from
perfect sensing and decoding.

In STEM for Model Class 1, the electron beam is (nearly) parallel to the atomic
columns. The beam is positioned at an equally spaced rectangular grid of points (the
raster positions) that we denote by Gh, where h denotes the horizontal and vertical spacing.
At each raster position the beam produces an intensity at the detector and results in the
assignment of the pixel intensity f̂P in the image. Thus, the pixels size is the same as the
grid spacing h and we can (with only a slight abuse of notation) also index the pixels by
Gh. By varying the raster positions, the size of the image can be varied from a very small
number of pixels in a frame (256× 256) to over 64 million pixels per image (8192× 8192).

In STEM mode, the electron dose onto the sample can be controlled in a variety of
ways. The number of electrons per unit time can be varied by changing the demagnifi-
cation of the electron source through the strength of the first condenser lens. The dwell
time of the probe is typically varied between 7µs and 64µs per pixel in practice, although
a much larger range is possible. Finally, the magnification of the image sets the area of
the specimen exposed to the electrons and thereby affects the dose per unit area onto the
specimen.

We wish to derive a model for the ideal images that would be obtained from the above
EM imaging of materials from Model Class 1. Our first goal is to understand the intensity
f(x) we should obtain when the beam is placed at position x. Notice that f(x) is a function
defined on a continuum of positions. While the position of the electron beam is fixed at
a given sampling, the atomic column has a variable position due to atomic vibration and
thus the intensity is a random variable. The real number f(x) is the expected intensity
at position x obtained by averaging with respect to the underlying probability measure
describing atomic position. A model for this expected intensity proposed in [1] is given
by

f(x) =
∑
p∈P

xpBp(x), (3.2)

where Bp is a bump function (which will require further description), p is the mean
position of the atomic column, and the values of xp are proportional to the squares of the
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atomic numbers for the column.
The bump function Bp depends on the nature of the atomic column and the alignment

of the atoms within it, but the atoms may neither align exactly in a column nor may the
electron beam be perfectly aligned with the column. A first approximation to Bp would
be a function which decays from the mean position p of the atomic column in an elliptical
pattern. This could be modeled as a tensor product Bp(x) = G1(a1 ·(x−p))G2(a2 ·(x−p)),
where the functions G1, G2 are Gaussians with different variances and the vectors a1, a2 ∈
IR2 are an orthogonal pair giving the axes of the ellipse. The nature of a1, a2 depends
among other things on the alignment of the electron beam with atomic structure. Perhaps
this ansatz is still too simplistic. At this point, taking Gaussians, is just a guess and it
is not clear at all what a good choice for Bp would be. One could, for instance, think of
estimating Bp from images thereby employing a data dependent ansatz. The development
of better models for Bp is considered in Section 3.1.4 and is also the subject of future work.

The “ideal” intensity distribution f(x) would for any x in the image plane result from
the recorded interaction of the electron beam centered at x with the atomic structure
of the material. The images f̂ we display in EM are then noisy versions of the ideal
pixelizations fG of the ideal intensity function f for a given pixel lattice G. In other
words, the pixel values fP of fG are obtained by averaging f over the pixel P ∈ G

fP =
1

|P |

∫
P

f, (3.3)

and
fG =

∑
P∈G

fPχP . (3.4)

As mentioned before we view the actual values f̂P as noisy versions of the fP .

3.1.2 Sparsity for Model Class 1

We first claim that the images f̂ we obtain in EM applications to Model Class 1 are in a
certain sense sparse so that an application of CS techniques is justified. Such an image is
ideally a pixelization of the intensity function f . Thus, if f has a sparse representation
with respect to a suitable dictionary then f̂ (which as we recall we view as a long vector)
will have a sparse representation with respect to the vectors obtained by pixelization of
the dictionary elements. So we confine ourselves for the most part to a discussion of the
sparsity of f .

It is clear that the ideal image f of (3.2) has sparsity determined by the N positions
p ∈ P and the N intensities xp and the number of possible bump functions Bp. If this
were all of the information we had then the question of sparsity would be in doubt be-
cause of the myriad of possibilities for the positions p. However, as is well known, in an
ideal setting, the positions of the atomic columns are aligned along a two dimensional
lattice. For instance, Figure 7 displays typical STEM images of M1 catalysts and zeo-
lites, respectively. In both cases the atomic lattice structure is clearly visible. A perfect
periodicity is prevented by environmental effects as well as by deficiencies in the material.
Nevertheless, the near periodicity amounts to a lowered information content and a form of
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Figure 8: Diffraction pattern in reciprocal space (courtesy of Thomas Vogt)

sparsity. This can indeed be observed by looking at corresponding diffraction patterns in
the so called reciprocal space, see Figure 8. We could view deviations from an exact lattice
structure to be noise or we could add this to our model for f and still retain sparsity (see
the examples in Section 3.1.4 for phases 2 and 3).

One can observe from these images that the number of atom columns is quite small.
Namely, the area reflecting 60%, say, of the intensity of a typical Bp would be of the order
of 10 to 15 pixels in diameter, say, taking the area of the voids into account, the number
k of actual column positions could range between 0.1% to 1% of the image size.

Another form of sparsity occurs in the values xp. In a column of homogeneous atoms,
the value of xp can be taken as Z2 with the proportionality constant incorporated in the
the bump function Bp. Thus the number of possible values of xp would be limited to the
number of different atoms. In reality, there are deviations from this homogeneous structure
and indeed it is of interest to identify these deviations in the imaging. However, the
number of deviations is still small. Thus, ideally the range of xp is finite and small. This
type of sparsity is usually not incorporated into CS models and it is therefore interesting
to pursue on a theoretical level how this type of sparsity can be exploited.

This very rough analysis indicates that the sparsity of f in Model 1 is small and
therefore f has relatively small information content. It remains to make this analysis
more rigorous and to identify precise dictionaries which exhibit the sparsity of the EM
images. After pixelization, the sparsity of f translates into a sparsity for the pixelized
image f̂ . For now, we indicate the sparsity level of f̂ by k and assume that k is much
smaller than the number of pixels #(Gh) and turn to the question of how this sparsity can
be exploited in EM measurements. It remains to give a rigorous description of k using
the remarks on lattice structure and spacing given above.
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3.1.3 Measurements for Model Class 1

In traditional STEM imaging, a measurement consists of counting and registering the
number of collected hits received by the detector as a result of a given positioning of the
electron gun. Such a count assigns an intensity value f̂P to the corresponding pixel in
the image. If the material has very little beam sensitivity, a high electron dose per pixel
could be applied and gives rise to high resolution images close to the physical resolution
limits. However, very beam sensitive materials with a low maximum dose threshold
require severe dose restrictions which typically gives rise to noisy images. Thus, we are
in a situation where ideas of Compressed Sensing may become interesting since CS says
we should be able to capture the image well with roughly k measurements rather than
#(Gh) measurements. Namely, when measurements are expensive – here damaging – high
quality results could possibly be obtainable with a number of measurements comparable
to the information content of the signal.

The caveat to the above discussion is that the meaning of measurement in the CS
theory is different than the conventional STEM measurement since it requires the sensor
to simultaneously test many (or most) locations at once and record the total number
of hits not worrying about their pixel location. Let us first discuss how this might be
accomplished with current sensors. In what follows the pixel size h will represent the
finest level of resolution the recovery procedure is striving for. Therefore, the positions of
the atomic columns can only be resolved within a tolerance h and hence will be identified
from now on with a subset P of the fine grid Gh. Of course, h is bounded from below by
physical constraints and targeting this lower resolution limit would be ideal.

Since we are striving for low dose applications one might use for the actual measure-
ments a larger pixel size H ≥ h permitting larger scanning increments. This would give
rise to the pixel values f̂P , P ∈ GH , from which one would still try to recover the positions
P as well as the coefficients xp, p ∈ P ⊂ Gh. The very low dose per pixel would entail

very low signal to noise ratios for f̂P , so that an accurate recovery of a high resolution
image could only be tackled by working with several such coarse frames with a primary
focus on denoising. In fact, such a line is pursued in a different way detailed in [4] heavily
exploiting the near repetitiveness in images like those in Figure 7.

CS theory however instructs us to proceed in a different way. To describe this alternate
strategy, recall from our discussion above that the value f̂P obtained in the imaging process
can be interpreted as

f̂P = fP + eP , (3.5)

where fP represents the ideal pixel value that would be obtained through very high dose in
(hypothetical) absence of beam damage, and where eP is a local fluctuation that depends
on the applied electron dose and is, in relative terms, the larger the smaller the dose is.
Since we are aiming at applying possibly low dose, each single value f̂P , acquired in the
above fashion, would give little information.

CS theory tells us that we should make measurements of the following form. We select
a set of random locations S ⊂ Gh and measure the conglomerate sum

YS :=
∑
P∈S

f̂P . (3.6)
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Thus, the measurement YS, rather than being a single pixel value is now a large sum of
randomly chosen pixel values. We make many selections for S and record YS for each of
these. For traditional imaging, this approach has been implemented at Rice University
(see [19]) and is known as a “single pixel camera”.

For STEM, this could be implemented during the scanning process by randomly ac-
tivating or shutting off the electron gun according to, say, a Bernoulli distribution with
equal weights. Then, instead of counting the number of electron hits corresponding to
each position, we rather count the totality of collected hits from the entire scan. If this
turns out to be a useful concept, one can envision new sensors that accomplish one scan
in a more economical fashion by simultaneously sensing several selected locations.

There should be serious skepticism concerning the possible advantages of the above
approach since in one CS measurement, we are required to touch approximately half of
the pixel locations. If this is repeated k times then each pixel location has been hit on
average with k times half the individual dosage. So for a fair comparison the individual
dosage must be very small and an individual pixel value (which we do not record) would
be very noisy. For materials of Type 1, this problem is circumvented by the fact that in a
given CS measurement we can choose a dosage at each pixel close to the maximal dosage
without damaging the material provided there is a significant relaxation time. This does
not hold for materials of Type 2, however we argue that we can expect better signal to
noise ratio in CS measurements as compared to traditional STEM measurements. Indeed,
in a CS measurement we record the sum of all hits and so the noise will be averaged out
in a sum like YS and the law of large numbers says that this averaging gives a reduction
of noise in a given CS measurement because the number of pixels is much larger than the
number of measurements n.

In order to expand on this discussion, we dig deeper into the structure of CS mea-
surements and its relationship to the expected sparsity of the EM image. Let Φ̃ be a
random n ×#(GH)-matrix whose entries are drawn independently and assigned the val-
ues φ̃i,P ∈ {0,

√
2/n}, i = 1, . . . , n, P ∈ GH , with equal probability. Now, in these terms,

denoting for every p ∈ Gh by (BP,p)P∈GH the vector of pixel values of the corresponding

Bp, namely BP,p =
( ∫
P

Bp(x)dx
)
/|P |, the n CS measurements can be written, in view of

(3.2), (3.3), and (3.5), as

yi =
∑
P∈GH

φ̃i,P f̂P =
∑
P∈GH

φ̃i,P eP +
∑
p∈P

xp

( ∑
P∈GH

φ̃i,PBP,p

)
, i = 1, . . . , n. (3.7)

From this information, we would like to find the positions p ∈ P ⊂ Gh, as well as, ideally,
the type of bump function Bp, and the coefficients xp. Having already restricted P to be
a subset of Gh, in order to make this task tractable, it remains to impose some structure
on the Bp as discussed earlier in Section 3.1.1. We shall discuss several such choices in
connection with first experiments in the subsequent section.

Having chosen the Bp, we are left with the following linear algebra problem. Given

the n measurements yi, i = 1, . . . , n, we search for a sparse solution f̂ =
∑

p∈Gh xpbp to
(3.7) where the vector bp is the pixelization of Bp =B(· − p)

bp := (BP,p)P∈GH , p ∈ Gh. (3.8)
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In other words, with y = (yi)1≤i≤n, we are looking for a sparse solution to the system of
equations

y = Φx, where Φ = Φ̃Bh (3.9)

and where Bh is the matrix whose rows are the vectors bp, p ∈ Gh. This is the same form
as decoding in CS.

Now, two questions immediately arise: first, what could such aggregated measurements
buy us? and second, how many such measurements are needed for a good recovery of f
and which dose should be applied at each coarse pixel?

As for the first question, recall from (3.7) that the measurements yi consist of two
parts

yi =
∑
P∈GH

φ̃i,PfP +
∑
P∈GH

φ̃i,P eP , (3.10)

where the first sum involves the ideal pixel averages while the second sum represents
noise generated by the aggregated pixel fluctuations, see (3.5). If the fluctuations eP
had zero mean one would expect the accumulated noise contribution

∑
P∈GH φ̃i,P eP to be

actually as small as the noise associated with the local detector response for the total
accumulated electron dose. Thus in summary, the data yi should have a relatively low
noise level, even for materials of Type 2. The very low dose deployed at every activated
pixel position should in addition speed up the scanning procedure, so that motion of the
specimen should have a diminished effect.

Despite the possible gain in signal to noise ratio in our CS measurements over tra-
ditional STEM measurements, we need to note that another difficulty arises. Namely,
although Φ is a random matrix, it is not of the standard type to which the CS theory
applies directly. In fact, the smaller h - the better the resolution - the more coherent
are the columns of the matrix Bh and hence of Φ. This significantly hampers the correct
identification of the positions of the atomic columns. Here, however, there is a redeeming
factor in the form of the sparsity of f . The number of atom positions in the image is
expected to range between 1% and 0.1%, and these positions are spread out because of
the interatomic distances. We could therefore try to determine the set P ⊂ Gh through
several stages. At a first stage one could choose a coarser grid Gh̄ for some h < h̄ ≤ H in
order to determine a less accurate position set Ph̄ ⊂ Gh̄. Since the corresponding matrix
Bh̄ has less coherent columns the sparse recovery problem is now easier to solve. Once
this coarse resolution has been found, we can revisit the sparse inversion problem with
a smaller value for h̄ by restricting the possible positions to be near the ones we have
found before. Proceeding iteratively, we could improve our resolution of the positions P
while maintaining a favorable RIP condition, see (2.13). We shall elaborate more on such
strategies in a forthcoming paper. An alternative strategy for coping with large coherence
will be indicated below in connection with numerical experiments.

Finally, let us discuss the dosage limits on an application of a CS measurement. If
DC is the critical dosage applicable without damaging the specimen, then in a given
CS application, for materials of Type 1, we can apply a dosage close to DC at each
application. Since the number of CS measurements is not restricted in this case, we can
expect extremely high quality imaging. For materials of Type 2, however, we would be
restricted to a dosage of DC/n per pixel, where n is the total number of CS measurements
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to be taken. So the advantage has to occur in the signal to noise ratio as discussed above.
Whether this will ultimately turn out to be sufficient or can even be lowered further has
to be seen through detailed simulations and also through experiments.

In summary, we are encouraged to further explore the above perspectives for the
reasons already outlined. Another favorable feature of such an aggregated data acquisition
process would be that the effect of specimen movement is reduced and thermal relaxation
is strongly supported since at each instance the dose is very low. Ultimately, whether CS
ideas give a significant improvement of EM remains to be proven through simulation and
experiment.

3.1.4 Inversion and Sparse Recovery Techniques

So far the discussion has addressed the question whether CS techniques offer potential
benefits in the above high resolution STEM scenario. This is primarily a matter of prop-
erly understanding and modeling the data acquisition in connection with the sparsity
properties of the image. The second major issue, however, is the ability to actually re-
cover the sparse signal from measurements of the form described above. In this section
we focus entirely on this latter issue which we plan to approach in several stages reflected
by three types of computational experiments presented below as Phases 1, 2, and 3. Our
main objective here is to bring out the essential tasks and difficulties faced when prac-
tically applying sparse recovery techniques and compressed sensing concepts in electron
microscopy. We shall only indicate the main findings and refer to a more detailed discus-
sion in forthcoming work. It will be seen that several technical problems arise for which
we offer one possible solution. Therefore, at this point we rather want to point to specific
numerical aspects that should be taken into account in building up a complete inversion
model. In this sense our experiments should be considered as steps towards a “proof of
concept”.

The validation of the various experiments is based on STEM images obtained by our
colleague Doug Blom and computer simulated images produced by him and Tom Vogt’s
student Sonali Mitra. The simulation in Figure 9 is based on the Frozen Phonon Model.
It is obtained in a two stage process, in which the responses to probes consisting of a
single electron are calculated first and then a Gaussian blur is applied with σ = 2.83
corresponding to a full width at half maximum FWHM = 0.7nm of the intensity of the
probe wave. It is important to note that, while the coefficients xp corresponding to Mo
and V atomic columns are large, the nineteen coefficients corresponding to the Oxygen
atomic columns are by one order of magnitude smaller and could be misinterpreted as
noise, if the noise level gets high. The large dynamic range in connection with noise
therefore poses a particular challenge for recovery techniques.

In the first phase of our experiments this image is replaced by an idealized version,
but the original simulated image serves as the target image for the second phase.

The idealized target image shown in Figure 10 is based on a very simplistic model and
its goal is to check the principal applicability of different minimization routines developed
for compressed sensing in the present specific context. We assume that the image (in this
case synthetic) is given by (3.2) and the bump function B is known. In particular, we set
B(u) := e−u

2/σ2
. In favor of a higher level of incoherence, we choose σ := 4.8 which is
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Figure 9: 128 × 128 computer simulated STEM image of Mo5V14-oxide; it features 29
atomic columns (6 for Mo, 4 for V , 19 for O). (see [25]).

slightly smaller than the one that will best fit the image in Figure 9.
We now turn to recovery procedures for measurements from the above two target

images. Again, in the presence of noise the natural candidate for sparse decoding would
be

∆(y) = argmin
‖Φz−y‖`2≤ε

‖z‖`1 , (3.11)

where ε is the estimated noise level and (the random matrix) Φ is given by (3.9). We
shall be using several currently available numerical methods which, however, do not treat
(3.11) directly but refer to the related problem (2.20), where the penalty parameter λ
needs to be properly chosen depending on the noise level ε.

In both experimental phases the finer “high resolution” grid Gh is set to 128 × 128.
Thus, we search for the bumps centered at 29 positions p ∈ Gh and their intensity values xp.
Likewise in both phases our measurements are taken from a low 64×64 resolution version
of the respective target image to which we add different levels of positive Gaussian noise.
More precisely, if n is the number of measurements, y ∈ IRn is the vector of measurements,
and ζ is the desired noise level, we add N (µnoise, σnoise), where

µnoise := ζ
‖y‖`2√
n
, σnoise :=

µnoise

3
.

At this point, the added noise does not necessarily reflect the physical acquisition process
but merely quantifies the ability of the decoders to deal with noise.

Phase 1: Denoting as before the set of searched positions by P , we take as the idealized
image f :=

∑
p∈P xpB(· − p) and sample the corresponding discrete function fGH =: fH
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Figure 10: Idealized version of the image in Figure 9 resulting from linear combinations
of Gaussians (σ = 4.8).

defined in (3.4) on a 64×64 grid GH . We run several reconstruction passes using different
numbers n of measurements yi ranging between 180 and 900. The low number of 180
measurements is much smaller than the total number of 4096 pixels in the low resolution
version of the target image. This relation between the number of measurements and signal
size is well in line with Compressed Sensing philosophy.

So far, we have resorted only to existing algorithms used in CS to validate our concepts.
However, in view of the high coherence of the dictionary {B(· − p)}p∈Gh , the matrix Φ
from (3.9) is far from satisfying the typical properties required by the sparsity recovering
algorithms currently employed in CS applications. Therefore, not all the algorithms we
have tested have been able to solve the extremal problem (2.20) in a satisfactory way.

We report here on some results produced by two algorithms, NESTA and SESOP, see
[3, 28, 29, 38]. NESTA is an iterative solver for (2.20) which, however, works (in the spirit
of a homotopy method) on “nearby” minimization problems of the form

argmin
x

λhµ(x) +
1

2
‖Φx− b‖2

2, (3.12)

where λ is a fixed penalty parameter that can be chosen by the user. The convex Huber
function hµ (see [3]), ensuring a smooth objective functional, has the parameter µ lowered
during the iteration process as much as possible to come close to the original objective
functional in (2.20), i.e. hµ approximates the `1-norm when µ tends to zero. For our
images the convergence of the method is very slow and requires at least 105 outer iterations
to receive a meaningful solution. One of the advantages of this method, however, is
that it is able to localize well the regions containing the active pixels from the set P .
However, realizing the ideally sparse solution is in our case problematic and might require
a prohibitively large computational effort.
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Therefore, even in the simplistic scenario of Phase 1 the method needs to be adjusted
to the specific structure of the problem. In order to speed up the localization process we
devised a two stage method. At the first stage we treat the global problem and use it
to identify the regions R of energy concentration. Then, at the second stage, we treat
localized problems. More precisely, we define bR := Φx̃R, where x̃R is the restriction
of the current approximate solution to a single region R, and solve independently the
problems (3.12) with b = bR and the nonzero entries of x restricted only to R. In these
local problems we choose higher values of λ in order to promote sparsity since we expect
to find a single nonzero entry. Alternatively, one can also simply calculate the local
bump

∑
p∈R x̃pB(u − p) and attribute the energy only to the pixel p that is closest to

the point of its maximum. We concatenate the received local solutions and use this as
initial guess for a further global iteration revisiting the first stage. This two stage process is
iterated, if necessary. The parameter λ is carefully increased during this solution process to
enhance the sparsity while maintaining stability, somewhat against the common heuristic
approach of other continuation methods, see [3]. As an end result we set the value at the
local maxima as a weighted sum of the coefficients in its region. A typical result of this
procedure is shown in Figure 11 using 600 measurements with 3% Gaussian noise added
to each yi. The results show very good localization of the positions in P and a relative
`2 error of 8% for the values of xp, (3.2), namely 24 out of 29 positions of the atomic
columns are recovered correctly, while the other 5 Oxygen positions are recovered within
one pixel.

Figure 11: Coefficient reconstruction for the idealized version of Mo5V14-oxide in Figure
10 with 3% positive Gaussian noise added to each of the 600 measurements.

Similar results are obtained directly by SESOP, even without any adjustments, i.e. no
additional localization stage is used. SESOP (see [38]) is also an iterative method, solving
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the problem
argmin

x
λ‖x‖1 + ‖Φx− b‖2

2, (3.13)

by adjusting the parameter λ from some good initial guess. Its convergence is in this
case faster and the method is more robust regarding the choice of the initial value of λ.
However, it is more sensitive to higher levels of noise.

The recovery results produced by SESOP for Phase 1 are displayed in Tables 1 and
2 for several numbers n of measurements, ranging from 180 to 900. Table 1 records the
respective relative `2-errors

E(f) :=
||f̃h − fh||2
||fh||2

(3.14)

on the high resolution (128×128)-grid, where f̃h is the approximation to the high resolu-
tion of the pixelization fh via (3.4) of the target image presented in Figure 10. In Table
2 we list the relative `2-errors

E(c) :=
||x̃− x||2
||x||2

(3.15)

of the recovered coefficients x̃ in the coefficient space, (3.9). We found that a good
recovery of the high resolution image, i.e. an acceptably small E(f), can be obtained
from as little as 180 measurements. However, good stability, i.e. the accurate detection of
the positions, seems to require a higher number of measurements. Specifically, as perhaps
expected, E(c) turns out to be much more sensitive towards noise which is seen in Table
2.

Number of measurements 180 300 400 750 900

Added noise: 0% 0.86% 0.45% 0.33% 0.16% 0.11%
1% 6.86% 4.84% 4.02% 2.84% 2.30%
2% 12.52% 8.67% 7.44% 4.96% 4.39%
3% 15.85% 11.60% 9.75% 6.88% 5.95%

Table 1: Relative error E(f) of the SESOP recovery of a 128×128 high resolution idealized
image of Mo5V14-oxide (Figure 10), based on measurements taken from 64× 64 grid.

Number of measurements 180 300 400 750 900

Added noise: 0% 9.46% 1.38% 0.90% 0.39% 0.24%
1% 34.87% 23.94% 13.35% 11.78% 10.13%
2% 67.81% 28.61% 23.11% 18.44% 16.81%
3% 87.62% 35.13% 29.04% 25.33% 20.69%

Table 2: Relative error E(c) of the SESOP recovery of the coefficients xp of an idealized
image of Mo5V14-oxide, based on measurements taken from 64× 64 grid.

Phase 2: Our second experiment explores the case in which the local bumps Bp vary and
are unknown. As mentioned before, our target is to recover the intensity distribution
from the simulated 128× 128 STEM image for Mo5V14-oxide displayed in Figure 9. The
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function fH is obtained by locally averaging the simulated distribution on a 64× 64 grid.
The physical model underlying the frozen-phonon simulation suggests that the bumps are
no longer strictly radial and differ from each other.

The attempts to solve the problem by introducing a specific universal bump function B
do not lead to a satisfactory solution. Due to the fact that B(·−p) approximates Bp with
an `2 error as large as 10%, both NESTA and SESOP produced solutions with relative
errors of the order of 25% or more. The proper identification of the active coefficients xp,
p ∈ P becomes even more difficult due to the high coherence of the dictionary.

To bypass both obstructions we propose again a two-stage strategy. At the first stage,
instead of working with the above dictionary whose average bump spread resembles the
intensity distribution around an atom position, we choose a dictionary whose elements
B̃(·−p), p ∈ Gh, are more localized and can therefore individually approximate each of the
bumps by a local linear combination. In principle, different choices for the localized trial
functions B̃ are conceivable. For example, splines have particularly good local approxi-
mation properties. For convenience, in the present experiments we choose B̃, as before in
Phase 1, to be a Gaussian, but this time with a concentration parameter σ which is less
than the one that would have been used to fit the intensity distribution around an atom
position, see Table 3.

The approximation resulting from solving the optimization problem is then of the form

f̃(u) =
∑
q∈Gh

x̃qB̃(u− q). (3.16)

We now expect that the dominating coefficients x̃q will form disjoint clusters Pp each of
which would learn the actual bumps Bp in a satisfactory manner. Moreover, the sparsely
distributed “macro-bumps” are determined by

xpBp(u) :=
∑
q∈Pp

x̃qB̃(u− q), (3.17)

where xp results from normalizing all the bumps Bp in `2.
The second stage of the scheme consists therefore in identifying the “centers” p of the∑
q∈Pp x̃qB̃(u− q), yielding our approximation of the positions in P and incidentally the

coefficients xp of the resulting macro-bumps.
The result of the first stage of our scheme is displayed in Figure 12.
Now the solution is much less sparse but the recovery schemes work much better due

to the lower coherence of the more localized dictionary. For this less pronounced sparsity
level NESTA offers an advantage in that the penalty parameter λ promoting sparsity is
fixed throughout the computation. In SESOP, however, it is adjusted during the iteration,
mostly in favor of a higher sparsity, which in this case may lead to misfits.

In Table 3 we present the relative `2-errors E(f) of the NESTA reconstruction of the
Molybdenum Vanadate computer simulated image from Figure 9. The underlying num-
bers n of measurements range from 200 to 900. Note that the values of the concentration
parameter σ now change with the number of measurements, reflecting the fact that a
larger number of measurements allows us to handle a larger number of coefficients x̃q per
cluster.
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Figure 12: Recovery of the coefficients x̃p from (3.16) produced by NESTA for first stage
of the Phase 2 experiment, based on 900 measurements with 1% additive noise.

Number of measurements 200 300 500 700 900
Concentration parameter 5.95 5.45 5.35 5.28 5.24

Added noise: 0% 6.89% 3.25% 1.60% 0.91% 0.75%
1% 11.71% 8.43% 7.42% 5.57% 4.85%
2% 16.36% 13.77% 12.16% 9.04% 7.50%
3% 21.03% 16.85% 14.58% 11.85% 10.04%

Table 3: Relative `2-errors E(f) for first stage of the Phase 2 experiment for the NESTA
recovery of a 128×128 high resolution computer simulated STEM image of Mo5V14-oxide,
presented in Figure 9.

As explained above, image reconstructions already result from (3.16) computed at the
first stage of the scheme. In Figure 13 we show the image, corresponding to the coefficients
x̃q, displayed in Figure 12. The concentration parameter of the bumps B̃ was set to 5.24,
which produces intensity distributions with a slightly smaller diameter than the ones in
the image, the relative `2-error E(f) is 4.85%.

The recovered approximate positions p of the atomic columns and the corresponding
coefficients xp are displayed in Figure 14. Here we cannot compare the recovered values
xp with those behind Figure 9 because they are not known to us. Comparing Figure 14
with Figure 11, we see, however, that the positions of the heavy atoms are recovered well
while those of the oxygen atoms are less accurate or even missed.

In the above experiments the added noise represents the accumulated perturbation
resulting from the summation

∑
P∈GH φ̃i,P eP in (3.7). Thus, so far, we have imposed that

this accumulated noise is of a level up to 3% with which the recovery procedures can cope.
We conclude Phase 2 now with a test of the accumulative effect on the final noise level by
perturbing the individual pixel intensities by a considerably higher noise level. In the first
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Figure 13: Recovery of the Mo5V14-oxide computer simulated image produced by NESTA,
based on 900 measurements to which 1% Gaussian noise is added.

Figure 14: Recovery of the Mo5V14-oxide computer simulated image produced by NESTA,
based on 900 measurements to which 1% Gaussian noise is added.

experiment the pixel intensities are perturbed by N (0, 3.2) and by Poisson pixel noise
with parameter equal with the square root of the pixel intensity to a total noise level of
12.06% for individual pixels. The corresponding noise level of the measurements yi turns
out to be only of the level of 0.74%. The recovered image, based on 200 measurements,

33



is shown in Figure 15.

Figure 15: Recovery of the Mo5V14-oxide computer simulated image produced by NESTA,
based on 200 measurements with pixel noise of level 12.06% corresponding to a noise level
of 0.74% for the measurements.

The second experiment is analogous but involves a significantly higher level of pixel
noise, namely 31.43% produced by Gaussian fluctuations from N (0, 12) and by Poisson
noise with same variance as in the first experiment. The corresponding noise level of the
measurements yi turns out to be only of the level of 1.57%. The NESTA recovery from
900 measurements is shown in Figure 16.

To summarize our findings for the Phase 2 experiments, it should be emphasized that
we are using a flexible representation of the bumps based upon local linear combinations of
translations of the basic function B̃ with carefully chosen parameter σ. This method de-
termines a good reconstruction of the intensity distributions around all the heavy Molyb-
denum and Vanadium atoms present in the computer simulated image, based on as little
as 200 measurements and up to 3% additive noise. However, the correct recovery for the
lighter Oxygen atoms succeeds only through a higher number of measurements depending
on the added level of noise.

Phase 3: To test this concept further we use now an actual micrograph of the M1 phase
of Mo-V -Te-O catalyst with a calibration of 0.011796 nm/pixel. It should be emphasized
that the purpose of the following experiment is not to improve on the quality of the
micrograph, but to further validate the above CS-concepts.

In this third phase of our experiments, we address an additional effect related to
spatial uncertainty during the process of data acquisition. Instead of using (3.7) as a
measurement model we employ the following model. Let {fp : p ∈ Gh} denote the pixel
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Figure 16: Recovery of the Mo5V14-oxide computer simulated image produced by NESTA,
based on 900 measurements with pixel noise of level 31.43% corresponding to a noise level
of 1.57% for the measurements.

intensities of the given 128×128 STEM image shown on Figure 17. Note that, although the
micrograph is a high resolution image, the pixel intensities still provide noisy information
due to distorted intensities and positions. Therefore, it makes no sense to try to reproduce
the original image on Gh exactly. Instead we wish to see whether an aggregated CS-type
data acquisition can extract a reasonably smoothed intensity distribution that still reflects
relevant physical information about the material.

To this end, let for any z in the image domain g(z) denote the local bilinear interpolant
of the data fp. Now set

yi =
∑
P∈GH

φ̃i,P g(P + s(i, P )), (3.18)

where s(i, P ) is a random spatial fluctuation with mean (0, 0). In our particular experi-
ments the fluctuation is confined to the square region [−(h+H/2), (h+H/2)]2. Note that
the expectation of {g(P + s(i, P )) : P ∈ GH} is a slightly blurred version of {fp : p ∈ Gh}
which is close to {fP : P ∈ GH}. The corresponding expected image derived from the
above random fluctuations is shown in Figure 18.

We explore the same methodology, described already in Phase 2, using flexible rep-
resentations of the local bumps Bp via linear combinations of translations on Gh of an

appropriately chosen basis function B̃. Applying now the NESTA recovery, based on
1200 measurements, to the data from (3.18) yields the image displayed in Figure 19. The

window parameter for the Gaussian representing B̃ is set to σ = 5.6. The relative `2-error
between this recovery and the expected 64× 64 image is 11.81%.
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Figure 17: 128× 128 patch from a micrograph of M1 phase catalyst Mo-V-Te-O used in
the third phase of our experiments.

Figure 18: 64× 64 image of the expected values from random fluctuations of the original
micrograph in Figure 17.

Summary: Let us briefly summarize our findings as follows. The experiments seem to
indicate that Compressed Sensing techniques allow one to exploit sparsity in the context
of Model Class 1. Although the standard favorable assumptions on sensing matrices do
not hold in this context, in absence of noise we have obtained exact recovery of the sparse
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Figure 19: NESTA recovery for the Phase 3 experiment, based on 1200 measurements
and σ = 5.6.

coefficients in the idealized model used in Phase 1. Adding noise to the measurements
adversely affects the stable identification of the positions of atomic columns because the
involved dictionaries are highly coherent. A certain remedy lies in splitting the recovery
process into several stages, first lowering coherence at the expense of sparsity to identify
energy clusters which are then further treated through a second local recovery stage.

Of course, in Phases 2 and 3 of our experiments we can no longer expect to have
exact recovery. In addition to treating non-constant bump functions, at the end of Phase
2 we have also tested the effect of aggregated measurements on high noise levels in the
individual pixel intensities. Then, in Phase 3 we have also tested our method on ag-
gregated measurements from spatially perturbed samples from a high definition STEM
image. These first still idealized experiments indicate the principal feasibility of this
concept towards repeated very low dose measurements.

The algorithms we have tested prove to be quite robust in our experiments, but they
are not designed yet to fully exploit some of the special features of our target images,
namely the fact that the intensity distributions around the atomic positions are well
separated and the fact that the peak intensities are samples of a quantized function of
the corresponding atomic numbers. Further improvements are the subject of ongoing
research.

3.2 Electron Tomography

A quite different, very promising use of HAADF-STEM concerns electron tomography,
see e.g. [36] for a detailed discussion. Here, specimens of considerably larger size and
thickness are explored. Now the intensity values returned by the instrument are viewed
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as integrals of the Z2 distribution along the ray taken by the electron beam. The objective
is to reconstruct the 3D-structure of the material under investigation.

It should be stressed that in such applications the target resolution is significantly lower
than the one in the previous application. In particular, this means that the diameter of
the electron beam is smaller than the size of the pixel to which it corresponds. Among
the various possible questions to be asked in this context we shall focus in the sequel
on the following scenario. Clumps of heavier atom clusters are embedded in some carrier
material and one is interested in the distribution, size, and geometric shape of the clumps,
see Figure 5. As pointed out before, the atomic structure of the carrier material is far
from resolved. It therefore appears more like a gray soup similar to noise. While many of
the clumps stand out clearly, some of them, depending on the projection direction, nearly
merge with the soup.

Let us sketch the typical setup for this type of data acquisition in Figure 20:

• The electron gun scans the object in the usual STEM way rastering along a Cartesian
grid which for simplicity of exposition is scaled here to discretize the unit square.
The stepsize in the rastering process is denoted by H which is therefore also the
resolution of the resulting 2D-images of density patterns received for each tilt angle.
Recall that the diameter of the electron beam is (significantly) smaller than H which
will be the main discretization parameter below.

• We adopt the convention that the scanning direction is parallel to the x-axis in the
raster coordinate system. We are thinking of low dose measurements.

• The specimen is fixed to a holder handle that can be tilted around a (fixed) axis
which is parallel to the y-axis in the raster plane and perpendicular to the optical
axis (assumed as usual pointing along the z-direction).

• We are confined to a fixed tilt range (±60◦, say), due to instrumental limitations
for possible holder rotations and due to the fact that for longer paths through the
specimen there will be ray deviations and interference. (In some cases it is possible
to avoid both these limitations by preparing a specimen with a cone shape but the
problem of unavailable observations at certain tilt angles cannot be dismissed, in
general.) Let us suppose that

θi, i = 1, . . . , na,

are the (known equispaced) tilt angles.

Since the width of the electron beam is small compared to H it is justified to view
the measurements as integrals over rays Rk,j(θi) corresponding to the gun position j in
the kth scanning row and tilt angle θi. Thus, each fixed tilt angle θi and scanning row k,
corresponding to a slice through the specimen at position k, produce the density integrals

dk,j(θi) :=

∫
Rk,j(θi)

f(x)ds, j = 1, . . . ,M, (3.19)
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Figure 20: (a) The scanning plane (x, y) with the line k in red and the corresponding slice
Sk from the specimen; (b) Family of parallel rays Rj for the tilt angle θi in the (ξ, η)-unit
square for the slice Sk.

for the slice
Sk = suppf ∩ {x : x = kH}.

These slices thus correspond to a single family of parallel planes which, of course, would
not provide enough information for a 3D-inversion (even if additional few directions of
the tilt axis were added as in the “dual axis method”).

So, as a feasible principal strategy, the following commonly used two-stage process
suggests itself:

(1) For each slice Sk reconstruct the density distribution fk := f |Sk from the ray data
dk,j(θi) on Rk,j(θi), i = 1, . . . , na, j = 1, . . . ,M .

(2) Then “stack” the slice distributions fk together (e.g. by interpolation or more
general fitting technique in a way to be discussed) to obtain an approximation to f .

In principle, this is a standard procedure and elaborate inversion schemes for various
different types of tomographic applications are available. What hampers the straightfor-
ward use of such schemes in the present context, however, is first the “missing wedge”
problem due to the restricted tilt range. Standard backprojection gives rise to severe
artifacts in the reconstructed images.

The second issue concerns again dose. The coarser the angular resolution the less dose
is applied to the specimen and the question arises how coarse the resolution can be kept
while still reconstructing the structure of interest.

We shall now concentrate on stage (1). We fix the slice Sk and therefore suppress the
index k in what follows. For convenience, we shall choose now a fixed (ξ, η)-coordinate
system for the unknown density f in the plane of the slice Sk which is perpendicular to
the tilt axis. The axis ξ is perpendicular to the electron beam at the initial tilt angle
θ = 0 oriented towards scanning direction and then the axis η is perpendicular to ξ, i.e.
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parallel to the electron beam, and oriented towards the electron gun. For simplicity, we
assume that the scanning area is is the (ξ, η)-unit square [0, 1]2 and the tilt axis projects
to the point (1/2, 1/2). In fact, the slice is thin enough so that, when rotated within the
fixed angle range, the investigated area of the specimen falls always fully into the scanning
unit square. Let us denote by g(ξ, η) the unknown density of f restricted to the slice S
under consideration in (ξ, η) coordinates. Due to our assumptions we may set g(ξ, η) = 0
if (ξ, η) /∈ [0, 1]2.

In this coordinate system the rays can be parameterized as

Rθ
j := Rk,j(θ) = {(ξ, η) ∈ [0, 1]2 : ξ = tj + η tan θ}, j = 1, . . . ,M (3.20)

where tj is the intersection of the ray Rθ
j with the ξ-axis. Therefore, one obtains

dθj := dk,j(θ) =

∫
Rθj

g(ξ, η) ds =
1

cos θ

1∫
0

g(tj + η tan θ, η)dη, j = 1, . . . ,M. (3.21)

see Figure 20(b). (In the last integral one could adjust the bounds for η to indicate the
values at which the ray enters and leaves the unit square.)

To recover g from the data dij, one can, in principle, pursue two different strategies,
namely

(I) applying the so called “algebraic” reconstruction technique (ART), or

(II) going through the Fourier-Slice-Theorem.

For a good distribution of rays (II) seems to be preferable since the FFT helps efficient
computing. Recent relevant developments of reconstruction techniques based on a partic-
ularly adapted version of the Fast Fourier Transform in combination with regularization
can be found in [26]. However, since in the given setting the Fourier data is incomplete
due to the missing wedge, we shall concentrate here on (I). It basically does the following:
the ray integrals are replaced by sums of weighted values of g on the given ray, where
the weight reflects the contribution of the ray to the cell on which the unknown value is
supposed to approximate g. Then, one formally obtains a linear system of equations in
the unknown discrete approximations to g. Note that in our case this system (as in many
other practical situations) will be underdetermined and most likely inconsistent.

The currently used discretizations all seem to fit into the following setting. Consider
a Cartesian grid

Gh′ =
{
2α = [α1h

′, (α1 + 1)h′]× [α2h
′, (α2 + 1)h′], α ∈ ZZ2 : 0 ≤ α1, α2 < N = 1/h′

}
where h′ is the pixel width and a basis

Bh′ = {Bα : 2α ∈ Gh′}, ‖Bα‖L2 = 1, α ∈ Gh′ ,
where the basis functions that will be used to discretize g are normalized in L2([0, 1]2). One
cannot recover g from the finitely many measurements dθij , i = 1, . . . , na, j = 1, . . . ,M .
Instead, we can try to recover an approximation

gh′ =
∑

2α∈Gh′

cαBα. (3.22)
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In fact, defining

w(θi,j),α :=

∫
R
θi
j

Bα(x)ds =
1

cos θi

1∫
0

Bα(tj + η tan θi, η) dη, (3.23)

we arrive at the following system of linear equations∑
α∈Gh′

w(θi,j),αcα = dθij , i = 1, . . . , na, j = 1, . . . ,M = 1/H, (3.24)

in the unknown coefficients cα, α ∈ Gh′ which we’ll abbreviate as

Wc = d. (3.25)

Before discussing how to solve (3.25) we need to relate the approximation mesh size h′ and
the choice of the Bα to the given data, i.e. to the scanning step size H and the angular
resolution. Since we aim at using a possibly small number na of tilt angles, although the
scanning step size H is not too small, we expect that na � M . On the other hand, we
would like to have a relatively good approximation by the ansatz (3.22), i.e. we would
like to have h′ as small as possible. Therefore, we will have #Gh′ = (N+1)2 > na(M+1),
even if h′ ∼ H for reasonable constants. Thus, in any case of interest to us, the system
(3.25) will be underdetermined.

The standard procedure to “invert” such systems, is the Kaczmarz-Iteration or one
of its numerous variants. It views the solution (if it exists) as the intersection of hyper-
planes (each given by one equation in the system) and projects current approximations
successively onto these hyperplanes. Obviously, when the hyperplanes have big mutual
angles this converges rapidly. If they are nearly parallel, the convergence becomes very
slow. The reason for the popularity of this scheme is that it copes reasonably well with
ill-conditioned systems and that as a “row-action” algorithm it exploits the sparsity of
the system. At least from a theoretical point of view there is a problem, however, that in
the inconsistent case (i.e., if there exists no solution of the system due to measurement
noise) the iterations do not converge to a least squares solution of the system and one has
to be content if the resulting image is visually satisfactory.

Here we want to propose an alternative to Kaczmarz’ algorithm which is more in the
spirit of the above mentioned treatment of the Logan-Shepp phantom (see Section 2.5).
In order to be able to invert the corresponding ill-posed problem (3.25), we need a suitable
regularization which, in turn, should be based on a proper sparsity model for g.

Trying to reconstruct the shape and position of heavy atom clumps corresponds to
reconstructing the position and shape of higher “intensity islands”. Hence, for each slice
one is looking for a piecewise constant of variable shape and height values but relatively
small diameters. Nevertheless, for diameters of 10h′ or more, it seems reasonable to take

Bα =
1

h′
χ2α . (3.26)

In this case, the weights are proportional to the lengths of the intersections of the rays
with the cells in the Cartesian grid:

w(θi,j),α =
|Rθi

j ∩2α|
h′

. (3.27)
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Our first experiments will be concerned with this latter piecewise constant setting.
Then, to recover a piecewise constant, a reasonable regularization should be

min {‖c‖TV : subject to ‖Wc− d‖`2 ≤ ε}, (3.28)

where ε is the noise level and ‖·‖TV is a discrete total variation. Equivalently this problem
can be formulated as (unconstrained) minimization problem

min
c

{1

2
‖Wc− d‖2

`2
+ µ‖c‖TV

}
, (3.29)

where the the parameter µ is related to the noise level ε. These formulations relate to
(2.19) and (2.20), just with the `1-norm replaced by a TV-norm.

In the literature there are several ways to define the total variation. The definition
most commonly used is

‖c‖TV :=
∑
α∈Gh′

√
(cα+e1 − cα)2 + (cα+e2 − cα)2, (3.30)

but one could also think of taking

‖c‖TV :=
∑
α∈Gh′

|cα+e1 − cα|+ |cα+e2 − cα|. (3.31)

In summary, the following questions will serve as guidelines for further investigations.

• In order to resolve the shape of the islands well, it would be desirable to have h′ ≤ H
as small as possible. How small can h′ be chosen relative to H? Of course, when
h′ gets too small compared with H, it could happen that some pixels are missed by
all rays. Nevertheless, the TV-penalization would try to keep perimeters small, so
that one may still be able to recover the correct shapes.

• It is not clear how the matrices W cooperate with TV -minimization. Many methods
for the solution of the problem (3.28) (or (3.29)) have been developed under the
assumption that the matrix W fulfills the restricted isometry property, but in the
ART the matrix W is typically sparse (since each ray hits roughly the order of 1/h′

pixels), ill-conditioned, and most often severely rank-deficient which even makes
solving the standard least squares challenging, as explained above.

Since the efficient solution of problems like (3.29) for large data sets is the topic of
current research, but satisfactory algorithms are not available yet, we shall address these
questions first by some experiments with relatively small synthetic data. Nevertheless,
the following studies should suffice at this point to provide a proof of concept. Specifi-
cally, we have used the matlab package NESTA, which, in principle, is able to solve the
problem (3.29) using the total variation given by 3.30. However, since the computational
performance of this method is relatively slow, we restricted ourselves to an image size of
64× 64 pixels and only tried the Logan-Shepp phantom with a resolution of 128× 128.
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3.2.1 Example 1

The first example is very simple and is used to demonstrate the difference between a linear
reconstruction (based on Kaczmarz-iterations) and the nonlinear TV-reconstruction based
on (3.29). As a “phantom” that we want to reconstruct from simulated data (i.e., from
precomputed exact values of the ray integrals 3.19) we take a white square covering the
region [5/16, 5/8] × [5/16, 5/8] on black ground covering the unit square [0, 1]2. Here
“white” means a grayscale value of 200 and “black” a grayscale value of 10. We discretize
the image with 64× 64 pixels (i.e., h′ = 1/64) which allows an exact representation of the
phantom.

We begin with a parameter study for the noise-free case and first examine the question
how many measurements one needs to recover the phantom well with Kaczmarz iterations
and with TV -regularization, see Figure 21. We find that the `2-reconstructions computed
with Kaczmarz’ algorithm show strong artifacts and become completely meaningless, if
one diminishes the number of measurements. The TV-reconstruction is almost exact even
for relatively small number of measurements and only starts to blur, if many pixels in the
image are not hit by a ray any more.

We repeat the above experiment but add some noise to the right hand side d. More
precisely, we used the following model for the noise:

d̃θil = dθil + eθil , eθil := l(Rθi
l ) ·N(0, σ), (3.32)

where l(R) is the length of the intersection of the ray R with the unit square, and N(0, σ)
is the Gaussian normal distribution with mean 0 and standard deviation σ. The idea
behind this model is that we assume that most of the noise is caused by the ray crossing
the soup surrounding the cluster.

Table 4 lists some information about the setup of these experiments and the numerical
properties of the system matrix W . Clearly decreasing the number of measurements does
not only make the problem smaller, but also improves the the condition of the matrix.
Note that the image has 4096 pixels, so that the system is severely underdetermined.

na 1/H Θmax #Eq Ran(W ) erel,σ=2(d) µopt,σ=2 erel,σ=4(d) µopt,σ=4

20 32 60 840 828 4.60e-02 0.3 9.18e-02 0.4
20 16 60 422 418 4.71e-02 0.7 9.51e-02 0.4
10 10 60 132 132 5.03e-02 0.03 10.1e-02 0.07
5 5 60 33 33 5.20e-02 0.0007 10.5e-02 0.01

Table 4: Parameters for the reconstructions in Figures 21 and 22. #Eq denotes the
number of rows of the matrix W which equals the number of measurements; erel,σ is the
relative error ‖d̃ − d‖/‖d‖ of the right hand side due to the added noise with standard
deviation σ according to (3.32); µopt is the regularization parameter which delivered the
optimal reconstruction for the given noise level.
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Figure 21: Reconstructions from noise free data with a maximum tilt angle of 60◦. First
column: ray trace diagrams of the measurements taken; Second column: least-squares
reconstruction computed with Kaczmarz iterations; Third column: TV-regularized re-
construction; First row: na = 5, H = 1/5; Second row: na = 10, H = 1/10; Third row:
na = 20, H = 1/16; Fourth row: na = 20, H = 1/32.
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Figure 22: Reconstructions from noisy data with a maximum tilt angle of 60◦. First
column: least-squares reconstruction computed with Kaczmarz iterations (σ = 4); Second
and third column: TV-regularized reconstruction for σ = 2 and σ = 4, respectively; First
row: na = 5, H = 1/5; Second row: na = 10, H = 1/10; Third row: na = 20, H = 1/16;
Fourth row: na = 20, H = 1/32.
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3.2.2 Example 2

Now we turn to a more complicated example, where four clusters of different shape and
size, two of them non-convex, have to be reconstructed. In this case the effect of the
missing wedge can be well observed, as explained in Figures 23 and 24. As a general rule
it seems, that the reconstruction of longer edges parallel to the axis of the missing wedge
is a serious problem.

Figure 23: Reconstruction of Phantom 2 for na = 20, H = 1/32. Top row: Maximum
tilt angle Θmax = 85◦; Bottom Row: Θmax = 60◦; First and second column: Kaczmarz
and TV-reconstruction from noise-free data; Third column: TV-reconstruction from noisy
data (σ = 2, erel(d) = 0.077), where µopt = 0.03 and 0.02 for Θmax = 85◦ and Θmax = 60◦,
respectively.

In fact, as seen in Figure 23, whereas the reconstruction for the larger tilt angle is
almost perfect, one observes that the vertical edges of the h-shaped object blur in case of
a restricted tilt angle. These are the edges to which no parallel measurements are taken.

As we see in Figure 24, after a rotation, in case of a restricted tilt angle, the h-shaped
object is reconstructed almost perfectly but the vertical edges of the l-shaped object blur,
in particular in the presence of noise.

In the noisy case it is important to choose an appropriate value for µ. Unfortunately,
this value seems to depend not only on the noise level and the discretization parameters,
which are known beforehand or could at least be estimated. In the shown experiments we
determine the optimal µ by minimizing the `2-distance between the reconstruction and
the original image. In this particular experiment we find different values for µ, although
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Figure 24: Reconstruction of a rotated Phantom 2. Same parameters as in Figure 23
for na = 20, H = 1/32. Top row: Θmax = 85◦; Bottom Row: Θmax = 60◦; First and
second column: Kaczmarz and TV-reconstruction from noise-free data; Third column:
TV-reconstruction from noisy data (σ = 2, erel(d) = 0.077), where µopt = 0.07 and 0.12
for Θmax = 85◦ and Θmax = 60◦, respectively.

the only difference between the images is the rotation. On the other hand the optimal
µ usually needs to be determined only approximatively, because the reconstructions are
very similar for a wide range of values.

3.2.3 Logan-Shepp Type Phantom

Finally, with reference to Figure 6, we have computed several 128×128 reconstructions for
a Logan-Shepp type phantom (Logan-Shepp phantom modulo contrast change), although
this is actually a little bit outside the scope of our application. In [8] a Fourier technique
was used to reconstruct the image, however, in contrast to the present situation for the
full angular range of 180◦. The effect of the missing wedge is important in the present
case though, because the reconstruction of the skull seriously deteriorates in the direction
of the symmetry axis of the missing wedge. From Figures 25,26 it becomes clear that
na = 20 projections are not enough, but na = 40 projections suffice to get an almost
perfect reconstruction if the tilt angle is not restricted too much. If the tilt angle is
restricted to 600, then artifacts at the lower and upper part of the skull appear. This
consequently also affects the interior reconstruction, such that the small ellipses in the
lower part of the brain are hardly recognized any more. Furthermore, this phantom is
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very sensitive to noise and the finer structures quickly become unrecognizable for both
the `2 and TV reconstruction. Note that the image consists of 16384 pixels. For na = 20,
H = 1/32 we perform 840 measurements, whereas in the case na = 40, H = 1/64 the
matrix W has 3348 rows.

Figure 25: Reconstructions of the Logan-Shepp Phantom for a maximum tilt angle of
Θmax = 60◦. First column: na = 20, H = 1/32, no noise added; Second and third column:
na = 40, H = 1/64, without noise and with noise (σ = 2, erel(d) = 0.053), respectively;
First row: Kaczmarz reconstructions; Second row: TV-reconstructions (with µ = 0.0001,
µ = 0.001, and µ = 0.05, from left to right).

4 Conclusions

We have briefly summarized some mathematical foundations of Compressed Sensing from
a perspective that, in our opinion, is relevant for developing new imaging concepts in the
context of electron microscopy, with special emphasis on HAADF-STEM and electron
tomography. To substantiate this claim we have discussed two application scenarios con-
cerning STEM. The main objective in both cases is to argue the principal suitability of
CS-concepts which requires identifying the notions of sparsity and measurements in this
context. Moreover, we have outlined first steps towards possible solution strategies, iden-
tifying the arising key tasks and obstructions, illustrated by several experiments. More
detailed presentations of corresponding findings are deferred to forthcoming papers.
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Figure 26: Reconstructions of the Logan-Shepp Phantom for a maximum tilt angle of
Θmax = 85◦. First column: na = 20, H = 1/32, no noise added: Second and third column:
na = 40, H = 1/64, without noise and with noise (σ = 2, erel(d) = 0.053), respectively;
First row: Kaczmarz reconstructions; Second row: TV-reconstructions (with µ = 0.0001,
µ = 0.001, and µ = 0.05, from left to right).
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