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Kinetic Theories for Biofilms

Qi Wang ∗and Tianyu Zhang †

Abstract

We apply the kinetic theory formulation for binary complex fluids to develop a set of hydrodynamic
models for the two-phase mixture of biofilms and solvent (water). It is aimed to model nonlinear growth
and transport of the biomass in the mixture and the biomass-flow interaction. In the kinetic theory
formulation of binary complex fluids, the biomass consisting of EPS (Extracellular Polymeric Substance)
polymer networks and bacteria is coarse-grained into an effective fluid component, termed the effective
polymer solution; while the other component, termed the effective solvent, is made up of the collective
ensemble of nutrient substrates and the solvent. The mixture is modeled as an incompressible two-
phase fluid in which the presence of the effective components are quantified by their respective volume
fractions. The kinetic theory framework allows the incorporation of microscopic details of the biomass
and its interaction with the coexisting effective solvent. The relative motion of the biomass and the
solvent relative to an average velocity is described by binary mixing kinetics along with the intrinsic
molecular elasticity of the EPS network strand modeled as an elastic dumbbell. This theory is valid in
both the biofilm region which consists of the mixture of the biomass and solvent and the pure solvent
region, making it convenient in numerical simulation of the biomass-flow interaction. Steady states and
their stability are discussed under a growth condition. Nonlinear solutions of the three models developed
in this study in simple shear are calculated and compared numerically.

1 Introduction

Biofilms, consisting of myriad microbes, their excretions, and trapped particles, are ubiquitous in nature,
medical implants, rusty pipes, and dentistry etc., where microbes survive on wet surfaces. In principle,
a biofilm community can be formed by a single bacterial species in damp environment; but, in nature,
biofilms almost always consist of rich mixtures of multiple species of bacteria as well as fungi, algae,
yeasts, protozoa, other microorganisms, debris and corrosion products etc. Biofilms are held together by a
network of sugary molecular strands produced by the microbes, collectively termed “extracellular polymeric
substances” or “EPS”. In bacterial biofilms, bacterial cells are held together by the network consisting of
the EPS strands produced by the bacteria, allowing them to develop complex, three-dimensional, resilient,
attached communities [10, 11, 13, 28].

The center for disease control and national institute of health estimated that 65% to 85% of all chronic
infections can be attributed to bacterial biofilms [11]. In human diseases, biofilm infections are some of
the most recalcitrant to treat. Even with rigorous antibiotic regimens, some biofilms, such as those within
the thick airway mucus of cystic fibrosis (CF) patients, persist throughout the course of the disease process
[18]. One noted that the gene expression of a single bacterial (planktonic) cell differs drastically from
that of the biofilm colonies indicating environmentally induced genetic change to the bacterial cell. This
is one of the reason why antibiotics that are effective to treat single bacterium may not be effective in the
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treatment of the bacteria encased in biofilms. Bacterial biofilms can also be utilized in bio-terrorism in which
persistent ‘bio-terrorist agent biofilms’ with Francisella tularensis can grow on surfaces where environmental
amoeba can phagocytose them, allowing for growth of fibrosis [18]. Biofilms cost the U.S. literally billions
of dollars every year in energy losses, equipment damage, product contamination and medical infections.
Understanding the mechanism for the dynamical growth, transport, detachment and break-down of biofilms
is important for improving water treatment, medical treatment of diseases, protecting equipment or device
from corrosion and contamination, and even preventing bio-terrorism. It can have a profound impact on
environmental sciences, medicine, civil engineering, naval sciences, military applications and homeland
security.

Modeling biofilms has been a challenge given their complex cellular structures and changing genetic
dynamics in the presence of foreign agents [10, 13, 28]. Biofilms essentially behave like biogels in which
small solvent and nutrient molecule can permeate the network formed by the bacterial and the EPS strands. A
set of discrete or semi-discrete models associated with cellular automata have been used to study the various
aspect of the biofilm phenomena in multidimensional settings [29, 30, 31, 32]. Recently, there have emerged
a host of continuum models for biofilms treating them as mixtures of multiple idealized species [9, 21, 34, 1,
38, 39]. In these models, the mixture is either modeled as a multi-fluid mixture [9, 21, 34, 1] or a single fluid
of multi-components/species [38, 39]. In the multifluid models [9, 21, 1], which one uses in the development
of hydrodynamical models for hydrogels, the velocity for each individual component is introduced and the
balance laws for the mass and momentum of each species are preserved. The technical difficulty working
with these multi-fluid models is that the individual velocity fields of the species are used as primary field
variables in these theories; however they are essentially immeasurable in experiments since hydrodynamic
measurements are often limited to the mean or average quantities in multiphase fluids. Moreover, the inflow
and outflow boundary conditions for the individual species are elusive when it comes to mathematically
solving the governing system of equations without additional simplifications. The single fluid multi-species
model however can overcome this technical difficulty by providing explicit relative velocities in terms of
the excessive velocities generated by nonequilibrium thermodynamics (mixing dynamics) with respect to
an average bulk velocity [38, 39] and have been successfully used in modeling biofilm expansion/growth,
shedding or streaming, detachment of biofilm blobs from large colonies, and rippling phenomenon under
shear [39]. In this single fluid multi-component fluid system, the inter-penetration of different species is
carried out by their respect entropy and the mixing free energy. This molecular mechanism compensates
the so-called friction forces due to the relative motions among the various species commonly seen in the
multi-fluid theories near hydrodynamic equilibrium. By devising appropriate intermolecular potential for
the multiphase fluid, we can tailor our models to account for the physics of mixing effectively.

The mathematical models for hydrodynamics of biofilms available so far are primarily coarse-grain
models in which little cellular kinetics is incorporated. There are some common ingredients in the mul-
tiphase fluid models for biofilms (either multi-fluid or single fluid ones) [9, 1, 21, 34, 38], in which the
nutrient substrate is passively treated as a part of the solvent and the volume of the bacteria is collectively
treated a part of the effective polymer. The effective polymer adopted here is also collectively identified as
the biomass in the literature. In this paper, we interchangeably use the name of effective polymer or biomass
in order to make contact with the complex fluid models to be developed as well as the biological community
where biomass is the more familiar term.

The volume fraction of the biomass ϕn and that of the solvent ϕs are two basic hydrodynamic variables
along with the velocity of the biomass vn and the velocity of the solvent vs in multifluid models or the
average velocity v in single fluid multicomponent models, the concentration of the nutrient substrate c, the
concentration of the bacteria B, the pressure p, and the polymeric stress for the effective polymer. The
volume fraction of the biomass and the effective solvent are assumed to obey reaction-transport equations
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in these models,

∂ϕn
∂t +∇ · (ϕnvn) = gn,

∂ϕs
∂t +∇ · (ϕsvs) = gs,

(1.1)

where gn and gs is the polymer production rate and the solvent consumption rate, respectively. The bacterial
production as well as the substrate consumption equation are given as follows:

∂B
∂t +∇ · (Bvn) = gb,

∂
∂t (ϕsc)+∇ · (cvsϕs −Dsϕs∇c) =−gc,

(1.2)

where gb is the production rate for the bacteria, gc is the consumption rate of the nutrient substrate in the
solvent, Ds is the diffusion constant for the nutrient.

The binary theories for biofilms differ in the formulation of various velocities in conservation of mass
and momentum equations and the constitutive relations for gn and gs. Some end up with a quasi-compressible
constraint for an average velocity [9, 21, 1] while others retain the incompressible constraint on the average
velocity field [38]. Besides these differences, the constitutive equation for the stress and reactive rates are
essentially the same when both the effective solvent and the effective polymer are treated as viscous fluids
which is perfectly valid in the growth time scale of the biofilm. In this case, the extra stress tensor and some
of the growth as well as decay rates are given by the following constitutive laws.

τn = 2ηnDn, τs = 2ηsDs,

gc = ϕnA c
K0+c , gn = µϕn

c
Kc+c ,

(1.3)

where ηn,s are the viscosity of the effective polymer and the solvent, respectively, Dn,s =
1
2 [∇vn,s +∇vT

n,s]
is the rate of strain tensor for the effective polymer and the solvent, respectively, A is the maximum con-
sumption rate of the nutrient substrate, µ is the maximum production rate of the biomass, K0 and Kc are two
half-saturation constants. We note that the bacterial concentration decouples from the rest of the equations
in the binary biofilm models. It can thus be ignored completely in the models when the focus is on the
growth of the biomass or effective polymer.

In the phase field model we developed in [38], the ensemble of the bacteria is effectively modeled as
the “viscous solvent” which blends with the EPS network to function effectively as a polymer solution. A
distribution function for the polymer network strands can then be introduced to describe the concentration
of the polymer network strand in the ”viscous solvent” as well as the coarse-grain or meso-structure of the
polymer network. This thus motivates us to seek a kinetic formulation of biofilm theories to describe the
EPS network immersed in the viscous bacterial bath and thereby to guide the study of the biomass-flow
interaction.

In this paper, we refine our single fluid multicomponent formulation of biofilm theories by developing
a set of kinetic theory models for biofilm-solvent mixtures systematically [2]. This new formulation of the
biofilm models provides a well-structured theoretical framework for expanding the theory to incorporate
additional molecular information and biochemical details of the biofilm components into the model as one’s
understanding of biofilm dynamics progresses. In what follows, we treat the biomass-solvent mixture as
incompressible with a divergence-free average (bulk) velocity field and then develop a kinetic theory for
the effective polymer and solvent mixture taking into account the polymer conformational dynamics of the
EPS strand, production of biomass at the microscopic level, and the biomass-solvent interaction. Within
this framework, a variety of molecular models can be crafted to account for the polymer network strand
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(dumbbell, FENE dumbbell, Rouse chain, etc.) and a spectrum of polymer and solvent interaction dynamics
can be proposed (like mixing theory of Flory-Huggins, etc.). A simplified mechanical model, the dumbbell
model, for the EPS network strand and a kinetic network theory along with the Flory-Huggins mixing
dynamics is set up to illustrate the idea and demonstrate how consistent stress expressions for the effective
polymer can be derived. The kinetic theories developed here are de-facto phase field models with the field
variable naturally given by the effective polymer (or biomass) volume fraction ϕn(x, t) (the zeroth moment
of the effective polymer distribution function), in which the biofilm-solvent interface is given by the zero-
level surface of the phase variable: limδ→0+{x|ϕn(x, t) = δ} [35, 36]. The biofilm region is presented by the
non-vanishing biomass volume fraction variable ϕn. In this formulation, we tacitly assume the EPS density
is directly proportional to the bacterial density and thereby a single volume fraction can be employed to
represent the biomass. This phase field model provides a low (computational) cost mathematical formulation
of the complex interfacial problem.

The rest of the paper is organized as follows. First we develop a set of kinetic theories for biofilms by
accounting for transport of polymer network strands and their conformational changes as well as nutrient
substrates, and the response of the polymer network in flow in three plausible ways within the theoretical
framework of network theories for one fluid multi-component mixtures. We then analyze the stability of
steady states to identify the unstable modes in long wave regimes. Finally, we study the biofilm expan-
sion/growth in one space dimension numerically and compare the predictions made with the three different
kinetic theories.

2 Kinetic Theories for Biofilms

We model the biofilm as a fluid mixture of two effective components: the biomass as the effective
polymer solution including both the viscoelastic EPS polymer network and the viscous bacterial ”solution”,
and the effective solvent consisting of the solvent and the dissolved nutrient substrate. In this theory, we
neglect the mass of the nutrient and instead only account for its reactive effect. The EPS polymer network
is described by network strands connected at junction points. The dynamics of the network consist of
the dynamics of the center of mass of the polymer strand and the dynamics for the center of mass. This
description clearly cast a two-scale view on the nature of the polymer network dynamics. The dynamics
for the center of mass of the polymer strand can be described at the macroscopic or the continuum level;
whereas the dynamics of the polymer strand relative to the center of mass belongs to the mesoscale. Based
on this, we develop a kinetic theory for the fluid mixture accounting for the microstructure conformation
of the polymer network strand as well as the interaction between the effective components, in which we
model the strand in the EPS network using an elastic dumbbell model and bacteria as viscous fluids. In this
setting, the effective polymer is effectively treated as a polymeric solution, where the EPS polymer network
is “immersed” in the “bacterial solution.”

We denote the statistical weight of a polymer network strand with its center of mass located at x and the
end-to-end vector q at time t as ψ(x,q, t) such that the polymer network volume fraction ϕn is defined as the
zeroth moment of the statistical weight ψ with respect to the configuration variable q,

ϕn(x, t) =
∫

R3
ψdq = ⟨1⟩, (2.1)

where

⟨(•)⟩=
∫

R3
(•)ψdq. (2.2)

Notice that wherever the region is filled with pure solvent, i.e., ϕn(x, t) = 0, ψ(x,q, t) = 0. Wherever
ϕn(x, t) ̸= 0, however, a probability density function ψ(x,q,t)

ϕn(x,t) can be identified and a probability ensemble
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average with respect to the conformation variable q can be defined by

⟨(•)⟩q =
1

ϕn(x, t)
⟨(•)⟩. (2.3)

To make a distinction between the two ensemble averages defined above, we remark that ⟨⟩q is a probability
ensemble average while ⟨⟩ is an ensemble proportional to the volume fraction ϕ. Apparently, the effective
polymer volume fraction ϕn(x, t) plays the role of a phase field variable in the theory. I.e., when ϕn(x, t) = 0,
the fluid consists of entirely the solvent; otherwise, it is a true binary mixture. Therefore, the resulting
theory serves as an effective phase field model. The two distinctive phases are differentiated by ϕn(x, t) = 0
(solvent) and ϕn(x, t) > 0 (biofilm mixture), respectively. For biofilms, ϕn(x, t) < 1 is normally assumed,
excluding the very unlikely situation where the biofilm is completely dry without any solvent.

In this model, we treat the entire material system as an incompressible single fluid mixture of two
effective components, in which an average velocity v is assumed to exist and divergence free. We propose
that the free energy density of the mixture system is composed of the mixing free energy for the solvent and
the polymer network, elastic energy for the polymer network, self-energy of the polymer and the solvent
respectively, and the conformational entropy for the polymer network strand (elastic dumbbell):

F = fint + fec + fes + fsol, (2.4)

where fint is the extended Flory-Huggins mixing free energy density, fec is the entropic and the elastic
energy density for the conformation of the polymer strand, fes is the elastic energy for the polymer network,
and fsol is the self-energy for the solvent. Specifically,

fec = νkBT
∫

R3
[ln(

ψ
ϕn

)+ξ∥q∥2]ψ(x,q, t)dq, (2.5)

where ξνkBT is the stiffness of the polymer chain, ν is the number density of the polymer chain and (ln ψ
ϕn
)ψ

corresponds to the entropic contribution of the polymer chain, which is understood to be possibly nonzero
only in the region where ϕn ̸= 0 and zero elsewhere; the extended Flory-Huggins mixing free energy density
fint as a function of ϕn is given by

fint = kBT
[

γ1

2
∥∇ϕn∥2 + γ2

(
ϕn

N
ln(ϕn)+(1−ϕn) ln(1−ϕn)+χϕn(1−ϕn)

)]
, (2.6)

where γ1 and γ2 measures the strength of the entropic conformational and bulk mixing free energy, respec-
tively, χ is the Flory-Huggin’s mixing parameter, N is the generalized polymerization index for the polymer
strand;

fes = ϕn f (B), (2.7)

where fes is a prescribed function of the Finger tensor B whose transport equation is given by

∂B
∂t

+∇ · (vnB)+Wn ·B−B ·Wn −a1[Dn ·B+B ·Dn]+
B
λ2

=
2ηb

λ2
Dn = 2GiDn, (2.8)

where λ2 is the relaxation time, −1 ≤ a1 ≤ 1 is a model parameter, vn is the network velocity (defined
below), Wn and Dn are the vorticity and rate of deformation tensor associated to the network deformation,
respectively, a1 is a parameter between -1 and 1, ηb is a viscosity parameter and Gi =

ηb
λ2

is the elastic
modulus;

fsol = (1−ϕn)Csol, (2.9)
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where Csol is the self-energy of the solvent which is a constant. Since fsol is a linear function of the volume
fraction, its contribution to the chemical potential is merely a constant and therefore can be neglected. We
will thereby drop the self-energy of the solvent from the free energy functional to simplify the presentation.
We note that γ2 = νN is proportional to the reciprocal of the volume of the solvent molecule and ∥·∥ denotes
the l2 norm of a vector. The entropic conformational free energy is included in the Flory-Huggins mixing
free energy to minimize the spatial inhomogeneity in the biomass.

One choice of the nonlinear elastic energy for the deformation of the center of mass of the polymer
strand in the network is given by

f (B) = ξ2tr(B)+ξ3 lndet(B), (2.10)

where ξ2 and ξ3 are two model parameters. Then,

∂ f (B)
∂B

= ξ2I+ξ3B−1. (2.11)

Given the free density functional, we can calculate the chemical potential of the polymer system as
follows

µ =
δF
δψ

=
δ fint

δψ
+

δ fec

δψ
+

δ fes

δψ
, (2.12)

where

δ fec
δψ = νξkBT∥q∥2 +νkBT [ln ψ

ϕn
],

δ fint
δψ = δ fint

δϕn
=−kBT γ1∆ϕn − γ2kBT

[−1
N (1+ ln(ϕn))+ ln(1−ϕn)+1−χ+2χϕn

]
,

δ fes
δψ = f (B).

(2.13)

We note that the identity: δϕn
δψ = 1 is used in the above derivation. So,

µ = kBT
[

νξ∥q∥2 +ν(ln
ψ
ϕn

)− γ1∆ϕn − γ2[
−1
N

(ln(ϕn))+ ln(1−ϕn)+2χϕn]

]
+ f (B)+ const. (2.14)

With the chemical potential, we next derive a set of kinetic models for the biofilm fluid. We will present three
distinct versions by postulating three plausible ways that the conservative force in translational diffusion of
the EPS network can be approximated in the mean-field.

2.1 Separable Model 1 for Biofilms

In the biomass, we assume (1). the creation rate and the annihilation rate of polymer network strands is
balanced by a growth/production rate, (2). the translational diffusion is carried out through a configurational
space averaged chemical potential, (3). the deformation of the EPS strand (elastic dumbbell) in the config-
urational space (q) is due to the polymer velocity gradient ∇vn to be derived below. The transport equation
for the statistical weight ψ is then given by the following Smoluchowski equation [3, 15]

∂
∂t ψ+∇ · (vψ) = ∇ · (λ∇⟨µ⟩qψ)+∇q · 1

ζ(∇qµψ)−∇q · ((∇vn +(a−1)Dn) ·qψ)+Gn,

Gn = µr
ψc

Kc+c ,

(2.15)
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where λ is the mobility coefficient, ζ is the friction coefficient for the rotational motion of the polymer chain,
a is a slip parameter between -1 and 1 accounting for slippage between the polymer and the solvent, ∇vn

is the velocity gradient tensor with respect to the polymer velocity, Dn =
1
2 [∇vn +∇vT

n ] is the rate of strain
tensor with respect to the polymer velocity, Gn is the polymer network strand production rate in unit volume
in phase space (x,q), µr is the maximum growth rate of the biomass and Kc is a half-saturation constant for
the nutrient consumption kinetics via a Michaelis-Menton model. We note that both λ and ζ can be second
order tensors when the diffusion is anisotropic. In this paper, we adopt an isotropic diffusion coefficient
tensor for illustration purposes though. To simplify the presentation, we stipulate that the ensemble average
⟨(•)⟩q = 0 whenever ϕn = 0 throughout the paper.

2.1.1 Transport Equations For Volume Fractions And Structure Tensors: Low Order Moment Equa-
tions

Since polymer volume fraction ϕn is the zeroth moment of ψ, we obtain the transport equation of ϕn by
integrating the Smoluchowski equation over the configurational space (q-space),

∂ϕn
∂t +∇ · (ϕnv) = ∇ · [λϕn∇⟨µ⟩q]+gn,

gn = µr
ϕnc

Kc+c ,

⟨µ⟩q =−kBT γ1∆ϕn − γ2kBT
[
− lnϕn

N + ln(1−ϕn)+2χϕn

]
+

νξkBT ⟨∥q∥2⟩q +νkBT ⟨ln( ψ
ϕn
)⟩q + f (B)+ const, in biofilm.

(2.16)

We remark that the mobility vanishes in pure solvent and so does ϕn⟨µ⟩q = 0. So, this is a singular or
modified Cahn-Hilliard equation [4, 5].

From the transport equation for the volume fraction, the local instantaneous velocity can be identified
as consisting of two parts: the average velocity v and the excessive velocity due to the binary mixing. The
latter contribution to the flux, which can be read off from the transport equation, is assumed proportional to
the mixing force given by the gradient of the ensemble average of the chemical potential

ve
n =−λ∇⟨µ⟩q. (2.17)

It is called the excessive polymer velocity that is only defined in the biofilm region. The polymer velocity is
then identified as

vn = v+ve
n. (2.18)

This polymer velocity is not a divergence-free vector although the average velocity v may be. In fact, this
velocity coincides with the average velocity outside the biofilm region; so it is a globally defined hydrody-
namic variable. Using this notation, the transport equation for ϕn simplifies to

∂ϕn

∂t
+∇ · (ϕnvn) = gn. (2.19)

With this polymer velocity, we can define the rate of strain tensor and vorticity tensor associated with the
velocity field:

Dn =
1
2
(∇vn +∇vT

n ),Wn =
1
2
(∇vn −∇vT

n ). (2.20)
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We now introduce the second moment of q with respect to ψ:

Q = ⟨qq⟩= ϕn⟨qq⟩q. (2.21)

The transport equation for the second order tensor Q is obtained from the Smoluchowski equation (2.15) by
multiplying it with qq and then integrating it over the configurational space (q):

∂
∂t

Q+∇ · (vnQ)−Wn ·Q+Q ·Wn −a[Dn ·Q+Q ·Dn] =
2νkBT

ζ
(ϕnI−2ξQ)+ g̃nQ, (2.22)

where g̃n =
µrc

kc+c .
When ϕn ̸= 0, we introduce the second moment of q with respect to a probability density function

M = ⟨qq⟩q, Q = ϕnM. (2.23)

The transport equation for M is given by

ϕn

[
∂
∂t

M+vn ·∇M−Wn ·M+M ·Wn −a[Dn ·M+M ·Dn]

]
=

2νϕnkBT
ζ

(I−2ξM). (2.24)

Canceling ϕn ̸= 0 , we arrive at

∂
∂t

M+vn ·∇M−Wn ·M+M ·Wn −a[Dn ·M+M ·Dn] =
2νkBT

ζ
(I−2ξM). (2.25)

We emphasize that this equation is valid only if ϕn ̸= 0. For simulation purposes, the quantity Q is well
defined globally and easier to handle since it vanishes in the pure solvent region along with ϕn = 0.

We next assume the statistical weight ψ is separable, i.e., it is a product of the pdf ψn in the configura-
tional space of the dumbbell chains and the volume fraction ϕn:

ψ(x,q, t) = ϕn(x, t)ψn(x,q, t). (2.26)

Then, the average chemical potential reduces to

⟨µ⟩q =−kBT γ1∆ϕn − γ2kBT
[
− lnϕn

N + ln(1−ϕn)+2χϕn

]
+νξkBT ⟨∥q∥2⟩q +νkBT ⟨lnψn⟩q + f (B). (2.27)

Combining the Smoluchowski equation and equation (2.19), we arrive at the equation for the configurational
pdf ψn at ϕn ̸= 0

d
dt

ψn =
∂
∂t

ψn +vn ·∇(ψn) = ∇q ·
1
ζ

∇qµψn −∇q · ((∇vn +(a−1)Dn) ·qψn). (2.28)

It can be readily verified that the second moment equation of the pdf ψn is given exactly by (2.25).
Notice that the incompressibility condition ϕs +ϕn = 1 requires

∂ϕs

∂t
+∇ · (ϕsv) =−λ∇ · (ϕn∇⟨µ⟩q)−gn. (2.29)

From this transport equation for ϕs, the excessive solvent velocity can be identified as

ve
s = λ

ϕn

ϕs
∇⟨µ⟩q. (2.30)
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The actual solvent velocity is calculated by

vs = v+ve
s . (2.31)

Then, we arrive at that the average velocity v is in fact the volume averaged velocity

v = ϕnvn +ϕsvs. (2.32)

Hence, the transport equation for ϕs can be recast into

∂ϕs

∂t
+∇ · (ϕsvs) =−gn. (2.33)

The nutrient substrate is assumed to be transported along with the solvent velocity. Its transport equation
is given by

∂
∂t
(ϕsc)+∇ · (cvsϕs −Dsϕs∇c) =−gc, (2.34)

where c is the nutrient concentration per unit volume of solvent, ϕsc is the actual concentration per unit
biofilm volume, and gc = Aϕn

c
K0+c is the consumption rate for the nutrient. Here A is a maximum constant

decay rate and ko is the half-saturation constant in this model.
When the solvent is modeled as a viscous fluid, the constitutive equation for the extra stress in solvent

is given by

τs = 2ηsDs, (2.35)

where ηs is the solvent viscosity and Ds =
1
2 [∇vs+∇vT

s ] is the rate of strain tensor with respect to the solvent
velocity.

Given the transport equations for the volume fractions, the elastic deformation tensor B, and the second
order tensor Q, we next derive the elastic stress tensor to couple the meso-structural variables (ϕn,Q) and
the continuum variable B to the macroscopic momentum transport of the fluid mixture.

2.1.2 Constitutive Stress Equations For Effective Polymers

The extra stress for the polymer in the mixture will supply the crucial link to close the governing system
of equations for the biofilm model. Given the composition of the biomass, its contribution to the stress
tensor consists of two parts: the viscous stress ϕnτps due to the viscous bacteria and the elastic stress due to
the EPS network. The bacterial viscous stress is given by

τps = 2ηpsDn, (2.36)

where ηp is the bacterial viscosity. We use a virtual work principle to calculate the elastic stress of the
polymer. We define the free energy of the mixture system as

A =
∫

Fdx, (2.37)

where the free energy density F is given by (2.4). The variation of the free energy density is calculated as
follows

δF =
δ( fint + fes)

δϕn
δϕn +

δ fec

δψ
δψ+

δ fes

δB
: δB. (2.38)
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We use

δϕn =
∂
∂t ϕnδt =−∇ · (vnϕn)δt,

δψ = ∂
∂t ψδt =−∇ · (vnψ)δt −∇q · ((∇vn +(a−1)Dn) ·qψ)δt,

δB = ∂B
∂t δt = [−[∇ · (vnB)+Wn ·B−B ·Wn −a1[Dn ·B+B ·Dn]]+2GiDn]δt,

(2.39)

assuming that the virtual time scale δt is so small that the virtual deformation dominates the other motions.
It then follows that

δA =
∫ δ fint+δ fes

δϕn
(−∇ · (vnϕn))δtdx−

∫ ∫ δ fec
δψ [∇ · (vnψ)+∇q · ((∇vn +(a−1)Dn) ·qψ)]δtdxdq−

∫ δ fes
δB : [[∇ · (vnB)+Wn ·B−B ·Wn −a1[Dn ·B+B ·Dn]]−2GiDn]δtdx.

(2.40)

From the above expression, we identify the elastic force as

Fe =−ϕn∇( δ fint
δϕn

+ δ fes
δϕn

)−⟨∇ δ fec
δψ ⟩− (∇ δ fes

δB ) : B =−γ1kBT ∇ · (∇ϕn∇ϕn)−ϕn∇ f (B)−∇p1 −∇ δ fes
δBi j

Bi j,(2.41)

where p1 is a scalar functional of ϕn, and the elastic stress as

τe =
(a+1)

2 ⟨∇q
δ fec
δψ q⟩+ (a−1)

2 ⟨q∇q
δ fec
δψ ⟩+ (a1+1)

2
δ fes
δB ·B+ (a1−1)

2 B · δ fes
δB +

Gi(
δ fes
δB +( δ fes

δB )T ).

(2.42)

Combining Fe and τe, the extra elastic stress tensor for the effective polymer is expressed as

τe
n =−γ1kBT ∇ϕn∇ϕn +2aξνkBT ϕnM+a1

δ fes
δB ·B+Gi(

δ fes
δB +( δ fes

δB )T ). (2.43)

Here we assume fes is made up of all bulk terms. If we introduce

τ = 2ξνkBT (M− I
2ξ

), (2.44)

then, τ satisfies the following transport equation,

∂τ
∂t

+vn ·∇τ−Wn · τ+ τ ·Wn −a[Dn · τ+ τ ·Dn]+
τ

λ1
=

2ηn

λ1
Dn. (2.45)

where λ1 = ζ
4ξνkBT is the relaxation time, ηn = aζ

4ξ is the EPS polymer viscosity [3]. The rubber-elastic
model can be viewed as a limiting case of the current model as λ1 → ∞ and a = 1. Since 2aξνkBT ϕnM =
aϕnτ+aνkBT ϕnI, by absorbing aνkBT ϕnI into the pressure term, the total extra stress is given by

τtotal = ϕsτs +ϕnτps + τe
n = ϕsτs − γ1kBT ∇ϕn∇ϕn +aϕnτ+ϕnτps +a1

δ fes
δB ·B+

Gi(
δ fes
δB +( δ fes

δB )T ).

(2.46)

After combining the terms that can be identified as a part of the stress, the elastic force is left with

Fe =−ϕn∇ f (B)−∇
δ fes(B)

δB
: B−∇p1. (2.47)

In summary, the kinetic theory for biofilms consists of four sets of equations.
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Momentum and continuity equation

∇ ·v = 0,

ρ dv
dt = ∇ · (aϕnτ+ϕnτps +ϕsτs +a1

δ fes
δB ·B+Gi(

δ fes
δB +( δ fes

δB )T ))

−
[
∇p+ γ1kBT ∇ · (∇ϕn∇ϕn)+ϕn∇ f (B)+∇ δ fes

δB : B
]
.

(2.48)

Here the velocity is approximated as solenoidal and the hydrodynamic pressure p contains various scalar
functionals of ϕn and B as well as the static pressure.
Transport equation for the nutrient

∂
∂t (ϕsc)+∇ · (cvsϕs −Dsϕs∇c) =−gc. (2.49)

Transport equation for the effective polymer volume fraction
∂ϕn
∂t +∇ · (ϕnv) = ∇ · [λϕn∇⟨µ⟩q]+gn. (2.50)

Constitutive equations for stress tensors
∂τ
∂t +vn ·∇τ−Wn · τ+ τ ·Wn −a[Dn · τ+ τ ·Dn]+

τ
λ1

= 2ηn
λ1

Dn,τps = 2ηpDn,τs = 2ηsDs,

∂B
∂t +∇ · (vnB)+Wn ·B−B ·Wn −a1[Dn ·B+B ·Dn]+

B
λ2

= 2GiDn.

(2.51)

2.2 Separable Model 2 for Biofilms

Instead of using the ensemble averaged chemical potential to calculate the force in the spatial transport
of ψ, we adopt an averaged force ⟨∇µ⟩q. The Smoluchowski equation for ψ is modified to

∂
∂t ψ+∇ · (vψ) = ∇ · (λ⟨∇µ⟩qψ)+∇q · 1

ζ(∇qµψ)−∇q((∇vn +(a−1)Dn) ·qψ)+Gn. (2.52)

The zero moment of the pdf is

∂ϕn
∂t +∇ · (ϕnv) = ∇ · [λ⟨∇µ⟩qϕn]+gn,

⟨∇µ⟩q = ∇[−kBT γ1∆ϕn − γ2kBT
[
− lnϕn

N + ln(1−ϕn)+2χϕn

]
+ f (B)] = ∇ δF̂

δϕn
,

(2.53)

where F̂ = fint + fes. Note that the effective polymer velocity is given by

vn = v−λ∇
δF̂
δϕn

, (2.54)

while the solvent velocity is

vs = v+λ
ϕn

(1−ϕn)
∇

δF̂
δϕn

. (2.55)

By taking the second moment of q with respect to the pdf ψ, we arrive at equation (2.22). The extra stress
tensor in this model is identical to the one derived in the previous section. The difference lies in the definition
of the polymer velocity vn though.

If we set ψ = ϕnψn, the transport equation for ψn is given exactly by (2.28). This version of the model
without the network center of mass (the Finger tensor) elasticity was studied in details in [38, 39], where it
was introduced phenomenologically. Now, we have shown that the model can be cast into a low moment
projection of a kinetic model.
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2.3 Nonseparable Model for Biofilms

The above two models are developed using the separability of the statistical weight ψ under two slightly
different mean-field assumptions in the spatial or translational transport. We next consider the third model.
Instead of the ensemble averaged chemical potential or averaged force, we use the same chemical potential
in both the translational and configurational space transport in the Smoluchowski equation for the transport
of ψ,

∂
∂t ψ+∇ · (vψ) = ∇ · (λ∇µψ)+∇q · 1

ζ(∇qµψ)−∇q((∇vn +(a−1)Dn) ·qψ)+Gn. (2.56)

The zero moment of the pdf with respect to the configuration variable q is

∂ϕn
∂t +∇ · (ϕnv) = ∇ · [λ⟨∇µ⟩]+gn,

⟨∇µ⟩= ϕn⟨∇µ⟩q = ϕn∇[−kBT γ1∆ϕn−

γ2kBT
[
− lnϕn

N + ln(1−ϕn)+2χϕn

]
+ f (B)] = ϕn∇ δF̂

δϕn
.

(2.57)

Notice that this transport equation is identical to the one derived using Model 2. We take the second moment
of q with respect to ψ,

∂
∂t Q+∇ · (vnQ)−Wn ·Q+Q ·Wn −a[Dn ·Q+Q ·Dn]

= ∇ · (λ⟨(∇µ−⟨∇µ⟩q)qq⟩)+ 2νkBT
ζ (ϕnI−2ξQ)+ g̃nQ

= ∇ · (λ⟨∇ δ fec
δψ qq⟩)+ 2νkBT

ζ (ϕnI−2ξQ)+ g̃nQ

= ∇ · [λνkBT (∇Q−∇ lnϕnQ)]+ 2νkBT
ζ (ϕnI−2ξQ)+ g̃nQ.

(2.58)

Using Q = ϕnM, it follows that

ϕn

[
∂
∂t M+vn ·∇M−Wn ·M+M ·Wn −a[Dn ·M+M ·Dn]

]
=

ϕn

[
1
ϕn

∇ · [λϕnνkBT ∇M]+ 2νkBT
ζ (I−2ξM)

]
.

(2.59)

When ϕn ̸= 0, it yields

∂
∂t M+vn ·∇M−Wn ·M+M ·Wn −a[Dn ·M+M ·Dn] =

1
ϕn

∇ · [λνϕnkBT ∇M]+ 2νkBT
ζ (I−2ξM). (2.60)

In this model, the pdf ψ is not assumed separable. Thus, we call it a nonseparable model. The elastic stress
constitutive equations is dissipative and all stress constitutive equations are given by

dτ
dt

−Wn · τ+ τ ·Wn −a[Dn · τ+ τ ·Dn]+
τ

λ1
=

2ηn

λ1
Dn +

λ3

λ1ϕn
∇ · (ϕn∇τ),τps = 2ηpDn, τs = 2ηsDs,(2.61)

where λ3 = λζ
4ξ = ληn

a is a parameter characterizing the stress diffusive length scale. λ3
λ1

defines the stress
diffusion coefficient. In practice, especially, in numerical simulation, we use τn = ϕnτ. It’s zero when
ϕn = 0. The transport equation deduced from those of τ and ϕn.

∂τn
∂t +∇ · (vnτn)−Wn · τn + τn ·Wn −a[Dn · τn + τn ·Dn]+

τn−2ηnϕnDn
λ1

= λ3
λ1

∇ · (∇τn −∇lnϕnτn)+ g̃nτn.(2.62)

Here Bi is a elastic modulus. (This needs to be checked.)

12



3 Closure Approximation to Separable Model 1 and Remarks

In Separable Model 1 for biofilms, the transport equation for ϕn is given by (2.16). This model couples
the Smoluchowski equation for ψn to the transport of the volume fraction ϕn. In order to decouple them, we
employ an approximation to the averaged chemical potential term ⟨lnψn⟩q. We assume the equilibrium pdf
of the polymer strand obeys the Gaussian distribution when the creation and annihilation rate cancels each
other:

ψn =
1

√
2π3√

detM
e−

1
2 M−1:qq. (3.1)

We replace the pdf ψn by this equilibrium pdf in ⟨lnψn⟩q =
∫

lnψnψndq to yield:∫
lnψnψndq =−1

2
ln(detM)+ const. (3.2)

Then,

∇⟨µ⟩q = ∇
[
−kBT γ1∆ϕn − γ2kBT

[
− 1

N − lnϕn
N + ln(1−ϕn)+1−χ+2χϕn

]
+ f (B)

]
+

νkBT ∇
(
ξ trM− 1

2 ln(detM)
)
.

(3.3)

With this closure approximation, the transport equation for ϕn only couples to the transport equation for the
second moment tensor Q or the elastic stress τn. Consequently, the Smoluchowski equation is successfully
decoupled from the governing system of equations for the mixture.

Remark 1: Reformulation of Stress Constitutive Equations
Analogous to (2.62), we can compute elastic stress tensor τn = ϕnτ everywhere in the mixture through

its transport equation derived from the second moment equation in the models directly. In separable model
1 and 2, it is given by

∂τn
∂t +∇ · (vnτn)−Wn · τn + τn ·Wn −a[Dn · τn + τn ·Dn]+

τn
λ1

= 2ηnϕn
λ1

Dn + g̃nτn. (3.4)

The cost of computing this set of equations is comparable to that for the stress tensor τ. For comparison
purposes with the results in [38], we will focus our analysis and numerical results on the set of variables
ϕn,τ,v and their transport equations in this paper.

Remark 2: Model extension
In the aforementioned derivation, the polymer network strand is modeled using the simplest molecular

model, the elastic dumbbell or bead-spring model. More realistic models such as various FENE models,
network models and other polymer models can be incorporated effortlessly. If further information on the
polymer network properties such as its strand creation and breakage rate aside from the polymer production
due to bacteria is known a priori, the polymer network dynamics can be described in more details. When any
nonlinear molecular model is incorporated into the configurational and translational dynamics, the resulting
theory is most likely nonlinear so that the Smoluchowski equation is strongly coupled to the momentum
transport equations. Therefore, the cost of solving the solutions of the system can pose a new challenge if a
decoupled stress constitutive equation is not attainable.

Next, we compare the predictions made by the three biofilm models in one space dimension. Given the
similarity in the viscoelastic equation for the center of mass dynamics of the polymer strand and that of the
polymer strand itself, we neglect the viscoelastic dynamics for the center of mass in the rest of the paper.
This is equivalent to using one elastic relaxation time constitutive equation for the biomass.
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4 Nondimensionalization and Boundary Conditions

We use a characteristic time scale t0, length scale h, and the nutrient concentration scale c0 to nondimen-
sionalize the variables

t̃ =
t
t0
, x̃ =

x
h
, q̃ =

q
h
, ṽ =

vt0
h
, p̃ =

ph2

f0
, τ̃ =

τh2

f0
, c̃ =

c
c0
, (4.1)

where f0 is a characteristic force scale. The following dimensionless parameters arise

Λ = λt0 f0
h4 , Γ1 =

γ1kBT
f0

, Γ2 =
γ2kBT h2

f0
, Res =

f0t0
ηsh2 , Ren =

f0t0
ηnh2 ,Reps =

f0t0
ηpsh2 , D̃s =

Dst0
h2 ,

Bi = ρ0h4

f0t2
0
, ρ̃ = Bi(ϕs

ρs
ρ0
+ϕn

ρn
ρ0
), Ã = At0, µ̃r = µrt0, K̃c =

Kc
c0
, K̃0 =

K0
c0
, Λ1 =

λ1
t0
, Λ3 =

ληn
h2a .

(4.2)

where ρ̃0 is an averaged density, Bi = 1 is set to define the characteristic force scale f0 =
ρ0h4

t2
0

as the inertia
force. We summarize the description of the dimensionless parameters below:

• Res, Reps and Ren are the Reynolds number for the solvent, bacterial “solvent” and EPS polymer,
respectively.

• Λ is the dimensionless mobility.

• Γ1 and Γ2 measure the strength of the conformational entropy and the bulk mixing free energy.

• Bi is a parameter for the inertia, which is set to be 1 in this study.

• D̃s is the dimensionless diffusion coefficient for the nutrient.

• µ̃r is the dimensionless biomass maximum growth rate and Ã is the dimensionless decay rate for the
nutrient.

• K̃c, K̃0 are the dimensionless half saturation constants.

• Λ1 is the Deborah number for the EPS polymer.

• ρ̃ is the dimensionless density of the mixture.

• Λ3 =
Λ

aRen
is the effective stress diffusion constant.

For simplicity, we drop the ˜ on the dimensionless variables and the parameters. The system of governing
equations of separable model 2 in these dimensionless variables is listed below

∇ ·v = 0,

ρ dv
dt = ∇ · (ϕn(aτ+ 2

Reps
Dn)+ϕs

2
Res

Ds)− [∇p+Γ1∇ · (∇ϕn∇ϕn)],

∂
∂t (ϕsc)+∇ · (cvsϕs −Dsϕs∇c) =−gc,

∂ϕn
∂t +∇ · (ϕnv) = ∇ · [Λϕn∇ δF̂

δϕn
]+gn,

Λ1

[
∂
∂t τ+vn ·∇(τ)−Wn · τ+ τ ·Wn −a[Dn · τ+ τ ·Dn]

]
+ τ = 2

Ren
Dn,

(4.3)
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where

gc = Aϕn
c

K0+c , gn = µrϕn
c

Kc+c , vn = v−Λ∇ δF̂
δϕn

, vs = v+ Λϕn
ϕs

∇ δF̂
δϕn

.

The dimensionless mixing free energy density is now given by

f =
Γ1

2
∥∇ϕn∥2 +Γ2

[
ϕn

N
lnϕn +(1−ϕn) ln(1−ϕn)+χϕn(1−ϕn)

]
, (4.4)

Analogously, the other dimensionless equations can be obtained. To save space, we will only enumerate
the ones that differ from the corresponding equations in separable model 2 listed above. For separable model
1, the governing system of equations consists of all equations in (4.3) except that the transport equation for
ϕn is replaced by the following:

∂ϕn
∂t +∇ · (ϕnv) = ∇ · [Λϕn∇⟨µ⟩q]+gn,

∇⟨µ⟩q = ∇
[
−Γ1∆ϕn −Γ2

[
− lnϕn

N + ln(1−ϕn)+2χϕn

]]
+ 1

2 ∇(tr(τ)− Γ2
N lndet(τ+ Γ2

N I)).
(4.5)

The governing system of equations in the nonseparable model is given by (4.3) except that the constitutive
elastic stress equation is replaced by by

Λ1

[
∂
∂t τ+vn ·∇(τ)−Wn · τ+ τ ·Wn −a [Dn · τ+ τ ·Dn]

]
+ τ = 2

Ren
Dn +

Λ3
ϕn

∇ · (ϕn∇τ). (4.6)

The boundary conditions for the moments are derived from the boundary condition for the statistical
weight ψ in the Smoluchowski equation in each model. For the three models, they are respectively,

n ·∇⟨µ⟩qψ = 0, (Separable Model 1) ,

n · ⟨∇µ⟩qψ = 0, (Separable Model 2) ,

n ·∇µψ = 0, (Nonseparable Model) .

(4.7)

where n is the unit external normal of the boundary. Taking the zero moment of the above equations, we
arrive at the boundary condition for ϕn in the models, respectively. For the volume fraction ϕn, an additional
flux condition has to be imposed in all three models:

n ·∇ϕn = 0. (4.8)

The boundary conditions for the volume fraction ϕn in the nonseparable model are:

n ·∇ϕn = 0, n · ⟨∇µ⟩= 0. (4.9)

The second boundary condition in the above translates into

ϕnn ·∇ δF̂
δϕn

= 0. (4.10)

Combining with the first boundary condition on ϕn, we arrive at

ϕnn ·∇[Γ1∇2ϕn] = 0. (4.11)
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We take the liberty to set

n ·∇3ϕn = 0. (4.12)

Taking the second moment over eq. (4.7-c), we arrive at the boundary condition for the second moment
tensor:

n · ⟨∇µqq⟩= 0. (4.13)

This can be rewritten into the boundary condition in the elastic stress tensor τ:

ϕnn ·
[

Γ2

N
∇τ+∇

δF̂
δϕn

(τ+
Γ2

N
I)
]
= 0. (4.14)

It translates into

ϕnn ·∇τ = 0. (4.15)

Once again, we make the choice to set

n ·∇τ = 0. (4.16)

The boundary condition for the nutrient is the flux-free boundary condition at the solid wall (n ·∇c = 0) and
the Dirichlet boundary condition (c = c∗) at any boundaries that have access to a nutrient reservoir.

The boundary conditions in separable model 2 are identical except that there are no boundary conditions
for the stress tensor τ since the stress constitutive equation in this model is no longer diffusive. The boundary
conditions for separable model 1 are similar to those of model 2 except that the second condition for ϕn is
now given by

n ·∇⟨µ⟩q = n ·
[

∇ [−Γ1∆ϕn]+
1
2

∇(tr(τ)− Γ2

N
lndet(τ+

Γ2

N
I))

]
= 0. (4.17)

5 Steady States in 1-D and Their Linear Stability

In this section we examine the solution of the governing system of equations that depend on one space
variable y ∈ I = [0,1]. For the models under the zero elastic stress and zero nutrient concentration condition,
the three models share the same set of nontrivial steady states governed by the singular steady state Cahn-
Hilliard equation subject to the normal flux free boundary condition. The set of steady states is given by

ϕn = ϕ0, c = 0, τ = 0, v = 0. (5.1)

We linearized the equations about the constant states and then apply the normal mode analysis. In the
linearized systems, the normal modes of elastic stress components decouple from those of ϕn and velocity
v. The decay rate in separable model 1 and 2 are identical and given by

− 1
Λ1

, (5.2)

while in the nonseparable model given by,

− 1
Λ1

(1+Λ3k2), (5.3)
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where k is the wave number of the infinitesimal perturbation. The growth rate for ϕn is identical in all three
models given by

−Λϕ0k2(Γ1k2 +Γ2 f̂ ′′(ϕ0)), (5.4)

where f̂ =−[ϕn
N lnϕn+(1−ϕn) ln(1−ϕn)+χϕn(1−ϕn)] is the bulk mixing free energy density. The modes

for the velocity and pressure are all decay, which can be found in [38]. If f̂ ′′(ϕ0) is negative, a long-wave

instability emerges for 0 ≤ |k| ≤
√

−Γ2 f̂ ′′(ϕ0)
Γ1

.
Another steady state solution family is given by

ϕn = 0, c = c0, τ = 0, v = 0, (5.5)

where c0 is a constant. The linearized stability analysis for this set of solution shows a growth given by gn

in all models in all wave numbers. The corresponding growth rate is given by
µrc0

kc + c0
(5.6)

These two ”growth” mechanisms dictate the biomass dynamics in the near equilibrium state and also impact
the nonlinear dynamics. The detail about the derivation of the linearized growth rate for the separable model
2 can be found in [38].

One of the characteristics of the biofilm is its time-dependent dynamical growth. In the rest of the paper,
we will focus on the comparison of transient solutions of the nonlinear govern systems in the three models.

6 Numerical Scheme for Transient Biofilm Models in One Space Dimension

In this section we discuss the numerical methods used for solving the nonlinear systems of partial dif-
ferential equations with emphasis on dynamical growth and transport of the biomass that is homogeneous in
(x,z), namely, the 1-D biofilms with space variable y ∈ I = [0,1]. All unknowns are function of (y, t) only.
We denote v = (vx,vy,vz), ve

n = (0,ve
y,0). Then, continuity equation along with the boundary conditions

implies vy = 0. So, vn = v+ ve
n = (vnx,vny,vnz) = (vx,ve

y,vz). Consequently, vs = v+ ve
s = (vsx,vsy,vsz) =

(vx,ve
sy,vz). Using the boundary condition and the momentum balance equation, we arrive at

p =−Γ1(ϕn,y)
2 +2

(
1−ϕn

Res

∂vsy

∂y
+

ϕn

Reps

∂vny

∂y

)
+(aϕnτyy). (6.1)

We recall that separable model 1 differs from separable model 2 in that its excessive flux for the ϕn transport
equation has an extra term 1

2 Λϕn∇
(
tr(τ)− Γ2

N lndet
(
τ+ Γ2

N I
))

. Likewise, the nonseparable model differs
from separable model 2 in the transport equation for the extra elastic stress which has an extra diffusive term
Λ2
ϕn

∇ · (ϕn∇τ) on the right hand side of the stress evolutionary equation in the nonseparable model.
In the comparative study, we impose the following boundary conditions for separable model 2:

vx|y=0 = 0, vx|y=1 = vshear, vy|∂I = 0,

∇ϕn ·n|∂I =
[
v−Λ∇ δF

δϕn

]
·n|∂I = 0,

[Dϕs∇c] ·n|y=0 = 0, c|y=1 = c⋆,

(6.2)

where ∂I are the end points of interval I. For the nonseparable model, additional boundary conditions must
be imposed for the stress tensor

∇τxy ·n|∂I = ∇τyy ·n|∂I = 0, · · · . (6.3)
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For separable model 1, one of the boundary conditions for the volume fraction ϕn (n ·∇3ϕn = 0 is replaced
by

n ·∇
[
−Γ1∇2ϕn +

1
2
(tr(τ)− Γ2

N
lndet(τ+

Γ2

N
I))

]
= 0. (6.4)

The numerical scheme used to study the nonlinear dynamics of biofilm growth is a finite difference
scheme with uniform spatial and time step sizes, denoted by ∆y and ∆t, respectively. Assuming interval
I = [0,1] is divided into M uniform sub-intervals with size ∆y = 1/M at M + 1 nodes y0,y1, · · · ,yM , we
denote the values of the numerical solution of ϕn,c,vx,τxy,τyy at (n∆t, j∆y) by ϕn

n, j,c
n
j ,v

n
x, j,τn

xy, j,τn
yy, j. Since

v ·n|∂I = 0, the discrete form of the boundary conditions (6.2) and (6.3) yield

ϕn
n,1 = ϕn

n,−1, ϕn
n,2 = ϕn

n,−2, ϕn
n,M+1 = ϕn

n,M−1, ϕn
n,M+2 = ϕn

n,M−2, cn
1 = cn

−1, cn
M = c⋆,

vn
x,0 = 0, vn

x,M = vshear, τn
xy,1 = τn

xy,−1, τn
xy,M+1 = τn

xy,M−1, τn
yy,1 = τn

yy,−1, τn
yy,M+1 = τn

yy,M−1.
(6.5)

For given solutions at time step n− 1 and n, the polymer volume fraction at time step n+ 1, ϕn+1
n is

calculated by a θ−method (0 ≤ θ ≤ 1):

1
∆t (ϕ

n+1
n −ϕn

n)+θ∇ ·
[
vn+1ϕn+1

n +Λϕ̄n+1
n ∇

(
Γ1∇2ϕn+1

n +2Γ2χϕn+1
n

)]
= gn(ϕ̄n+θ

n , c̄n+θ)− (1−θ)∇ ·
[
vnϕn

n +Λϕn
n∇

(
Γ1∇2ϕn

n +2Γ2χϕn
n
)]
−

ΛΓ2∇ ·
[(

−∇ϕn+θ
n

N +ϕn+θ
n ∇ ln(1− ϕ̄n+θ

n )
)]

.

(6.6)

After this, the volume fraction of the solvent at time step n+ 1 is obtained by ϕn+1
s = 1− ϕn+1

n and the
substrate concentration at time step n+1, cn+1, is calculated by

1
∆t (ϕ

n+1
s cn+1 −ϕn

s cn)−θ∇ ·
(
Dsϕn+1

s ∇cn+1 −ϕn+1
s vn+1

s cn+1
)

= −gc(ϕ̄n+θ
n , c̄n+θ)+(1−θ)∇ · (Dsϕn

s ∇cn −ϕn
s vn

s cn) .
(6.7)

The spatial discretization in all semidiscretized equations is done using central differences to ensure the
second order accurate in space and volume preserving for ϕn when the growth is turned off. Here, the
extrapolation is accomplished by ϕ̄n+θ

n = (1+ θ)ϕn
n − θϕn−1

n , c̄n+θ = (1+ θ)cn − θcn−1 and the nonlinear
functions gn,gc and some terms involving log-function are evaluated at these extrapolated values. We use
θ = 1/2 in our simulations, thus the overall scheme is second order in time and space.

The average velocity components vx and the stress components τxy,τyy, · · · are computed as follows. The
time discretization of the equation for vx is given by

ρn+1 vn+1
x − vn

x

∆t
−θ

∂
∂y

((
ϕn+1

s

Res
+

ϕn+1
n

Reps

)
∂vn+1

x

∂y

)
= (1−θ)

∂
∂y

((
ϕn

s

Res
+

ϕn
n

Reps

)
∂vn

x

∂y

)
+

∂(aϕn
nτn

xy)

∂y
. (6.8)

The spatial discretization is again central difference.
For separable model 1 and 2, all six components of the stress tensor satisfy a generic equation of the

form

∂τi j

∂t
+ ve

y
∂τi j

∂y
= Fi j(τ,∇vn). (6.9)

Here Fi j(τ,v) represents the (i,j) component of the stress tensor and it doesn’t contain terms involving
partial derivatives of τ. Since ve

y = 0 at y = 0,1, there are no boundary conditions for the elastic stress tensor
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τ necessary; thus, τ actually satisfies an ODE ∂τ
∂t = F(τ,v) at y = 0,1. Then at the discrete level, we solve

τ0,τM by the following Runge-Kutta method.

τn+1 = τn +
∆t
6
(K1 +2K2 +2K3 +K4), (6.10)

where

K1 = F(τn,∇vn
n), K2 = F(τn +

∆t
2

K1,∇[
vn

n +vn+1
n

2
]),

K3 = F(τn +
∆t
2

K2,∇[
vn

n +vn+1
n

2
]), K4 = F(τn +∆tK3,∇vn+1

n ).

We solve τn
j ,1 ≤ j ≤ M−1, by the following upwind scheme

τn+1
j − τn

j

∆t
=− 1

2∆y

{
[1− sign(ve,n

y, j+1/2)]v
e,n
y, j+1/2(τ

n
j+1 − τn

j) +

[1+ sign(ve,n
y, j−1/2)]v

e,n
y, j−1/2(τ

n
j − τn

j−1)
}
+F(τn

j ,∇vn
n). (6.11)

For the nonseparable model, we have an extra diffusive term Λ2
ϕn

∇ · (ϕn∇τ) in the right hand side of
(6.9) and write it as F(τ,∇vn,ϕn). Using boundary condition (6.5), we solve τn

j , 0 ≤ j ≤ M, by (6.11) with
F(τn

j ,∇vn
n) replaced by F(τn

j ,∇vn
n,ϕn

n). The derivatives are discretized again by central differences. The
overall scheme is second order in space and time.

7 Model Comparison in 1-D Transient Flows

Separable model 2 in the viscous limit (λ1 → 0) has been studied in [38, 39, 7] in both 1 and 2 space
dimension. Here we revisit the nonlinear transient growth of the biofilm in 1-D using all three viscoelastic
models with an emphasis on the comparison of the model predictions under shear. We limit our studies to the
growth and expansion of biofilms that are homogeneous in the (x,z) plane alone using the numerical scheme
alluded to in the previous section. Table 1 lists the ranges and values of the dimensional parameters used
in our numerical investigations which are summarized from the currently available literature [23, 9, 21]. In
the numerical study, the initial profile for ϕn is chosen as a step function (mimicking a localized distribution
of the biofilm across the shear cell with a sharp interface between the biofilm and the solvent), the initial
stress is assumed zero, and the nutrient concentration is initially saturated at the feeding level. We consider a
constant shear velocity vx = vshear = 1 imposed at y = 1 and the nutrient concentration c∗ holds at a constant
value at y = 1. The initial velocity profile is a nonlinear smooth interpolation between the shearing speed
and the zero velocity at the lower boundary y = 0.

The measured biofilm relaxation time and viscosity vary with respect to the wall stress exerted on the
rheometric device used in the measurement [37, 23]. The relaxation time can vary from 4.57 s to 169.5 s, an
order of 37 folds difference between the high and the low value in one study [37, 23]. Most theoretical and
computational studies on biofilms have been focused on the biofilm growth dynamics which is dominated by
the viscous effect in terms of biofilm hydrodynamics. Since the three kinetic models developed in this paper
differ predominantly in the viscoelastic stress constitutive equation, we conduct our comparative studies on
model predictions focusing on the viscoelastic response. We use two relaxation time values in which the
larger one is 55 folds of the smaller one.
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Table 1: Parameter Values Used In Simulations

Symbol Parameter value Unit
T Temperature 303 Kelvin
γ1 Distortional energy 1×107 m kg s−2

γ2 Mixing free energy 1×1017 m−1 kg s−2

χ Flory-Huggins parameter 0.55 and 0.65
λ Mobility parameter 1×10−10 ∼ 1×10−8 kg−1m3s
N Generalized polymerization parameter 1×103

µ Max. Production rate 1.4×10−3 kgm−3s−1

Kc Half saturation constant for polymer growth 1×10−4 kgm−3

K0 Half saturation constant for nutrient decay 5×10−4 kgm−3

A Max. Consumption rate 0.1 kgm−3s−1

Ds Substrate diffusion coefficient 2.3×10−9 m2s−1

ηn Viscosity of the EPS network 0.02 kgm−1s−1

ηps Viscosity of the bacteria in the polymer network 4.3×102 kgm−1s−1

ηs Viscosity of solvent 1.002×10−3 kgm−1s−1

ρn Network density 1×103 kgm−3

ρs Network solvent 1×103 kgm−3

c0 Characteristic substrate concentration 1×10−3 kgm−3

h Characteristic length scale 2×10−4 m
t0 Characteristic time scale 40 s
λ1 Relaxation time 50 ∼ 2×103 s
a Slip parameter (a) 0.92
M Number of spacial sub-intervals 64 ∼ 256

7.1 Highly elastic regime: Λ1 >> 1

We first examine the models in the “highly elastic” regime: Λ1 = 2.5× 103 >> 1 and 1
RenΛ1

∼ O(1).
Figure 1 depicts the profile of the solutions of the three models at t = 200 and the mobility parameter
Λ = 2.5×10−7. We observe that the biomass grows due to the bacterium and EPS production capability and
expands to the solvent region by the excessive flux resulted from solvent-polymer mixing dynamics. The
step profiles in Figure 1(a) are ϕn at t = 0, and the smooth curves are ϕn at t = 200. The biomass growth is
fueled by the availability of the nutrient so that the growth slows down when the nutrient concentration is
low and eventually stops when it is depleted. We notice that the time scales in both growth and expansion
are comparable at this mobility value so that the biomass in the biofilm region can be transported swiftly into
the solvent region to fuel the expansion. Hence, we don’t see the accumulation of biomass at the interface
leading to anomalous growth there. The maintenance of sustainable level of nutrient at the interfacial region
is achieved by its proximity to the nutrient rich solvent region as well as nutrient diffusion. The differences
among results from the three models are essentially indistinguishable in this comparison. This is expected
for separable model 2 and the nonseparable model (labeled as model 2 and 3 in the figures) since they have
the same transport equation for ϕn and c. For separable model (labeled as model 1 in the figures), since
the dimensionless mobility parameter Λ is at most 2.5× 10−7 and very small, the contribution from the
extra term 1

2 Λϕn∇(tr(τ)− Γ2
N lndet(τ+ Γ2

N I)) in the excessive flux is also very small. Thus the ϕn plotted
in Figure 1(a) shows no visible difference. A more detailed comparison is given in Figure 2 which depicts
the difference between ϕn computed by model 1 and 2 (left picture) and by model 2 and 3 (right picture)
at t = 200, respectively. We observe that model 2 and 3 give virtually identical result of ϕn, which differs
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from the result of model 1 by an order of 10−5. Therefore, the coupling between ϕn and stress tensor τ in
model 1 does make a difference. However, in the current parameter value range, the difference is so small
and essentially indistinguishable.

To reveal more details about the nonlinear expansion and growth of biomass and dynamics of other
components in the mixture, we plot the profile of the nutrient concentration c at t = 200 in the figure as well.
The initial distribution of the nutrient is assumed uniform matching the boundary condition at the feeding
end. We observe that the nutrient concentration c depletes more quickly deep in the region occupied by the
bulk biomass than near the biofilm-solvent interface.

The expansion direction of the biomass is perhaps best monitored by its velocity. The figure depicts the
nonzero polymeric velocity component vny = ve

y in the y-direction and the polymeric velocity vnx = vx in
the x-direction. The velocity components in both directions are fairly small in magnitudes. Given the large
bacterial viscosity in the effective polymer, the motion of the biomass in the biofilm region is very slow
compared to that of the solvent. The growth of the biofilm in the y-direction is signatured by the largely
positive polymeric velocity component ve

y although it experiences a negative local minimum at the interface
at t = 200. The negative transient velocity indicates a transient decay in the biofilm at t = 200. In general,
an overwhelmingly positive ve

y causes the slow growth of the biofilm’s thickness. The equation for vx is
essentially a diffusion equation with the Dirichlet boundary condition at y = 0 and y = 1. Hence, we see an
approximately linear profile in vx in the regions occupied by the biofilm and the solvent, respectively.

Since the EPS in the biomass is modeled as a polymer network consisting of elastic dumbbell strands,
the elastic stress dynamics is worthy of a detailed interrogation to explore the mechanical stress exerted on
the EPS polymer network. Figure 1(e,f) depict the shear (ϕnτxy) and the normal elastic stress component
( ϕnτyy) at t = 200, respectively. Both stresses peak behind the interface between the biofilm and the pure
solvent in the biofilm region. The peak of the shear and normal stress correlates well with the peak of the
velocity component vy in which there exists a local maximum at the interface. The results obtained from all
models are identical numerically.

At a smaller mobility, the transient biofilm profile and other hydrodynamic variables agree even better
among the predictions by the three models in the parameter regime investigated. Figure 3 depicts the solu-
tions for all three models at t = 200 and Λ = 2.5×10−9. The biomass volume fraction profile exhibits some
active growth and accumulation of biomass at the interface at the smaller mobility value. This active growth
takes a toll on the nutrient concentration at the interface as well, where the nutrient concentration exhibits a
local minimum corresponding to the local maximum in the biomass fraction. This is the consequence of the
fact that the growth time scale exceeds that of the transport time scale at this mobility parameter leading to a
local accumulation of the biomass and thereby the noticeable consumption of the nutrient. The elastic shear
stress value is considerably small in the biofilm than in the previous case. The fluctuation at the interface
in the elastic shear stress is not seen at t = 200. Figure 4 exploits the fine details of the velocity inside the
biofilm region during the shearing process at t = 200 and Λ = 2.5× 10−9. It reveals the magnitude of the
slow motion of the biofilm in the x-direction leading up to the edge of the interface.

We also examine the solution of the system at a different mixing parameter χ = 0.65 when there is a
growth mode due to the polymer-solvent mixing dynamics. Figure 5 depicts the solution at t = 200 and
Λ = 2.5×10−9. When the growth mode due to the mixing dynamics exists, the biomass growth dominates.
At t = 200, there is little expansion of the biofilm into the pure solvent region shown. To the contrary, the
active growth of the biomass tends to pull the biomass into the the active growth region around the interface
in the cell. This is best shown in the velocity vy where it is negative at the interface. This is related to the
nucleation process inherent to the Cahn-Hilliard dynamics in this parameter regime. Meanwhile, the elastic
shear and the normal stress component all peak at the fastest growing spot. The situation is alleviated as
the mobility parameter or the shear speed increases. Once again, the three models give virtually identical
predictions.
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Figure 1: Solutions of the three models at t = 200, mobility parameter Λ = 2.5× 10−7, mixing parameter
χ = 0.55, and relaxation time Λ1 = 2.5×103. The separable model 1 and 2 are referred to as model 1 and 2
while the nonseparable model is referred to as model 3 in the text and the figures. (a). The biomass volume
fraction ϕn; (b). the nutrient concentration c; (c). the velocity component in the x-direction vx; (d). the
velocity component in the y-direction vy = ve

y; (e). the elastic shear stress ϕnτxy ; (f). the elastic normal
stress ϕnτyy. The three models’ predictions are essentially indistinguishable in this parameter regime.
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Figure 2: Difference of the biomass volume fraction between model 1 and 2 as well as model 2 and 3 at
t = 200. (a). The difference in the biomass volume fraction between model 1 and model 2. The largest
difference is in the order of O(10−5). (b). The difference in the biomass volume fraction between model 2
and model 3. Model 2 and 3 give virtually identical results. Parameter values are identical to the ones used
in Figure 1.

7.2 Viscoelastic regime

We next consider the regime where Λ1 decreases to 50 at fixed Λ = 2.5×10−7. The velocity component
vy starts to show deviations between the one calculated from model 1 and those by model 2 and 3 at t = 60
shown in Figure 6. vy predicted by separable model 2 and the nonseparable model tends to show tamed
fluctuations at the interface than that of separable model 1. The shear stress profile predicted by three models
show some differences as well, in that separable model 2 and the nonseparable model give qualitatively the
same predictions while separable model 1 yields a fluctuating elastic shear stress near the interface. The
normal stress prediction by the three models in ϕnτyy are all comparable however. Figure 7 depicts the
difference between ϕn computed using model 1 and 2 (left picture) and using model 2 and 3 (right picture) at
t = 60, respectively. We again observe that model 2 and 3 give virtually identical result for ϕn, which differs
from the result of model 1 in the order of 10−3. Although the difference in ϕn is still invisible from Figure
6(a), it is two orders of magnitude larger than the difference shown in Figure 2. The apparent fluctuations
in velocity component vy and thereby the elastic shear stress ϕnτxy from model 1 are attributed to the larger
deviation in ϕn from model 1 in the current parameter value range. We remark that the results shown in the
figure are computed using mesh size ∆y= 1/64, and computations with mesh size ∆y= 1/128,1/256,1/512
give the same result which indicates that the stress fluctuation is space is not an artifact of the coarse mesh,
rather it’s the constitutive response to the slight variation in the biomass volume fraction and the associated
excessive velocity variation. Furthermore, since the governing equations for the stress τ are the same for
separable model 1 and 2, and are solved by the same numerical scheme, the difference in τ should be
attributed to the difference between these two models. Namely, ϕn and τ are coupled in separable model 1
but not in separable model 2. We examine the difference between separable model 2 and the nonseparable
model further along in the simulation. At t = 200, the difference in the elastic stress starts to emerge as
shown in Figure 8. The solutions are comparable to those depicted in Figure 1 except that the two elastic
stress components predicted using separable model 2 differ from those predicted by the nonseparable model
in the interfacial region. The difference is quantitative though.

At mixing parameter χ = 0.65, the biofilm dynamics in the viscoelastic limit is analogous to the highly
elastic limit; the growth instability due to the biomass-solvent mixing along with the biomass production
dominates leading to biomass growth in volume fraction in the originally occupied location in biofilm. There
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Figure 3: Solutions of the three models at t = 200, mobility parameters Λ = 2.5×10−9, mixing parameter
χ = 0.55, and relaxation time Λ1 = 2.5×103. The nutrient is consumed the most at the front of the biofilm.
The three models’ predictions are essentially indistinguishable.
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Figure 4: Blow-up of vx in the biofilm region with respect to solutions of all three models at t = 200. The
results are essentially indistinguishable.

is a slight pulling back at the biofilm-solvent interface due to biomass nucleation. The growth velocity is an
order of magnitude weaker than in the highly elastic limit. Figure 9 plots a solution at t = 200 and χ = 0.65.

Finally, we comment on the solutions at a smaller mobility in the viscoelastic limit. The general trend
of the solution follows that alluded to in the highly elastic limit for ϕn. The solutions predicted by the three
models agree very well. The elastic shear stress are all positive with the largest value given by separable
model 1.

In summary, the three models give qualitatively the same results in the parameter range we investigated.
When mobility is low, the growth mode dominates. Otherwise, the spatial expansion of the biofilm and
local growth occur simultaneously. Minor differences are identified among separable model 1, separable
model 2 and the nonseparable model. The volume fraction transport equation in separable model 1 couples
to the stress constitutive equation, Whereas, that of the separable model 2’s equation for ϕn decouples
from the elastic stress equation and is driven by the equation of c, so does the nonseparable model. But,
the nonseparable model has a diffusive stress constitutive equation which couples to the equation of ϕn

and requires a no-flux boundary condition for the stress tensor at the boundary. Ideally the nonseparable
model is the model we should use since it does not impose any a priori assumption on the distribution of
the EPS polymer network (i.e., the separability of the pdf distribution). However, this comparative study
has demonstrated the competency of separable model 2 in the parameter regime we investigated, which is
simpler than the nonseparable model.

8 Conclusions

We have systematically developed a set of kinetic theories for the biofilm, a mixture of biomass and
solvent, using the one-fluid multi-component formulation to model the nonlinear growth and transport of the
biomass (extracellular polymeric substances EPS and bacteria) and the interaction between the biomass and
nutrient and solvent in flows. The theoretical framework allows detailed conformational information of the
EPS polymer network strand to be accounted for and has the potential to be expanded to incorporate more
microscopic details about the biomass and cell-to-cell communication like quorum sensing in the future.
Adopting three distinctive formulations of the dominating mean field force or velocity in the translational
diffusion in the Smoluchowski equation for a normalized distribution ψ (a statistical weight,) we derive three
distinct models for the biomass-solvent mixture. All these models are valid not only within the biofilm region
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Figure 5: Solutions of the three models at t = 200, mobility parameter Λ = 2.5× 10−9, mixing parameter
χ = 0.65, and relaxation time Λ1 = 2.5×103. The results are essentially indistinguishable.
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Figure 6: Solutions of all three models at t = 60, mobility parameter Λ = 2.5× 10−7, mixing parameter
χ = 0.55, and relaxation time Λ1 = 50. Model 1 exhibits the largest fluctuation in velocity and elastic stress
at the biofilm-solvent interface while the other two models show mild fluctuations.
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Figure 7: Biomass volume fraction difference between two pairs of models at t = 60. (a). The difference
between model 1 and model 2 at t = 60. The largest difference is in the order of O(10−3). (b). The difference
between model 2 and model 3 at t = 60. The two models give virtually identical results. Parameter values
are identical to those used in Figure 6.
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Figure 8: Solutions of model 2 and 3 at t = 200, mobility parameter Λ = 2.5× 10−7, mixing parameter
χ = 0.55, and relaxation time Λ1 = 50. The fluctuation in stress is amplified in long time demonstrating that
model 3 exhibits the smallest fluctuation among the three models investigated.
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Figure 9: Solutions of the three models at t = 200 and mobility parameter Λ = 2.5×10−9, mixing parameter
χ = 0.65, and relaxation time Λ1 = 50. The results from model 2 and 3 are essentially indistinguishable.
The stress fluctuation from model 1 differs slightly from those from model 2 and model 3.
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but also in the pure solvent region making them bona fide multiphase hydrodynamic models. A specific
contact is made between separable model 2 and the continuum phase field model developed previously
based on a phenomenological approach establishing the microscopic foundation for the phase field model,
which has been used to study biofilm dynamics in 3-D flow chambers [38, 7]. We then analyze the linear
stability properties of a set of constant steady states shared by all three models revealing the potential long-
wave instability in the models for the biofilm growth in addition to the inherent biomass growth mechanism
for all waves. Finally, we compare the three models on their transient nonlinear dynamics in 1-D shear flows
in the viscoelastic regime with only one relaxation time. Our numerical results show that all three models
predict qualitatively the same behavior with the diffusive stress model rendering a smoother stress profiles
and reduced stress values in the parameter range investigated. For model 1, the biomass profile and the
associated excessive velocity for the biomass leads to a elastic stress fluctuation within the biomass-solvent
interface. This feature is robust in model 1 and is believed to be the result of enhanced coupling between
the stress and the biomass transport that is unique in this model. In the viscous limit, the three models
collapse into a single multiphase phase field model which was studied extensively in [38, 39, 7]. Extension
of this formulation can be made to deal with multiple species of biomass and thereby allow a full coupling
of quorum sensing mechanism. This work will be forthcoming in a sequel.

Acknowledgment and Disclaimer

Effort sponsored by the Air Force Office of Scientific Research, Air Force Materials Command, USAF,
under grant number FA9550-08-1-0107 and the National Science Foundation through grants DMS-0605029,
DMS-0626180, DMS-0819051, DMS-0908330 are gratefully acknowledged.

References

[1] E. Alpkvist and I. Klapper, A Multidimensional Multispecies Continuum Model for Heteroge-
neous Biofilm Development, Bull. Math. Biol., 69 (2007), 765-789.

[2] A. N. Beris and B. Edwards, Thermodynamics of Flowing Systems, Oxford Science Publications,
New York, 1994.

[3] R. B. Bird, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1 & 2, John Wiley
and Sons, New York, 1987.

[4] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I: interfacial free energy, J.
Chem. Phys., 28 (1958), 258-267.

[5] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system-III: Nucleation in a 2-component
incompressible fluid, J. Chem. Phys., 31 (3) (1959), 688-699.

[6] P. M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University
Press, Cambridge, 1995.

[7] Chen Chen, Mingming Ren, Ashok Srinivasan and Qi Wang, 3-D simulations of biofilm-solvent
interaction, East Asian Journal on Applied Mathematics, 1 (2011), 197-214.

[8] N. G. Cogan and J. Keener, Channel Formation in Gels, Siam J. Applied Math., 65 (6) (2005),
1839-1854.

30



[9] N. Cogan and J Keener, The Role of Biofilm Matrix in Structural Development, Mathematical
Medicine and Biology, 21(2) (2004),147-166.

[10] J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber and H.M. Lappin-Scott, Microbial
biofilms, Annu Rev Microbiol 49 (1995), 711-745.

[11] B. Costerton, Medical Biofilm Microbiology: The Role of Microbial Biofilms in Disease, Chronic
Infections, and Medical Device Failure, CD-ROM, Montana State University, 2003.

[12] M. E. Davey and G. A. O’toole, Microbial Biofilms: from Ecology to Molecular Genetics Micro-
biology and Molecular Biology Reviews, 64 (4) ( 2000), 847-867.

[13] E. De Lancey Pulcini, Bacterial biofilms: a review of current research,Nephrologie, 22(8) (2001),
439-441 .

[14] J. Dockery and I.Klapper, Finger formation in biofilm layers, SIAM J. Appl. Math., 62 (2002),
853-869 .

[15] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Science Publications, Oxford,
1986.

[16] M. Doi, Introduction to Polymer Physics, Oxford Science Publications, Oxford, 1995.

[17] P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.

[18] D. J. Hassett, P. A. Limbach, R. F. Hennigan, K. E. Klose, R. E. Hancock, M. D. Platt, D. F. Hunt,
Bacterial biofilms of importance to medicine and bioterrorism: proteomic techniques to identify
novel vaccine components and drug targets, Expert Opin Biol Ther, 3(8) (2003),1201-1207.

[19] R. G. Larson, The Rheology of Complex Fluids. Oxford University Press, New York, 1998.

[20] C. A. A. Lima, R. Ribeiro, E. Foresti and M. Zaiat, Morphological Study of Biomass During the
Start-Up Period of a Fixed-Bed Anaerobic Reactor Treating Domestic Sewage, Brazilian Archives
of Biology and Technology.

[21] N. Cogan and J Keener, Channel formation in gels, SIAM J. Appl. Math., 65 (2005), 1839-1854.

[22] I. Klapper, Effect of Heterogeneous Structure in Mechanically Unstressed Biofilms on Overall
Growth, Bulletin of Mathemstical Biology, 66 (2004), 809-824.

[23] I Klapper, C. J. Rupp, R. Cargo, B. Purvedorj, P. Stoodley, Viscoelastic Fluid Description of
Bacterial Biofilm Material Properties, Biotechnology and Bioengineering, 80(3) (2002), 289-296.

[24] I. Klapper and J. Dockery, Role of Cohesion in the Material Description of Biofilms, Phys. Rev. E
74, (2006), 031902.

[25] C. S. Laspidou and B. E. Rittmann, Modeling biofilm complexity by including active and inert
biomass and extracelluar polymeric substances, Biofilm, 1 (2004), 285-291.

[26] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological
transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1978) (1998), 2617-2654.

[27] S. T. Milner, Dynamical Theory of Concentration Fluctuations in Polymer Solutions under Shear,
Phys. Rev. E, 48(5) 1993, 3674-3691.

31



[28] G. O’Toole, H. B. Kaplan, R. Kolter, Biofilm Formation as Microbial Development, Annual Re-
view of Microbiology, 54 (2000), 49-79.

[29] C. Picioreanu, M. van Loosdrecht, J. Heijnen, Mathematical modeling of biofilm structure with a
hybrid differential-discrete cellular automaton approach. Biotech. Bioeng., 58 (1998), 101-116.

[30] C. Picioreanu, M. van Loosdrecht, J. Heijnen, Multidimensional modelling of biofilm structure,
Biotech. Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium
on Microbial Ecology, Bell CR, Brylinsky M, Johnson-Green P (eds), Atlantic Canada Society for
Microbial Ecology, Halifax, Canada, 1999.

[31] C. Picioreanu, M. J-U Kreft, M. van Loosdrecht, Particle-based multidimensional ultispecies
biofilm models, Applied and Envrionmental Microbiology, May (2004), 3024-3040.

[32] C. Picioreanu, J. B. Xavier, M. van Loosdrecht, Advances in mathematical modeling of biofilm
structure, Biofilm, 1 (2004), 337-349.

[33] H. Tanaka, Viscoelastic Model of Phase Separation, Phys. Rev. E, 56(4) (1997), 4451-4462.

[34] C. Wolgemuth, E. Hoiczyk, D. Kaiser, and G. Oster, How Myxobacteria Glide, Current Biology,
12 (2002), 369-377.

[35] Pengtao Yue, James J. Feng, Chun Liu, and Jie Shen, A Diffuse-Interface Method for Simulating
Two-Phase Flows of Complex Fluids. J. Fluid Mech. 515 (2004), 293-317.

[36] Pengtao Yue, James J. Feng, Chun Liu, Jie Shen, Viscoelastic effects on drop deformation in steady
shear. J. Fluid Mech., 540 (2005), 427-437.

[37] P. Stoodley,Z. Lewandowski, J. D. Boyle, and H. M. Lappin-Scott, The formation of migratory rip-
ples in a mixed species bacterial biofilm growing in turbulent flows. Environ Microbiol, 1 (1999),
447-457.

[38] T. Zhang, N. Cogan, and Q. Wang, Phase-Field Models for Biofilms. I. Theory and 1-D Simula-
tions, Siam J. Appl. Math., 69 (3) (2008), 641-669.

[39] T. Zhang, N. Cogan, and Q. Wang, Phase-Field Models for Biofilms. II. 2-D Numerical Simula-
tions of Biofilm-Flow Interaction, Communications in Computational Physics, 4 (2008), 72-101.

32


	2011_04_PreprintCover.pdf
	Bio_Kinetic_revision_9_15_2011

