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V.N. Temlyakov ∗
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Abstract

We discuss construction of coverings of the unit ball of a finite
dimensional Banach space. The well known technique of comparing
volumes gives upper and lower bounds on covering numbers. This
technique does not provide a construction of good coverings. Here we
apply incoherent dictionaries for construction of good coverings. We
use the following strategy. First, we build a good covering by balls
with a radius close to one. Second, we iterate this construction to
obtain a good covering for any radius. We mostly concentrate on the
first step of this strategy.

1 Introduction

Let X be a Banach space Rd with a norm ‖ · ‖ and let B := BX denote the
corresponding closed unit ball:

B := BX := {x ∈ Rd : ‖x‖ ≤ 1}. (1.1)

The open unit ball will be denoted by Bo := Bo
X :

Bo := Bo
X := {x ∈ Rd : ‖x‖ < 1}. (1.2)

Notation B(x, r) := BX(x, r) and Bo(x, r) := Bo
X(x, r) will be used respec-

tively for closed and open balls with the center x and radius r. In case r = 1

∗University of South Carolina. Research was supported by NSF grant DMS-1160841
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we drop it from the notation: Bo(x) := Bo(x, 1). For a compact set A and a
positive number ε we define the covering number Nε(A) as follows

Nε(A) := Nε(A,X) := min{n : ∃x1, . . . , xn : A ⊆ ∪nj=1BX(xj, ε)}.

The following proposition is well known.

Proposition 1.1. For any d-dimensional Banach space X we have

ε−d ≤ Nε(BX , X) ≤ (1 + 2/ε)d.

This proposition describes the behavior of Nε(BX , X) when ε → 0. In
this paper we concentrate on the case when ε is close to 1. In particular,
we discuss the following problem: How many balls Bo(xj) are needed for
covering B? In other words we are interested in the number

N(d,X) := min{n : ∃x1, . . . , xn : BX ⊂ ∪nj=1B
o
X(xj). (1.3)

We prove here that ifX is a uniformly smooth Banach space thenN(d,X) =
d + 1. With this result in hands we discuss the problem: How small ε can
be for the relation Nε(B) = d+ 1 to hold? The left inequality in Proposition

1.1 gives the lower bound for such ε: ε ≥ 1 − ln(d+1)
d

. In Section 3 we prove
an upper bound: ε ≤ 1−Cd−2. This upper bound follows from two different
constructions given in Propositions 3.2 and 3.4. In both constructions we
use a system D := {gj}d+1

j=1 of vectors and built a covering of B2 in the form

∪d+1
j=1B

o
2(agj, r) with an appropriate r. In Section 4 we apply this idea with D

being an incoherent dictionary for covering in the Hilbert space `d2. We prove
the following bound in Corollary 4.1. For r = (1−µ2)1/2, µ ∈ [(2n)−1/2, 1/2],
we have

Nr(B2) ≤ 2 exp(C1dµ
2 ln(2/µ)). (1.4)

In Section 5 we use incoherent dictionaries in a smooth Banach space X
to build a good covering for BX . Let ρ(u) denote the modulus of smoothness
of X (see Section 3 below for definition) and a(µ) be a solution (actually, it
is a unique solution) to the equation

aµ = 4ρ(2a).

We prove the following bound in Corollary 5.1. For r = 1− 1
2
µa(µ), µ ≤ 1/2,

we have
Nr(BX) ≤ 2 max(C2d, exp(C2dµ

2 ln(2/µ))). (1.5)
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It is interesting to note (see Section 6) that in the case X := `dp, p ∈ [2,∞),
we have 1− r = 1

2
µa(µ) � µ2 as in the case X = `d2.

In Section 6 we consider several specific examples of X and make a con-
clusion that the technique based on extremal incoherent dictionaries works
well and provides either optimal or close to optimal bounds in the sense of
order of lnNε(BX).

2 Lower bounds

We prove the following bound in this section.

Theorem 2.1. Let X be a Banach space Rd with a norm ‖ · ‖. Then

N(d,X) ≥ d+ 1.

Proof. We prove that any d balls Bo(xj), j = 1, . . . , d do not cover B. Indeed,
for a given set {Bo(xj)}dj=1 consider the linear manifold M passing through
x1, . . . , xd:

M := {x : x = x1 + t1(x
2 − x1) + · · ·+ td−1(x

d − x1), tj ∈ R}.

It is clear that M is a (d−1)-dimensional linear manifold. We use Lemma 2.1
below which guarantees that there is z ∈ B, ‖z‖ = 1 such that for any x ∈M
we have ‖z − x‖ ≥ 1. Then z ∈ B is not covered by the ∪dj=1B

o
X(xj).

Lemma 2.1. Let X be a Banach space Rd with a norm ‖ · ‖. Then for any
(d− 1)-dimensional manifold M we have

d(BX ,M) := sup
y∈BX

inf
x∈M
‖y − x‖ ≥ 1. (2.1)

Proof. Without loss of generality we can assume that M is a subspace. In-
deed, by symmetry of BX we have that d(BX ,M) = d(BX ,M

−) where

M− := {x : −x ∈M}.

Let
M = {x : x = x0 + t1u

1 + · · ·+ td−1u
d−1, tj ∈ R}.

Define a subspace

M0 := {x : x = t1u
1 + · · ·+ td−1u

d−1, tj ∈ R}.
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Then d(BX ,M
0) ≤ d(BX ,M). Indeed, for any y ∈ BX there are x+ ∈ M

and x− ∈M− such that

‖y − x+‖ ≤ d(BX ,M), ‖y − x−‖ ≤ d(BX ,M
−) = d(BX ,M).

Set x0 := (x+ + x−)/2 ∈M0. Then

‖y − x0‖ ≤ ‖y − x+‖/2 + ‖y − x−‖/2 ≤ d(BX ,M).

So, we assume that M is a subspace. A standard proof of statements like
Lemma 2.1 is based on the antipodality theorem of Borsuk (see, for instance,
[2], p. 405). We give a proof that is based on ideas from functional analysis.
Let w be a functional such that ‖w‖X∗ = 1 and w(x) = 0 for x ∈ M .
Consider a norming functional Fw for w. Our space X is a reflexive Banach
space. So Fw ∈ BX . For any x ∈M we have

‖Fw − x‖ ≥ |w(Fw − x)| = 1.

This completes the proof of Lemma 2.1

3 Upper bounds

We begin with the case when the norm ‖ · ‖ = ‖ · ‖2 is the Euclidean norm.
Let {ej}dj=1 denote the standard basis: eji = 0 if i 6= j and ejj = 1.

Proposition 3.1. Define xj := 1
2d
ej, j = 1, . . . , d and xd+1 := − 1

2d

∑d
j=1 e

j.
Then

B2 ⊂ ∪d+1
j=1B

o
2(xj).

Proof. We begin with describing a set that is not covered by Bo
2(xk), k ∈

[1, d]. Take any point y ∈ B2. Then
∑d

j=1 y
2
j ≤ 1. Setting a := 1

2d
we obtain

‖y − xk‖2 =
∑
j 6=k

y2j + (yk − a)2.

If (yk − a)2 < y2k then y ∈ Bo(xk). Thus those yk which are not covered
by Bo(xk) satisfy the inequality (yk − a)2 ≥ y2k which implies yk ≤ a/2.
Therefore,

B2 \ ∪dk=1B
o
2(xk) ⊂ C := {y : y ∈ B2, yk ≤ a/2}.
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We now prove that C ⊂ Bo
2(xd+1). Indeed, for any y ∈ C we have

b :=
d∑

k=1

(yk + a)2 =
d∑

k=1

y2k + 2a
d∑

k=1

yk + da2.

The inequality yk ≤ a/2 implies yk ≤ −|yk|+ a and

b ≤
d∑

k=1

y2k − 2a
d∑

k=1

|yk|+ 3da2.

Using
d∑

k=1

|yk| ≥
d∑

k=1

y2k

we obtain

b ≤ (1− 2a)
d∑

k=1

y2k + 3da2 ≤ 1− 2a+ 3da2 ≤ 1− 1

4d
.

Proposition 3.2. Define a := 2
5d+1

, xj := aej, j = 1, . . . , d and xd+1 :=

−a
∑d

j=1 e
j. Then

B2 ⊂ ∪d+1
j=1B

o
2(xj, r) with r > (1− a2)1/2.

Proof. The proof repeats the proof of Proposition 3.1. We only point out
the places where we make changes. First, we note that if yk > a then
y2k − (yk − a)2 > a2. Therefore, in this case y ∈ Bo

2(xk, r). We have

B2 \ ∪dk=1B
o
2(xk, r) ⊂ C ′ := {y : y ∈ B2, yk ≤ a}.

We now prove that C ′ ⊂ Bo
2(xd+1, r). Similar to the above argument we get

b ≤ (1− 2a)
d∑

k=1

y2k + 5da2 ≤ 1− 2a+ 5da2 = 1− a2 < r2.
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For a Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖+ ‖x− uy‖)− 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

Proposition 3.3. Let X be a uniformly smooth Banach space Rd with norm
‖ · ‖. Define xj := aej, j = 1, . . . , d and xd+1 := −a

∑d
j=1 e

j. Then there
exists an a > 0 such that

B ⊂ ∪d+1
j=1B

o(xj). (3.1)

Proof. Embedding (3.1) is equivalent to the claim that for each y ∈ B at
least one of the following d+ 1 inequalities is satisfied

‖y − aej‖ < 1, j ∈ [1, d]; (3.2)

‖y + a
d∑
j=1

ej‖ < 1. (3.3)

In the proof that follows parameter a is small. We assume that a < 1/2.
Then for y such that ‖y‖ ≤ 1/2 all inequalities (3.2) are satisfied. Therefore,
in further argument it is sufficient to consider y such that 1/2 < ‖y‖ ≤ 1.

For x 6= 0 let Fx be a norming functional for x: ‖Fx‖X∗ = 1 and
Fx(x) = ‖x‖. Existence of such a functional follows from the Hahn-Banach
theorem. We note that from the definition of modulus of smoothness we get
the following inequality (see, for instance, [4], p.336).

Lemma 3.1. Let x 6= 0. Then

0 ≤ ‖x+ uy‖ − ‖x‖ − uFx(y) ≤ 2‖x‖ρ(u‖y‖/‖x‖)

where Fx is a norming functional of x.

This lemma implies the following inequalities

‖y − aej‖ ≤ ‖y‖ − aFy(ej) + 2‖y‖ρ(a/‖y‖)

≤ ‖y‖ − aFy(ej) + 2‖y‖ρ(2a), j ∈ [1, d]; (3.4)
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‖y + a
d∑
j=1

ej‖ ≤ ‖y‖+ aFy(
d∑
j=1

ej) + 2ρ(2da). (3.5)

Here, Fy is the norming functional of y.
First, we note that for some k the |Fy(ek)| is large enough. Indeed, let

y =
∑d

j=1 yje
j. Then

|yj| ≤ C1(d)‖y‖, j = 1, . . . , d.

We have

‖y‖ = Fy(y) =
d∑
j=1

yjFy(e
j) ≤ C1(d)‖y‖

d∑
j=1

|Fy(ej)|,

which implies that for some k ∈ [1, d]

|Fy(ek)| ≥ (dC1(d))−1 =: c1. (3.6)

Set b := c1/2 and consider three cases:

Fy(
d∑
j=1

ej) ≤ −b, (3.7)

Fy(
d∑
j=1

ej) ≥ b, (3.8)

|Fy(
d∑
j=1

ej)| < b. (3.9)

In the case (3.7) inequality (3.5) implies (3.3) if a := a(b, ρ, d) is sufficiently
small (remind that uniform smoothness assumption implies ρ(u)/u → 0 as
u→ 0). In the case (3.8) we have for some k ∈ [1, d] that Fy(e

k) ≥ b/d and
this is sufficient to derive (3.2) with j = k from (3.4) and small a.

Consider the case (3.9). Inequality (3.6) guarantees that either Fy(e
k) ≥

c1 or −Fy(ek) ≥ c1. In case Fy(e
k) ≥ c1 we complete the proof as in case

(3.8). In case −Fy(ek) ≥ c1 our assumption (3.9) implies that

d∑
j=1

Fy(e
j) > −b
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and
d∑
j 6=k

Fy(e
j) > −b− Fy(ek) ≥ −b+ c1 = c1/2.

Therefore, for some m

Fy(e
m) ≥ c1

2(d− 1)

and we complete the proof as in case (3.8).

We now discuss another way of constructing a (d + 1)-covering of the
Euclidean ball. It is based on the tight frames construction. We begin with
a conditional statement.

Proposition 3.4. Let Φ := {ϕj}d+1
j=1 be a system of normalized vectors,

‖ϕj‖2 = 1, j = 1, . . . , d+ 1, satisfying the condition

〈ϕi, ϕj〉 = −1

d
, 1 ≤ i 6= j ≤ d+ 1.

Then, there exists an a > 0 such that

B2 ⊂ ∪d+1
j=1B

o
2(aϕj).

Proof. In our proof a is a small number. Let a < 1/2. Then for any x,
‖x‖2 ≤ 1/2, and any k ∈ [1, d+ 1] we have

‖x− aϕk‖2 < 1.

Thus, it is sufficient to consider x such that 1/2 ≤ ‖x‖2 ≤ 1. For each k we
have

‖x− aϕk‖22 = ‖x‖22 + a2 − 2a〈x, ϕk〉. (3.10)

We now need to estimate 〈x, ϕk〉 from below. It is easy to check that our
assumptions on Φ imply the relations

x =
d

d+ 1

d+1∑
i=1

〈x, ϕi〉ϕi, (3.11)

d+1∑
i=1

ϕi = 0, (3.12)

‖x‖22 =
d

d+ 1

d+1∑
i=1

〈x, ϕi〉2. (3.13)

We now need a simple technical lemma.
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Lemma 3.2. If y ∈ RN is such that
∑N

i=1 yi = 0 then there exists k satisfying

yk ≥
‖y‖2

2(N − 1)
.

Proof. The proof goes by contradiction. Suppose yj <
‖y‖2

2(N−1) for all j. De-
note

E+ := {j : yj > 0}, E− := {j : yj < 0}.

Then our assumption implies (note that |E+| ≤ N − 1)∑
j∈E+

yj < ‖y‖2/2,

and, therefore,

‖y‖1 =
N∑
j=1

|yj| = 2
∑
j∈E+

yj < ‖y‖2.

It is a contradiction.

We apply Lemma 3.2 with N := d+ 1, yj := 〈x, ϕj〉. Then the condition∑N
i=1 yi = 0 follows from (3.12). Thus, by (3.13), taking into account that

‖x‖2 ≥ 1/2, we derive from Lemma 3.2 that there exists k such that

〈x, ϕk〉 ≥ (2d)−1(
d+1∑
i=1

〈x, ϕi〉2)1/2 ≥ 1

4d
.

By (3.10) we obtain for this k

‖x− aϕk‖22 ≤ 1 + a2 − a

4d
.

Specifying a = 1
8d

we get

‖x− aϕk‖22 ≤ 1− 1

64d2
.
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We now discuss a question of existence and construction of systems Φ
from Proposition 3.4. We only give one example of such construction which is
based on the Hadamard matrices. Hadamard matrices are very useful in both
theoretical research and engineering applications. In particular, Hadamard
matrices are very popular in error-correction coding theory. A Hadamard
matrix of order n is an n× n matrix Hn with all entries 1 or −1, and

HT
nHn = nIn

where In is the identity matrix. Obviously, any two columns or any two rows
of a Hadamard matrix Hn are mutually orthogonal. This orthogonality is
kept if we permute some rows or columns, or multiply some rows or columns
by -1. Therefore, given any Hadamard matrix, we can always make a new
Hadamard matrix which has all 1’s in the first row by multiplying some
columns by -1. Hadamard matrices only exist for special orders n. The
following lemma and remark are from [5].

Lemma 3.3. If Hn is a Hadamard matrix of order n, then n = 1, n = 2,
or n ≡ 0 (mod 4).

Remark 3.1. One of the famous conjectures in the area of combinatorial
designs states that a Hadamard matrix of order n exists for every n ≡
0 (mod 4). But we are still very far from a proof of this conjecture. The
smallest n for which a Hadamard matrix could exist but no example is known
presently 428.

There exists a variety of methods to construct Hadamard matrices. We
can construct Hadamard matrices from so-called conference matrices (see
[5]). We will not discuss this way. For illustration purposes we provide a
very simple construction of Hadamard matrices of order 2k. The following
lemma provides a recursive method to build Hadamard matrices of order 2k,
where k = 0, 1, 2, ....

Lemma 3.4. For k = 0, 1, 2, ..., the matrices generated by

H1 =
[
1
]
,

H2 =

[
1 1
1 −1

]
,

H2k+1 =

[
H2k H2k

H2k −H2k

]
,

are Hadamard matrices.
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Proof. Clearly, H1 and H2 are Hadamard matrices of order 1 and 2 respec-
tively. Assume H2k is a Hadamard matrix of order 2k, then

HT
2kH2k = 2kI2k .

We need to show that

HT
2k+1H2k+1 = 2k+1I2k+1 .

Indeed,

HT
2k+1H2k+1 =

[
H2k H2k

H2k −H2k

]T [
H2k H2k

Hk −Hk

]
=

[
HT

2k
HT

2k

HT
2k
−HT

2k

] [
H2k H2k

H2k −H2k

]
=

[
2HT

2k
H2k 0

0 2HT
2k
H2k

]
=

[
2k+1I2k 0

0 2k+1I2k

]
= 2k+1I2k+1 .

We can build higher order Hadamard matrices from the Kronecker prod-
uct of lower order Hadamard matrices. Let matrix A ∈ Rn×m with entries aij
and B ∈ Rl×k. Then the Kronecker product A⊗B of A and B is a nl×mk
matrix,

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

an1B an2B · · · anmB

 .
The following simple lemma is known.

Lemma 3.5. If Hm and Hn are Hadamard matrices of order m and n re-
spectively, then Hm ⊗Hn is a Hadamard matrix of order mn.

This lemma provides a good way to build higher order Hadamard matrices
from known lower order ones. We can see that Lemma 3.4 is a corollary of
Lemma 3.5, where the recursion is H2k+1 = H2 ⊗H2k .

11



The Hadamard matrices were used in [1] for construction systems from
Proposition 3.4. Such systems are called absolutely equiangular tight frames
in [1].

Theorem 3.1. Let Hm be a Hadamard matrix with all 1′s in the first row
and m = n + 1. Then, the columns of the matrix Φ generated by deleting
the first row of Hm and dividing by

√
n form an absolutely equiangular tight

frame.

Proof. All columns of Hm are mutually orthogonal. In other words, for any
1 ≤ i 6= j ≤ m, the two columns hi and hj of Hm satisfy 〈hi, hj〉 = 0.

Since the first elements of hi and hj are both 1, the corresponding columns
ϕi and ϕj of Φ satisfy

〈ϕi, ϕj〉 =
1

n
(〈hi, hj〉 − 1) =

1

n
(0− 1) = − 1

n
,

for all 1 ≤ i 6= j ≤ m.

4 Covering using incoherent dictionaries

Proposition 3.4 demonstrates how special dictionaries can be used for build-
ing coverings. In this section we discuss an application of incoherent dic-
tionaries in Euclidean space. Let D = {gk}Nk=1 be a normalized (‖gk‖ = 1,
k = 1, . . . , N) system of vectors in Rd equipped with the Euclidean norm.
We define the coherence parameter of the dictionary D as follows

M(D) := sup
k 6=l
|〈gk, gl〉|.

In this section we discuss the following characteristics

N(d, µ) := sup{N : ∃D such that #D ≥ N,M(D) ≤ µ}.

The problem of studying N(d, µ) is equivalent to a fundamental problem
of information theory. It is a problem on optimal spherical codes. A spherical
code S(d,N, µ) is a set of N points (code words) on the d-dimensional unit
sphere, such that the absolute values of inner products between any two
distinct code words is not greater than µ. The problem is to find the largest
N∗ such that the spherical code S(d,N∗, µ) exists. It is clear that N∗ =
N(d, µ). Denote by D(µ) a dictionary such that M(D(µ)) ≤ µ and |D(µ)| =
N(d, µ). We call such D(µ) an extremal dictionary for a given µ.
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Theorem 4.1. Let D(µ) := {gk}N(d,µ)
k=1 be an extremal dictionary for a given

µ ≤ (1/2)1/2. Then

B2 ⊂ (∪N(d,µ)
j=1 Bo

2(µgj, r)) ∪ (∪N(d,µ)
j=1 Bo

2(−µgj, r)), r2 = 1− µ2.

Thus, Nr(B2) ≤ 2N(d, µ).

Proof. Our assumption that D(µ) is an extremal dictionary for µ implies that
for any x ∈ B2 there is gk ∈ D(µ) such that |〈x/‖x‖2, gk〉| > µ. Suppose,
〈x/‖x‖2, gk〉 > µ. The other case 〈x/‖x‖2,−gk〉 > µ is treated exactly the
same way. Then

‖x− µgk‖22 = ‖x‖22 + µ2 − 2µ〈x, gk〉 < ‖x‖22 + µ2 − 2µ2‖x‖2 ≤ 1− µ2.

The problem of estimating N(d, µ) is well studied (see, for instance, [4],
section 5.7, p. 314). It is known (see [4], p. 315) that for a system D
with #D ≥ 2n we have M(D) ≥ (2n)−1/2. Thus, a natural range for µ is
[(2n)−1/2, 1]. In particular, the following bound is known (see [4], p. 315)

N(d, µ) ≤ exp(C1dµ
2 ln(2/µ)), µ ∈ [(2n)−1/2, 1/2]. (4.1)

As a corollary of (4.1) and Theorem 4.1 we obtain the following statement.

Corollary 4.1. For r = (1− µ2)1/2, µ ∈ [(2n)−1/2, 1/2], we have

Nr(B2) ≤ 2 exp(C1dµ
2 ln(2/µ)).

5 Covering in Banach spaces using incoher-

ent dictionaries

We use here a generalization of the concept of M -coherent dictionary to the
case of Banach spaces. This generalization was published in [3] (see also [4],
p. 381).

Let D be a dictionary in a Banach space X. We define the coherence
parameter of this dictionary in the following way

M(D) := M(D, X) := sup
g 6=h;g,h∈D

sup
Fg

|Fg(h)|,
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where Fg is a norming functional for g. We note that, in general, a norming
functional Fg is not unique. This is why we take supFg

over all norming
functionals of g in the definition of M(D). We do not need supFg

in the
definition of M(D) if for each g ∈ D there is a unique norming functional
Fg ∈ X∗. Then we define D∗ := {Fg, g ∈ D} and call D∗ a dual dictionary to
a dictionary D. It is known that the uniqueness of the norming functional
Fg is equivalent to the property that g is a point of Gateaux smoothness:

lim
u→0

(‖g + uy‖+ ‖g − uy‖ − 2‖g‖)/u = 0

for any y ∈ X. In particular, if X is uniformly smooth then Ff is unique for
any f 6= 0.

Let D := {gj}Nj=1 be a normalized system of vectors in X, which is Rd

equipped with a norm ‖ · ‖, gj = (gj1, . . . , g
j
d)
T . Denote by

Φ := [g1, . . . , gN ]

a d×N matrix formed by column vectors {gj}. Suppose for simplicity that
for each gj there is a unique norming functional Fgj ∈ X∗. Each functional
Fgj ∈ X∗ can be associated with a vector wj ∈ Rd in such a way that

wji = Fgj(e
i), i = 1, . . . , d. Then

Fgj(g
k) =

d∑
i=1

gki Fgj(e
i) =

d∑
i=1

gki w
j
i = 〈wj, gk〉.

Consider the matrix
W := [w1, . . . , wN ]

which is a d × N matrix formed by column vectors {wj}. Consider the
transposed matrix W T that is formed by the row vectors (wj1, . . . , w

j
d), j =

1, . . . , N , or by the column vectors hi := (w1
i , . . . , w

N
i )T , i = 1, . . . , d. Define

the coherence matrix of a dictionary D as follows

C(D) := W TΦ.

Then the coherence matrix C(D) of the system D = {gj}Nj=1 satisfies the
following inequality for the rank: rankC(D) ≤ d. Indeed, the columns of
C(D) are linear combinations of d columns hi, i = 1, . . . , d. It is clear that the
coherence matrix C(D) = ||ci,j||Ni=1,j=1, ci,j = Fgi(g

j), has 1 on the diagonal
and for all off-diagonal elements we have |ci,j| ≤M(D).
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In this section we discuss the following characteristics

N(d, µ,X) := sup{N : ∃D such that #D ≥ N,M(D, X) ≤ µ}.

We now use a fundamental result of Alon (see, for instance, [4], p.317) to
derive an upper bound for N(n, µ,X) from the property rankC(D) ≤ d.

Theorem 5.1. Let A := ‖ai,j‖Ni,j=1 be a square matrix of the form ai,i = 1,
i = 1, . . . , N ; |ai,j| ≤ ε < 1/2, i 6= j. Then

min(N, (lnN)(ε2 ln(2/ε))−1) ≤ C2 rankA (5.1)

with an absolute constant C2.

We apply this theorem with A = C(D) and ε = µ. For
N ≤ (lnN)(µ2 ln(2/µ))−1 (5.1) implies that

N ≤ C2d.

For N ≥ (lnN)(µ2 ln(2/µ))−1 (5.1) implies that

(lnN)(µ2 ln(2/µ))−1 ≤ C2d

and
N ≤ exp(C2dµ

2 ln(2/µ)). (5.2)

Thus,
N ≤ max(C2d, exp(C2dµ

2 ln(2/µ))).

We formulate the above result as a theorem.

Theorem 5.2. For a Banach space X which is Rd equipped with a norm ‖·‖
we have

N(d, µ,X) ≤ max(C2d, exp(C2dµ
2 ln(2/µ))). (5.3)

In particular, in the case µ = C3d
−1/2, inequality (5.3) gives the polyno-

mial bound N(d, µ,X) ≤ dC4 .
Let X be a uniformly smooth Banach space with modulus of smoothness

ρ(u). Denote by a(µ) a solution (actually, it is a unique solution) to the
equation

aµ = 4ρ(2a)

if it exists and set a(µ) := 1 otherwise. Then we always have 4ρ(2a(µ)) ≤
a(µ)µ. Denote by D(µ,X) a dictionary such that M(D(µ), X) ≤ µ and
|D(µ,X)| = N(d, µ,X). We call such D(µ,X) an extremal dictionary for a
given µ in the space X.
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Theorem 5.3. Let D(µ,X) := {gk}N(d,µ,X)
k=1 be an extremal dictionary for a

given µ in the space X. Then

BX ⊂ (∪N(d,µ,X)
j=1 Bo

X(a(µ)gj, r))∪(∪N(d,µ,X)
j=1 Bo

X(−a(µ)gj, r)), r = 1−1

2
µa(µ).

Thus, Nr(B) ≤ 2N(d, µ,X) with r = 1− 1
2
µa(µ).

Proof. Our assumption that D(µ,X) is an extremal dictionary for µ in the
space X implies that for any x ∈ BX there is gk ∈ D(µ,X) such that
|Fx(gk)| > µ. Suppose, Fx(g

k) > µ. The other case Fx(−gk) > µ is treated
exactly the same way. Without loss of generality we assume that ‖x‖ ≥ 1/2.
Then by Lemma 3.1 we get

‖x− a(µ)gk‖ ≤ ‖x‖ − a(µ)Fx(g
k) + 2‖x‖ρ(2a(µ))

< 1− µa(µ) + 2ρ(2a(µ)) ≤ 1− 1

2
µa(µ).

As a corollary of Theorem 5.2 and Theorem 5.3 we obtain the following
statement.

Corollary 5.1. For r = 1− 1
2
µa(µ), µ ≤ 1/2, we have

Nr(BX) ≤ 2 max(C2d, exp(C2dµ
2 ln(2/µ))).

Remark 5.1. Let ω(u) be a continuous majorant of ρ(u), u ∈ [0,∞), such
that ω(u)/u monotone decreases to 0 as u→ 0. Define a(ω, µ) as a solution
to the equation

aµ = 4ω(2a) (5.4)

if it exists and set a(ω, µ) = 1 otherwise.
Theorem 5.3 and Corollary 5.1 hold with a(µ) replaced by a(ω, µ).

6 Some examples

In this section we discuss the above results demonstrating their power on
some specific examples.
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Example 1. Assume that X, being a uniformly smooth Banach space
Rd with norm ‖ · ‖, has modulus of smoothness of power type: ρ(u) ≤ γuq,
q ∈ (1, 2]. Setting ω(u) := γuq we find

a(ω, µ) =

(
µ

γ2q+2

) 1
q−1

.

By Remark 5.1 and Corollary 5.1 we get for r = 1− 1
2
µa(ω, µ), µ ≤ 1/2,

Nr(BX) ≤ 2 max(C2d, exp(C2dµ
2 ln(2/µ))).

In other words, denoting δ := 1− r and q′ := q
q−1 we obtain

N1−δ(BX) ≤ 2 max(C2d, exp(C2(q, γ)dδ2/q
′
ln(2/δ))). (6.1)

In particular, if q = 2 and δ = A1

d
we get a polynomial bound

N
1−A1

d
(BX) ≤ A2d

A3 .

In case q ∈ (1, 2] we get a polynomial bound for N1−δ(BX) for δ � d−q
′/2.

Example 2. Let X := `dp, p ∈ (1,∞). Then it is known that

ρ(u) ≤ up/p if 1 ≤ p ≤ 2, (6.2)

ρ(u) ≤ p− 1

2
u2 if 2 ≤ p <∞. (6.3)

We begin with the case 2 ≤ p <∞. Specify ω(u) := p
2
u2. Then

a(ω, µ) =
µ

8p
,

δ :=
1

2
µa(ω, µ) =

µ2

16p
,

µ = 4p1/2δ1/2.

Thus, by Remark 5.1 and Corollary 5.1 we get for r = 1− 1
2
µa(ω, µ), µ ≤ 1/2,

N1−δ(B
d
p) ≤ 2 max(C2d, exp(8C2dpδ ln

1

4pδ
)). (6.4)
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This implies that we obtain a polynomial bound for N1−δ(B
d
p) in case 2 ≤

p <∞ for δ � 1
pd

.

In the case p ∈ (1, 2) we set ω(u) := up

p
and get

a(ω, µ) =
( pµ

2p+2

) 1
p−1

,

δ :=
1

2
µa(ω, µ) = C(p)µp

′
, µ � δ

1
p′ .

As above by Remark 5.1 and Corollary 5.1 we get for p ∈ (1, 2)

N1−δ(B
d
p) ≤ 2 max(C2d, exp(C2(p)dδ

2
p′ ln

2

δ
)). (6.5)

We obtain a polynomial bound for N1−δ(B
d
p) in case 1 < p < 2 for δ � (1

d
)p
′/2.

Example 3. Let X be a d-dimensional subspace of Lp, 1 < p < ∞.
Similar to Example 2 we have

ρ(u) ≤ up/p if 1 ≤ p ≤ 2, (6.6)

ρ(u) ≤ p− 1

2
u2 if 2 ≤ p <∞. (6.7)

Therefore, relations (6.4) and (6.5) hold in this case too.
Example 4. Let X := `d∞. Proposition 1.1 guarantees that for any

r ∈ [1/2, 1) we have an exponential bound

Nr(BX) ≤ Cd

for all d-dimensional spaces X independently of their smoothness. It is easy
to see that

N(d, `d∞) = 2d

and, therefore, for all r ∈ [1/2, 1) we have

Nr(B
d
∞) ≥ 2d.

This example shows that smoothness assumptions are important for breaking
the exponential behavior of Nr(BX).

The left inequality in Proposition 1.1 implies that for any d-dimensional
Banach spaces X the covering numbers N1−δ(BX) may have polynomial
growth in d only if δ � ln d

d
. Examples 1–3 show that our technique based on
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extremal µ-coherent dictionaries allows us to build polynomial in d coverings
of BX with r = 1− δ, δ � 1

d
, for smooth X.

Example 5. Let X := `d2. Take a dictionary D := {±ej}dj=1. Set
a := 1

4d1/2
. Consider the covering(

∪dj=1B2(ae
j, r)

)
∪
(
∪dj=1B2(−aej, r)

)
.

We prove that there exists c > 0 such that the above union with r ≥ 1 − c
d

covers B2. Indeed, for any x such that ‖x‖2 ≥ 1/2 there is a coordinate value
xk such that |xk| ≥ 1

2d1/2
. Suppose xk ≥ 1

2d1/2
. Then

x2k − (xk − a)2 = 2xka− a2 ≥
3

16d
.

This implies that the above explicitly written union of 2d balls of radius
r ≥ 1 − c

d
covers B2. We can use this covering for building an explicit

covering with smaller r. The idea is to iterate m times the above covering
with r = 1 − c

d
. Then the radius of the resulting covering is r = (1 − c

d
)m

and the total number of balls in the covering does not exceed (2d)m. Using
the notation δ := 1− r we get for small δ

(2d)m ≤ exp(Cdδ ln(2d)).

Example 6. Let X be a uniformly smooth Banach space Rd with norm
‖·‖ and a basis Ψ := {ψj}dj=1. Then for any x we have a unique representation

x =
d∑
j=1

xjψ
j, |xj| ≤ K‖x‖, j = 1, . . . , d.

Let ω(u) be a continuous majorant of ρ(u), u ∈ [0,∞), such that ω(u)/u
monotone decreases to 0 as u→ 0. Set a := a(ω, 1

Kd
) to be a solution to the

equation (5.4) with µ := 1
Kd

. Take a dictionary D := {±ψj}dj=1 and consider
the covering (

∪dj=1BX(aψj, r)
)
∪
(
∪dj=1BX(−aψj, r)

)
.

We prove that the above union with r ≥ 1− 1
2
aµ covers BX . We have

‖x‖ = Fx(x) =
d∑
j=1

xjFx(ψ
j) ≤ K‖x‖

d∑
j=1

|Fx(ψj)|,
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which implies that for some k ∈ [1, d]

|Fx(ψk)| ≥ (Kd)−1 =: µ. (6.8)

Suppose Fx(ψ
k) ≥ (Kd)−1. Then by Lemma 3.1 we get

‖x− aψk‖ ≤ ‖x‖ − aFx(ψk) + 2‖x‖ρ(2a)

< 1− aµ+ 2ρ(2a) ≤ 1− 1

2
aµ.

This implies that the above explicitly written union of 2d balls of radius
r ≥ 1 − 1

2
aµ covers BX . We can use this covering for building an explicit

covering with smaller r. As in Example 5 we iterate m times the above
covering with r = 1 − 1

2
aµ. Then the radius of the resulting covering is

r = (1− 1
2
aµ)m and the total number of balls in the covering does not exceed

(2d)m.
Examples 5 and 6 demonstrate how simple constructions of coverings with

r < 1 can be used for ε-coverings. Suppose we can construct a r-covering
with polynomial bound Nr(BX) ≤ dA4 with r = 1 − A5

d
. Then, assuming

that X has smoothness of order u2, as in Example 5, iterating this covering
m times we get a (1− δ)-covering with

N1−δ(BX) ≤ exp(Cdδ ln d), δ ≥ A5

d
.

This bound compared with the optimal bound from Proposition 1.1 contains
an extra ln d factor in the exponent. However, a construction of an extremal
dictionary for some fixed µ0 ≥ c0 > 0 will give

Nr0(BX) ≤ exp(C(c0)d), r0 = r0(c0) < 1.

Iterating this construction we obtain

Nε(BX) ≤ exp(Cd ln(1/ε))

which is optimal in the sense of order of the exponent.
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