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Abstract — In this paper, the authors propose a new method for the
propagation of uncertainty through non linear algorithms that may
contain conditional statements. The approach is based on bittors,
that are bit vectors where bits are expressed in terms of their
probability to take value 1 or 0. Provided the logic operations
between bittors are defined, the system of bittor numbers is
introduced together with the fundamental operations. The bittor
numbers can be processed with any algorithm provided the
JSundamental operations are redefined for bittors. This approach is
suitable for multithread algorithms, thus conditional statements, can
be handled easily. The implementation of bittor numbers and their
operations in the Matlab environment is presented together with the
numerical results of an example of application. The entropy as a
measure of the information content of the bittor number is defined
and proposed as a metric aof loss of information content due to the
elaboration. The authors discuss strengths, weaknesses and
challenges of the approach and provide an overview of the potential
benefits of this method.
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I. INTRODUCTION

The representation and processing of uncertain values and
the propagation of uncertainty through non-linear
measurement functions and more in general algorithms is a
topic of great interest among researchers. In particular, the
problem of uncertainty propagation through algorithms with
conditional statements is of difficult solution.

Numerical approaches based on Monte Carlo procedure
and consistent with the ISO Guide to the Expression of
Uncertainty in Measurement (GUM) [1], , have been adopted
to assess the uncertainty due to DSP algorithms, [2] [3] [4].
Still, this approach does not satisfactorily address the issue of
conditional statements, in that decisions can be opposite for
values of the variables close to the threshold and the Monte
Carlo analysis does not provide insight on how to control this
behavior. Furthermore, the Monte Carlo methods are not
suitable for on-line applications.

The unscented transform, a more efficient approach, has
been introduced in [5] and extended in [6], although, also for
this method, capable of dealing with the nonlinearity of the
algorithm, the conditional statements preset a challenge.

The application of non-numerical “white box” approach to
the propagation of uncertainty in DSP algorithms is presented
in [14], and the application in presence of conditional

statements is presented in [13]. This approach is suitable for
the off-line analysis of algorithms.

Non numerical methods, that are more comprehensive
now well developed, have been proposed for the
representation and handling of measurement uncertainty and
that go beyond some of the restrictions of the GUM, and that
yield a computational burden that is, in some conditions,
lighter than the Monte Carlo approaches. Also, some of these
methods can be used for run time calculations. Among these
methods, the random fuzzy variable approach, within the
framework of the theory of evidence, [7][8][9], provides a
tool for dealing with non random effects and a compact
representation of measurement values with their uncertainty.
Also among these methods, the polynomial chaos (PC)
approach provides means for the compact representation of
probability densities of the values of the variables [10]. PC
has also been used for modeling and simulation of uncertain
systems, propagating uncertainty through linear and non
linear algorithms [11], and for control design [12], allowing
the on-line estimation and control of the impact of load
uncertainty in a power electronic system.

The purpose of this paper is to present the implementation
and use, advantages and limitations of the new bittor
approach to uncertainty propagation in numerical elaboration
algorithms. This approach is suitable and immediately
applicable in computational environments such as Matlab.
Due to its nature, is also ideal for algorithms executed in
embedded microproessors.

The representation and elaboration of uncertain data in
form of bittors and bittor numbers naturally propagates
uncertainty during the execution of the algorithm, it allows
for straightforward propagation through conditional
statements with clear decision making criteria, and allows for
the evaluation of information content at any step in the
calculation.

The mathematical foundation of bittors, the bittor algebra
and the bittor numbers are presented in paragraph II, the
implementation of part of the bittor features is presented in
paragraph III. An overview of the application, including a
numerical example is presented in paragraph V. Since the
investigation of the bittor approach is in its early stages, a
critical perspective and the inquiry directions that should be
followed to fully assess the application feasibility and value



are presented in paragraph V. Finally the conclusions are
summarized in paragraph V1.

0. THE BITTOR

In this work, the authors introduce the representation and
elaboration of measurement results in binary form based on
the generalization of the bit of information to the bit vector,
or bittor [15][17]. The bittor representation was originally
conceived to address the issue of representing physical and
measurable quantities in a form that is more consistent than
real numbers with the limits of knowledge and measurement.
While the single bit is 1 or 0, the bittor of information, can
take the intermediate values, thus, the probability of actually
being 1 or 0. Bittors are rooted in a firm mathematical
background, in that bittors are Markov Lie monoid two-
dimensional representations.

A bittor is therefore represented as (x1, x0), where x1
represetns the probability of the bittor to be 1, and x0
represents the probability to be 0, such that x14+x0=1, so a
bittor that is (1, 0) represents the certain bit 1, while a bittor
(0.5, 0.5) has equal probability to be a 1 or a 0. The
probability can take any value between 0 and 1. Bittors can
have multiple components for example to represent the
probability that that two consecutive digits are both 1, or 1
and then 0, or vice versa, or both 0.

The bittor algebra, that contains the 1/0 logic as a
particular case, has been defined by defining the 16 logic
operations. The general structure to define the operations
between bittor x=(x1, x0) and bittor y=(y1, y0) that results in
bittor z=(z1, z0) and can be expressed in the form:

z, = c"nx,, @

Where, i=1, 0, j, k=1, 0, o=0, 1,..., 15 and indicates the
specific operation. The three dimensional tensor ¢ takes
~ values 1 or 0. For the AND operation, for example,
¢100=c101=c110=c011=0, c000=c111=c001=c010=1. Thus,
the general expression:

z, = c Xy, + ¢ nox,y, + c“1o1x, Y, + ¢ 100%, 3,

zy = oy, +c%or0x,y, + c%o01x, Y, + c%000x0 Y,
becomes:

=8N
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The 16 operations therefore correspond to 16

combinations of the products xjy,. In particular, each
operation is defined by the binary four-bit code o, that defines
which terms of the ordered set x;y;, X;yo, Xo¥y1, Xoyo are
contained in the expression of z;. the remaining terms
compose zo. For example, the OR operation is characterized
by a=1110.

Notice that the structure briefly introduced here comprises
the classic Boolean truth tables as a particular case and
adheres to the standard probability -theory for the
generalization for the logic operations.

The representation of bittors can be simplified just
showing the upper component of the bittor.

The linear combination of bittors is closed on the bittor
space, if the coefficients of the linear combination are non-
negative and sum up to 1. This opens the way to defining
linear combinations of logic operations, which could be used
in intrinsically uncertain decision making criteria or to
represent human interventions in the decision process.

The bittor numbers are binary numbers built on the bittor
structure. The bittor numbers naturally carry their own
uncertainty and allow for direct propagation of uncertainty
through numerical algorithms, in particular algorithms
containing conditional statements. An example of Dbittor
representation of a binary number carrying no uncertainty is
(1, 0)(0, 1)(1, 0), while a binary number with uncertain least
significant bit, with equal probability of a 1 or a 0 is written
as (1, 0)(0, 1)0.5, 0.5), or, for brevity (1)(0X0.5). The
sequence 10.11 is thus represented as (1, 0)(0, 1).(1 0)(1 0).

The arithmetic operations between bittor numbers are
carried out like the operations between binary numbers,
though considering that the probabilities rather the values are
combined. As a consequence, for example, the addition
between two bittors results in two bittors:

(X1, X0)H¥15 Yo)=(€15 Co)(r1, To)

where cl represents the probability of carry and rl
represents the probability of the result to be 1.

The bittor representation is particularly suitable for

. multithreaded computation. The branching point can be, for

example, an if...then...statement. At these points two threads
are spawned, each carrying the value of its own probability.

For example, suppose that the bittor number nb=(0.8,
0.2)(0.1, 0.9) enters the following if...then... statement to be
compared with bittor number (0, 1)(1, 0):

inb> (0)(1)

then ...

The comparison between (0.8, 0.2) and (0, 1) results in a
0.8 probability that the conditional statement is true. Thus,
the computational thread following the true option carries its
own probability of 0.8.

These threads can be annihilated during the elaboration,
when their probability falls below a preset threshold.

Finally, the information content of a bittor has been
defined through an extension of Shannon entropy and,
furthermore, the information content of an entire bittor
number is defined as the sum of information content of the
bittors that compose it. This is an immediate way to quantify
the information content of data, at any stage of the
elaboration.

The expression of the information content of a bittor is
Renyi’s form of Shannon entropy [16]: ’

@

I=1log, (2(x12 +x, ))
Notice that this quantity is always equal to 1 for bittors
that represent deterministically known bits, while it is less

than one for uncertain bits.
In general, for a N-dimensional bittor, I will take the form:




N
I =log2(NZ(x,.2)J 3)
i=l

Finally, for a bittor number, I equals the sum of the
information of all bittors.

y
I= logz(ZZ : (x1,2 + xoiz)] 4
i=1

1. IMPLEMENTATION

The bittor and bittor number representation and operations
have been implemented in Matlab (at present state only part
of the set has been implemented). The bittor number class has
been defined, the display and support functions and the
overload operations have been implemented.

The bittor number ca be defined to comprise any number
of bittors, in particular, in the present implementation each
bittor number is made of 8 bittors. Warning messages are
provided in case of overflow. The bittor numbers can have a
decimal bittors. The probabilities are represented and
processed as integers, and the user can choose the base. In the
present implementation the base is 256, so each element of a
bittor is in fact an 8 bit integer. Notice that the number of
bittors that constitute the bittor number (8 in this case) and
the base of the integer representation (256) are in fact
independent, although the most convenient match can be
chosen.

Thanks to this framework, any algorithm that involves the
basic operations can be executed with bittor number inputs
with minimal modifications. This feature can be used to test
the impact on measurement algorithms on uncertainty and
information content.

Iv. APPLICATIONS

A first example of application in form of sum of two
uncertain values, A and B, is reported here. A and B are
values with uniform distribution within the range 5-0.25 and
5+0.25 and 3-0.25 and 3+0.25 respectively. Thus, the values
A and B are known as

A=5%0.25, B=3+0.25,

that in bittor form is;

A=1)0)1)(0)0.5), B=(1)1){0)0.5)

Where two parts of the bittor number can be clearly
identified: a perfectly known part, made of ones and zeros,
and an uncertain part, with equal probability to be one or
zero, expressed by the 0.5 bittor.

Thus in terms of bittor integers, A and B are:

A4=(255)0)255)(0)128), B =(255)255)(0X128)

The sum C=A+B, in terms of bittor integers is:

C = (245)5)X2)0)(64)128)

that is:

C =(0.957)0.019)0.007)(0)(0.25X0.5)

With this approach, the uncertainty propagates to all the
bittors in the bittor number. The propagation is limited by the

resolution of the representation of the probability of the
individual bittor.

The PDF of C can be reconstructed from the bittor number
representation and results in what shown in Figure 1.
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Figure 1: PDF of bittor number
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Figure 2: PDF of result of the sum as a bittor number and as
reconstructed from PDFs of sum terms

Due to the uncorrelation of individual bittors in the bittor
number, the PDF seems to allow for results of the addition
that are not possible. The bittor number representation tends
to spread out the PDF.

A simple example is introduced to illustrate the
relationship between bittor numbers with multi-dimensional
bittors and with two dimensional bittors.




Consider the following two bittor numbers: A=(1)(0)(0.5)
and B=(1)(0)(0.5). The sum NBS of A and B can be written
in terms of multidimensional bittors as:

X 0
NBS = 4+ B=1)0) ™ |=@)0) *Z

Xop 0.5

Xgo 0.25

This results means that there is 0 probability of NBS=1011
(11 in decimals), 0.25 probability of NBS=1010 (10 in
decimals), 0.5 probability of NBS=1001 (9 in decimals) and
0.25 probability of NBS=1000 (8 in decimals). This
multidimensional bittor representation carries along the
probability of each of the possible bit configurations, so it
carries the complete information. Notice that the sum of the
bittor elements is equal to 1, as it should, therefore this
representation has three degrees of freedom in this sample

“case. The PDF of NBS reconstructed from the mult
dimensional bittor number is represented in Figure 3 and it is
consistent with what expected.
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Figure 3: PDF of multi dimensional bittor number

If, instead of the multi dimensional bittor, the two
dimensional bittors are used, the result of the sum, NBS’, is:

NBS'= (1)(0)0.25X0.5)

The PDF of NBS’ is reconstructed by interpreting each
bittor as the probability that the corresponding power of two
is added to the decimal value of NSB’. The resulting PDF is
represented in Figure 4. Notice that the procedure to
reconstruct this PDF can be structured as a series of
convolutions, thus indicating that the reconstruction can be
efficiently implemented in form of a cascade of digital FIR
filters. Something else to be noticed is that this PDF is not
exact, and, although similar, it does not match the one in

Figure 3. In particular, this PDF is more spread out and it
extends its tail to the decimal value of 11, which cannot be
reached. The cause of this effect is the total uncorrelation
between the two dimensional bittors that compose NBS,
which, instead are correlated, being the result of the addition
A+B. This spreading of the PDF is limited by the finite
resolution of the value of each bittor.
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Figure 4: PDF of the result of the sum reconstructed from two
dimensional bittor representation

Notice that another approach, based on the conservation of
the expected value and the variance, and possible of higher
order moments, could be adopted for reconstructing the PDF
of NBS’. Such approach, presented here for sake of
comparison, in this specific case would lead, on one hand to
zero probability for the impossible value of 11, consistent
with the exact PDF, and a rearrangement of the rest of the
PDF as in Figure 5.
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Figure 5: PDF of NBS', version 2 reconstruction
The information content of the NBS, computed, depending

of the format, with equations (2)-(4), is equal to I = 2.585,
while the information content of NBS’ is I’=2.459. Notice




that, a deterministic number with the same number of bits
would carry information content I = 3. These results show, as
expected, that the uncertain representation has less
information that the deterministic representation and that the
two dimensional bittor representation, that leads to a
spreading of the PDF, has less information that the
representation with the multi-dimensional bittors. The
information content computed in this way can be used a
quantitative metric for the information loss that occurs with
the processing of uncertain data and the processing in a final
resolution environment.

V.FUTURE WORK

The bittor approach requires an effort of reconciliation,
wherever possible, with the expression of uncertainty of the
GUM. This involves translating the standard uncertainty of a
measurement in bittor, recovering the standard uncertainty
from the bittor results and providing the confidence level, if
at all possible. The assumption made in the most basic
version of bittor numbers is that the individual bittors are not
correlated. This is actually not the case when bittor numbers
are the result of operation performed on other bittor numbers.
In such case, the PDF of the resulting bittor number carries
some error. Furthermore, even when a bittor number is not
the result of numerical manipulation of other bittor numbers,
the mapping of a the two dimentional bittor, bittor number,
onto a PDF is difficult. In fact, the mapping is not bijective.
The correlation between the bittors of a bittor number can be
accounted for using multi-dimensional bittors; although the
algebra for multi-dimensional bittor numbers still has to be
fully formalized.

In principle, the bittor representation naturally allows for
bi-modal distributions. A hint of this feature can be seen in
the following example:

A=(1)(0.6)(0)(1).(0.5)(0.5).
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Also, reconciliation with the other theories that go beyond
the GUM must be attempted. In fact the bittor may actually
support the implementation of these theories.

The information content, used as a metric of information
loss, could lead to the effort of implementing algorithms in
forms that minimize the loss of information. In particular, the
best approach would involve the formalization of the effect of
the sequence of operations and truncations to allow optimal
design of the measurement and DSP algorithms processing
uncertain data,

Finally, the intrinsic possibility to generate linear
combinations of logic operations, such as creating a logic
operation that is 70% AND and 30%OR can be greatly
exploited in decision making under uncertain condition,
where the uncertainty does not refer only to the data but also
to the decision making laws as well.

The bittor numbers have the advantage of being perfectly
fit for numerical elaboration, and can be easily implemented
in embedded microprocessors. The possibility of tracking and
managing the effects of truncation is an evident advantage, in
particular in elaboration of integers.

VL CONCLUSIONS

Bittors and bittor numbers have been introduced as a
method to represent uncertain data and propagate the
uncertainty through numerical algorithm and decision trees.
The principle and mathematical background of bittors have
been introduced, together with their implementation and
sample applications. The gaps to be filled of a comprehensive
approach to measurement uncertainty representation and
propagation based on bittors have been listed, together with
the strengths of the approach and the specific areas that may
benefit form this new technology.
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